
Interprocedural Slicing Using Dependence
Graphs

SUSAN HORWITZ, THOMAS REPS, and DAVID BINKLEY
University of Wisconsin-Madison

The notion of a program slice, originally introduced by Mark Weiser, is useful in program debugging,
automatic parallelization, and program integration. A slice of a program is taken with respect to a
program point p and a variable x; the slice consists of all statements of the program that might affect
the value of x at point p. This paper concerns the problem of interprocedural slicing-generating a
slice of an entire program, where the slice crosses the boundaries of procedure calls. To solve this
problem, we introduce a new kind of graph to represent programs, called a system dependence graph,
which extends previous dependence representations to incorporate collections of procedures (with
procedure calls) rather than just monolithic programs. Our main result is an algorithm for interpro-
cedural slicing that uses the new representation. (It should be noted that our work concerns a
somewhat restricted kind of slice: rather than permitting a program to be sliced with respect to
program point p and an arbitrary variable, a slice must be taken with respect to a variable that is
defined or used at p.)

The chief difficulty in interprocedural slicing is correctly accounting for the calling context of a
called procedure. To handle this problem, system dependence graphs include some data dependence
edges that represent transitiue dependences due to the effects of procedure calls, in addition to the
conventional direct-dependence edges. These edges are constructed with the aid of an auxiliary
structure that represents calling and parameter-linkage relationships. This structure takes the form
of an attribute grammar. The step of computing the required transitive-dependence edges is reduced
to the construction of the subordinate characteristic graphs for the grammar’s nonterminals.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs-
control structures, procedures, functions, and subroutines; D.3.4 [Programming Languages]: Pro-
cessors-compilers, optimization

General Terms: Algorithms, Design

Additional Key Words and Phrases: Attribute grammar, control dependence, data dependence, data-
flow analysis, flow-insensitive summary information, program debugging, program dependence graph,
program integration, program slicing, subordinate characteristic graph

An earlier version of this paper appeared in abridged form in the Proceedings of the ACM SIGPLAN
88 Conference on Programming Language Design and Implementation, (Atlanta, Ga., June 22-24,
1988), ACM SZGPLAN Not. 23, 7 (July 1988) [lo].
This work was supported in part by a David and Lucile Packard Fellowship for Science and
Engineering, by the National Science Foundation under grants DCR-8552602, DCR-8603356, and
CCR-8958530, by the Defense Advanced Research Projects Agency, monitored by the Office of Naval
Research under contract N00014-88-K-0590, as well as by grants from IBM, DEC, and Xerox.
Authors’ address: Computer Sciences Department, University of Wisconsin-Madison, 1210 W.
Dayton St., Madison, WI 53706.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0164-0925/90/0100-0026 $01.50

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990, Pages 26-60.

Interprocedural Slicing Using Dependence Graphs l 27

1. INTRODUCTION

The slice of a program with respect to program point p and variable x consists of
all statements and predicates of the program that might affect the value of x at
point p. This concept, originally discussed by Mark Weiser in [22], can be
used to isolate individual computation threads within a program. Slicing can help
a programmer understand complicated code, can aid in debugging 1171, and can
be used for automatic parallelization [3, 211. Program slicing is also used by the
algorithm for automatically integrating program variants described in [ll]; slices
are used to compute a safe approximation to the change in behavior between a
program P and a modified version of P, and to help determine whether two
different modifications to P interfere.

In Weiser’s terminology, a slicing criterion is a pair (p, V), where p is a
program point and V is a subset of the program’s variables. In his work, a slice
consists of all statements and predicates of the program that might affect the
values of variables in V at point p. This is a more general kind of slice than is
often needed: rather than a slice taken with respect to program point p and an
arbitrary variable, one is often interested in a slice taken with respect to a variable
x that is defined or used at p. The value of a variable x defined at p is directly
affected by the values of the variables used at p and by the loops and conditionals
that enclose p. The value of a variable y used at p is directly affected by
assignments to y that reach p and by the loops and conditionals that enclose p.
When slicing a program that consists of a single monolithic procedure (which we
will call intraprocedural slicing), a slice can be determined from the closure of
the directly-affects relation. Ottenstein and Ottenstein pointed out how well
suited program dependence graphs are for this kind of slicing [191; once a program
is represented by its program dependence graph, the slicing problem is simply a
vertex-reachability problem, and thus slices may be computed in linear time.

This paper concerns the problem of interprocedural slicing-generating a slice
of an entire program, where the slice crosses the boundaries of procedure calls.
Our algorithm for interprocedural slicing produces a more precise answer than
that produced by the algorithm given by Weiser in [22]. Our work follows the
example of Ottenstein and Ottenstein by defining the slicing algorithm in terms
of operations on a dependence graph representation of programs [19]; however,
in [19] Ottenstein and Ottenstein only discuss the case of programs that consist
of a single monolithic procedure, and do not discuss the more general case where
slices cross procedure boundaries.

To solve the interprocedural-slicing problem, we introduce a new kind of graph
to represent programs, called a system dependence graph, which extends previous
dependence representations to incorporate collections of procedures (with pro-
cedure calls) rather than just monolithic programs. Our main result is an
algorithm for interprocedural slicing that uses the new representation.

It is important to understand the distinction between two different but related
“slicing problems:”

Version 1. The slice of a program with respect to program point p and variable
x consists of all statements and predicates of the program that might affect the
value of x at point p.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

28 - S. Horwitz et al.

Version 2. The slice of a program with respect to program point p and variable
x consists of a reduced program that computes the same sequence of values for x
at p. That is, at point p the behavior of the reduced program with respect to
variable x is indistinguishable from that of the original program.

For in&procedural slicing, a solution to Version 1 provides a solution to Version
2, since the “reduced program” required in Version 2 can be obtained by restricting
the original program to just the statements and predicates found in the solution
for Version 1 [20].

For interprocedural slicing, restricting the original program to just the state-
ments and predicates found for Version 1 may yield a program that is syntactically
incorrect (and thus certainly not a solution to Version 2). The reason behind this
phenomenon has to do with multiple calls to the same procedure: it is possible
that the program elements found by an algorithm for Version 1 will include more
than one such call, each passing a different subset of the procedure’s parameters.
(It should be noted that, although it is imprecise, Weiser’s algorithm produces a
solution to Version 2.)

In this paper we address Version 1 of the interprocedural slicing problem (with
the further restriction, mentioned earlier, that a slice can only be taken with
respect to program point p and variable x if x is defined or used at p). The
algorithm given in the paper identifies a subgraph of the system dependence
graph whose components might affect the sequence of values for x at p. A solution
to Version 2 requires either that the slice be extended or that it be transformed
by duplicating code to specialize procedure bodies for particular parameter-usage
patterns.

Weiser’s method for interprocedural slicing is described in [22] as follows:

For each criterion C for a procedure P, there is a set of criteria UP,(C) which
are those needed to slice callers of P, and a set of criteria DOWN,,(C) which are
those needed to slice procedures called by P. . . . UP,(C) and DOWNo can be
extended to functions UP and DOWN which map sets of criteria into sets of
criteria. Let CC be any set of criteria. Then

UP(W = UC UP,(C)

DOWN(CC) = o,u,, DOWNo

The union and transitive closure of UP and DOWN are defined in the usual
way for relations. (UP U DOWN)* will map any set of criteria into all those
criteria necessary to complete the corresponding slices through all calling and
called routines. The complete interprocedural slice for a criterion C is then just
the union of the intraprocedural slices for each criterion in (UP U DOWN)*(C).

However, this method does not produce as precise a slice as possible because
the transitive-closure operation fails to account for the calling context of a called
pr0cedure.l

1 For example, the relation (UP U DOWN)*((p, V)) includes the relation UP(DOWN((p, V))).
UP(DOWN((p, V))) includes all call sites that call procedures containing the program points in
DOWN((p, V)), not just the procedure that contains p. This fails to account for the calling context,
namely the procedure that contains p.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

Interprocedural Slicing Using Dependence Graphs l 29

Example. To illustrate this problem, and the shortcomings of Weiser’s algo-
rithm, consider the following example program, which sums the integers from 1
to 10. (Except in Section 4.3, where call-by-reference parameter passing is
discussed, parameters are passed by value-result.)

program Main procedure A (x, y) procedure Add (n, b) procedure Increment (2)
sum:=O; call Add (x, y); a:=a+b call Add (2, 1)
i:=l; call Zncrement (y) return return
whilei<lldo return

call A (sum, i)
od

end

Using Weiser’s algorithm to slice this program with respect to variable z and the
return statement of procedure Increment, we obtain everything from the original
program. However, a closer inspection reveals that computations involving the
variable sum do not contribute to the value of z at the end of procedure Increment ;
in particular, neither the initialization of sum, nor the first actual parameter of
the call on procedure A in Main, nor the call on Add in A (which adds the current
value of i to sum) should be included in the slice. The reason these components
are included in the slice computed by Weiser’s algorithm is as follows: the initial
slicing criterion “(end of procedure Increment, z)“, is mapped by the DOWN
relation to a slicing criterion “(end of procedure Add, a)“. The latter criterion is
then mapped by the UP relation to two slicing criteria-corresponding to all sites
that call Add-the criterion “(call on Add in Increment, 2)” and the (irrelevant)
criterion “ (call on Add in A, x)“. Weiser’s algorithm does not produce as precise
a slice as possible because transitive closure fails to account for the calling
context (Increment) of a called procedure (Add), and thus generates a spurious
criterion ((call on Add in A, x)).

A more precise slice consists of the following elements:

program Main procedure A (y) procedure Add (a, b) procedure Increment(z)
i:=l; call Increment(y) a:=a+b call Add (z, 1)
while i c 11 do return return return

callA
od

end

This set of program elements is computed by the slicing algorithm described in
this paper.

The chief difficulty in interprocedural slicing is correctly accounting for the
calling context of a called procedure. To address the calling-context problem,
system dependence graphs include some data dependence edges that represent
transitive dependences due to the effects of procedure calls, in addition to the
conventional edges for direct dependences. The presence of transitive-dependence
edges permits interprocedural slices to be computed in two passes, each of which
is cast as a reachability problem.

The cornerstone of the construction of the system dependence graph is the use
of an attribute grammar to represent calling and parameter-linkage relationships
among procedures. The step of computing the required transitive-dependence

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

30 l S. Hotwitz et al.

edges is reduced to the construction of the subordinate characteristic graphs for
the grammar’s nonterminals. The need to express this step in this fashion (rather
than, for example, with transitive closure) is discussed further in Section 3.2.

The remainder of the paper is organized as follows: Section 2 defines the
dependence graphs used to represent programs in a language without procedure
calls. Section 2 also defines the operation of intraprocedural slicing on these
dependence graphs. Section 3 extends the definition of dependence graphs to
handle a language that includes procedures and procedure calls. The new graphs
are called system dependence graphs. Section 4 presents our slicing algorithm,
which operates on system dependence graphs and correctly accounts for the
calling context of a called procedure. It then describes how to improve the
precision of interprocedural slicing by using interprocedural summary informa-
tion in the construction of system dependence graphs, how to handle programs
with aliasing, how to slice incomplete programs, and how to compute forward
slices (i.e., the program elements potentially affected by a given variable at a given
point). Section 5 discusses the complexity of the slicing algorithm. We have not
yet implemented this algorithm in its entirety; thus, Section 5 provides an
analysis of the costs of building system dependence graphs and of taking inter-
procedural slices rather than presenting empirical results. Section 6 discusses
related work.

With the exception of the material on interprocedural data-flow analysis
employed in Section 4.2, the paper is self-contained; an introduction to the
terminology and concepts from attribute-grammar theory that are used in
Section 3.2 may be found in the Appendix.

2. PROGRAM-DEPENDENCE GRAPHS AND PROGRAM SLICES

Different definitions of program dependence representations have been given,
depending on the intended application; they are all variations on a theme
introduced in [161, and share the common feature of having an explicit represen-
tation of data dependences (see below). The “program dependence graphs”
defined in [7] introduced the additional feature of an explicit representation for
control dependences (see below). The definition of program dependence graph
given below differs from [7] in two ways. First, our definition covers only a
restricted language with scalar variables, assignment statements, conditional
statements, while loops, and a restricted kind of “output statement” called an
end statement,* and hence is less general than the one given in [7]. Second, we
omit certain classes of data dependence edges and make use of a class introduced
in [8, 111. Despite these differences, the structures we define and those defined
in [7] share the feature of explicitly representing both control and data depen-
dences; therefore, we refer to our graphs as “program dependence graphs,”
borrowing the term from [7].

‘An end statement, which can only appear at the end of a program, names one or more of the
variables used in the program; when execution terminates, only those variables will have values in
the final state; the variables named by the end statement are those whose final values are of interest
to the programmer.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

Interprocedural Slicing Using Dependence Graphs 31

2.1 The Program Dependence Graph

The program dependence graph for program P, denoted by GP, is a directed graph
whose vertices are connected by several kinds of edges.3 The vertices of Gp
represent the assignment statements and control predicates that occur in program
P. In addition, Gp includes three other categories of vertices:

(1) There is a distinguished vertex called the entry vertex.

(2) For each variable x for which there is a path in the standard control-flow
graph for P on which x is used before being defined (see [l]), there is a vertex
called the initial definition of x. This vertex represents an assignment to x
from the initial state. The vertex is labeled “X := InitialState(x

(3) For each variable x named in P’s end statement, there is a vertex called the
final use of X. It represents an access to the final value of x computed by P,
and is labeled “FinalUse(n

The edges of Gp represent dependences among program components. An edge
represents either a control dependence or a data dependence. Control dependence
edges are labeled either true or false, and the source of a control dependence
edge is always the entry vertex or a predicate vertex. A control dependence edge
from vertex vi to vertex up, denoted by v1 +c v 2, means that, during execution,
whenever the predicate represented by v1 is evaluated and its value matches the
label on the edge to v2, then the program component represented by up will
eventually be executed if the program terminates. A method for determining
control dependence edges for arbitrary programs is given in [7]; however, because
we are assuming that programs include only assignment, conditional, and while
statements, the control dependence edges of GP can be determined in a much
simpler fashion. For the language under construction here, the control depen-
dences reflect a program’s nesting structure; program dependence graph Gp
contains a control dependence edge from vertex v1 to vertex v2 of GP iff one of the
following holds:

(1) v1 is the entry vertex and v2 represents a component of P that is not nested
within any loop or conditional; these edges are labeled true.

(2) vi represents a control predicate and v2 represents a component of P imme-
diately nested within the loop or conditional whose predicate is represented
by vl. If vi is the predicate of a while-loop, the edge v1 +c up is labeled true;
if v1 is the predicate of a conditional statement, the edge vi +c up is labeled
true or false according to whether up occurs in the then branch or the else
branch, respectively.4

3 A directed graph G consists of a set of vertices V(G) and a set of edges E(G), where E(G) C
V(G) x V(G). Each edge (b, c) E E(G) is directed from b to c; we say that b is the source and c the
target of the edge.
’ In other definitions that have been given for control dependence edges, there is an additional edge
from each -predicate of a while statement to itself, labeled true. This kind of edge is left out of our
definition because it is not necessary for our purposes.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

32 l S. Hotwitz et al.

A data dependence edge from vertex u1 to vertex v2 means that the program’s
computation might be changed if the relative order of the components represented
by u1 and u2 were reversed. In this paper, program dependence graphs contain
two kinds of data dependence edges, representing flow dependences and def-order
dependences.5 The data dependence edges of a program dependence graph are
computed using data-flow analysis. For the restricted language considered in this
section, the necessary computations can be defined in a syntax-directed manner.

A program dependence graph contains a flow dependence edge from vertex U,
to vertex uz iff all of the following hold:

(1) u1 is a vertex that defines variable X.

(2) u2 is a vertex that uses X.

(3) Control can reach uz after u1 via an execution path along which there is no
intervening definition of x. That is, there is a path in the standard control-
flow graph for the program by which the definition of x at u1 reaches the use
of x at u2. (Initial definitions of variables are considered to occur at the
beginning of the control-flow graph; final uses of variables are considered to
occur at the end of the control-flow graph.)

A flow dependence that exists from vertex u1 to vertex u2 is denoted by u1 jf v2.
Flow dependences can be further classified as loop carried or loop independent.

A flow dependence u1 +f vz is carried by loop L, denoted by u1 +lc(L) u2, if in
addition to (l), (2), and (3) above, the following also hold:

(4) There is an execution path that both satisfies the conditions of (3) above
and includes a backedge to the predicate of loop L.

(5) Both ul and up are enclosed in loop L.

A flow dependence u1 +f v2 is loop-independent, denoted by ul +li u2, if in
addition to (l), (2), and (3) above, there is an execution path that satisfies (3)
above and includes no backedge to the predicate of a loop that encloses both u1
and ~2. It is possible to have both u1 *k(L) ~2 and ul +li ~2.

A program dependence graph contains a def-order dependence edge from vertex
ul to vertex u2 iff all of the following hold:

(1) u1 and u2 both define the same variable.
(2) u1 and u2 are in the same branch of any conditional statement that encloses

both of them.

(3) There exists a program component u3 such that ul +f u3 and up +f u3.
(4) u1 occurs to the left of up in the program’s abstract syntax tree.

A def-order dependence from v1 to up with “witness” v3 is denoted by
Ul +do(“,) u2.

Note that a program dependence graph is a multigraph (i.e., it may have more
than one edge of a given kind between two vertices). When there is more than
one loop-carried flow dependence edge between two vertices, each is labeled by a

5 For a complete discussion of the need for these edges and a comparison of def-order dependences
with anti- and output dependences see [9].

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

Interprocedural Slicing Using Dependence Graphs 33

i := 1:
whilei<lldo

sum := sum+i;
i :=i+l

od
end(wn, i)

Fig. 1. An example program, which sums the integers from 1 to 10 and leaves the
result in the variable sum, and its program dependence graph. The boldface arrows
represent control dependence edges, solid arrows represent loop-independent flow
dependence edges, solid arrows with a hash mark represent loop-carried flow depen-
dence edges, and dashed arrows represent def-order dependence edges.

different loop that carries the dependence. When there is more than one def-
order edge between two vertices, each is labeled by a vertex that is flow-dependent
on both the definition that occurs at the edge’s source and the definition that
occurs at the edge’s target.

Example. Figure 1 shows an example program and its program dependence
graph.

The boldface arrows represent control dependence edges; solid arrows represent
loop-independent flow dependence edges; solid arrows with a hash mark represent
loop-carried flow dependence edges; dashed arrows represent def-order depen-
dence edges.

2.2 Program Slices (of Single-Procedure Programs)

For vertex s of program dependence graph G, the slice of G with respect to s,
denoted by G/s, is a graph containing all vertices on which s has a transitive flow
or control dependence (i.e., all vertices that can reach s via flow and/or control
edges): V(G/s) = (w 1 w E V(G) A w +=zr s). We extend the definition to a set of
vertices S = Ui si as follows: V(G/S) = V(G/(Ui Si)) = Ui V(G/si). Figure 2
gives a simple worklist algorithm for computing the vertices of a slice using a
program dependence graph.

The edges in the graph G/S are essentially those in the subgraph of G induced
by V(G/S), with the exception that a def-order edge u ‘do(u) w is included only
if G/S contains the vertex u that is directly flow-dependent on the definitions at

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

34 l S. Hotwitz et al.

procedure MarkVerticesOfSlice(G. S)
declare

G: a program dependence graph
s: a set of vertices in G
WorkList: a set of vertices in G
v. w: vertices in G

begin
WorkLisr := s
while WorkList f 0 do

Select and remove vertex Y from WorkList
Mark Y
for each unmarked vertex w such that edge w +, v or edge w +c v is in E(G) do

hen w into W&List
od

od
end

Fig. 2. A worklist algorithm that marks the vertices in G/S. Vertex u is
in G/S if there is a path along flow and/or control edges from v to some
vertex in S.

v and w. In terms of the three types of edges in a program dependence graph, we
define

E(G/S) = ((v +f w) I (v -+f w) E E(G) A v, w E V(G/S)j
U ((v +c w)((v -+c w) E E(G) A v, w E V(G/S)j

u (b -do(u) W)ib ‘do(u) W) E E(G) A 4 V, w E V(G/S)).

The relationship between a program’s dependence graph and a slice of the
graph has been addressed in [ZO]. We say that G is a feasible program dependence
graph iff G is the program dependence graph of some program P. For any
S C V(G), if G is a feasible program dependence graph, the slice G/S is also a
feasible program dependence graph; it corresponds to the program P’ ob-
tained by restricting the syntax tree of P to just the statements and predicates
in V(G/S) [20].

Example. Figure 3 shows the graph that results from taking a slice of the
program dependence graph from Figure 1 with respect to the final-use vertex for
i, together with the one program to which it corresponds.

The significance of an intraprocedural slice is that it captures a portion of a
program’s behavior in the sense that, for any initial state on which the program
halts, the program and the slice compute the same sequence of values for each
element of the slice [20]. In our case, a program point may be (1) an assignment
statement, (2) a control predicate, or (3) a final use of a variable in an end
statement. Because a statement or control predicate may be reached repeatedly
in a program by “computing the same sequence of values for each element of the
slice,” we mean: (1) for any assignment statement the same sequence of values
are assigned to the target variable; (2) for the predicate the same sequence of
Boolean values are produced; and (3) for each final use the same value for the
variable is produced.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

pmg*am Innin
i 7 1:
aldlei<lldo

i:=i+l
od

eMi)

Interprocedural Slicing Using Dependence Graphs 35

I I

Fig. 3. The graph and the corresponding program that result from slicing the program
dependence graph from Figure 1 with respect to the final-use vertex for i.

3. THE SYSTEM DEPENDENCE GRAPH: AN INTERPROCEDURAL
DEPENDENCE GRAPH REPRESENTATION

We now turn to the definition of the system dependence graph. The system
dependence graph, an extension of the dependence graphs defined in Section 2.1,
represents programs in a language that includes procedures and procedure calls.

Our definition of the system dependence graph models g language with the
following properties:

(1) A complete system consists of a single (main) program and a collection of
auxiliary procedures.

(2) Procedures end with return statements instead of end statements (as
defined in Section 2). A return statement does not include a list of variables.

(3) Parameters are passed by value-result.

We make the further assumption that there are no call sites of the form P(x, x)
or of the form P(g), where g is a global variable. The former restriction sidesteps
potential copy-back conflicts. The latter restriction permits global variables to
be treated as additional parameters to each procedure; thus, we do not discuss
global variables explicitly in this paper.

It should become clear that our approach is not tied to the particular language
features enumerated above. Modeling different features will require some
adaptation; however, the basic approach is applicable to languages that allow
nested scopes and languages that use different parameter-passing mechanisms.
Section 4.3 discusses how to deal with systems that use call-by-reference
parameter passing and contain aliasing.

A system dependence graph includes a program dependence graph, which
represents the system’s main program, procedure dependence graphs, which
represent the system’s auxiliary procedures, and some additional edges. These

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

36 l S. Hotwitz et al.

additional edges are of two sorts: (1) edges that represent direct dependences
between a call site and the called procedure, and (2) edges that represent transitive
dependences due to calls.

Section 3.1 discusses how procedure calls and procedure entry are represented
in procedure dependence graphs and how edges representing dependences be-
tween a call site and the called procedure are added to connect these graphs
together. Section 3.2 defines the linkage grammar, an attribute grammar used to
represent the call structure of a system. Transitive dependences due to procedure
calls are computed using the linkage grammar and are added as the final step of
building a system dependence graph.

In the sections below, we use “procedure” as a generic term referring to both
the main program and the auxiliary procedures when the distinction between the
two is irrelevant.

3.1 Procedure Calls and Parameter Passing

Extending the definition of dependence graphs to handle procedure calls requires
representing the passing of values between procedures. In designing the repre-
sentation of parameter passing, we have three goals:

(1) It should be possible to build an individual procedure’s procedure dependence
graph (including the computation of data dependences) with minimal knowl-
edge of other system components.

(2) The system dependence graph should consist of a straightforward connection
of the program dependence graph and procedure dependence graphs.

(3) It should be possible to extract a precise interprocedural slice efficiently by
traversing the graph via a procedure analogous to the procedure Mark-
VerticesOfSlice given in Figure 2.

Goal (3) is the subject of Section 4.1, which presents our algorithm for slicing a
system dependence graph.

To meet the goals outlined above, our graphs model the following slightly
nonstandard, two-stage mechanism for runtime parameter passing: when pro-
cedure P calls procedure Q, values are transferred from P to Q by means of
intermediate temporary variables, one for each parameter. A different set of
temporary variables is used when Q returns to transfer values back to P. Before
the call, P copies the values of the actual parameters into the call temporaries;
Q then initializes local variables from these temporaries. Before returning, Q
copies return values into the return temporaries, from which P retrieves them.

This model of parameter passing is represented in procedure dependence graphs
through the use of five new kinds of vertices. A call site is represented using a
call-site vertex; information transfer is represented using four kinds of parameter
vertices. On the calling side, information transfer is represented by a set of
vertices called actual-in and actual-out vertices. These vertices, which are control
dependent on the call-site vertex, represent assignment statements that copy the
values of the actual parameters to the call temporaries and from the return
temporaries, respectively. Similarly, information transfer in the called procedure
is represented by a set of vertices called formal-in and formal-out vertices. These
vertices, which are control dependent on the procedure’s entry vertex, represent
ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

Interprocedural Slicing Using Dependence Graphs - 37

assignment statements that copy the values of the formal parameters from the
call temporaries and to the return temporaries, respectively.

Using this model, data dependences between procedures are limited to depen-
dences from actual-in vertices to formal-in vertices and from formal-out vertices
to actual-out vertices. Connecting procedure dependence graphs to form a system
dependence graph is straightforward, involving the addition of three new kinds
of edges: (1) a call edge is added from each call-site vertex to the corresponding
procedure-entry vertex; (2) a parameter-in edge is added from each actual-in
vertex at a call site to the corresponding formal-in vertex in the called procedure;
(3) a parameter-out edge is added from each formal-out vertex in the called
procedure to the corresponding actual-out vertex at the call site. (Call edges are
a new kind of control dependence edge; parameter-in and parameter-out edges
are new kinds of data dependence edges.)

Another advantage of this model is that flow dependences can be computed in
the usual way, using data-flow analysis on the procedure’s control-flow graph.
The control-flow graph for a procedure includes nodes analogous to the actual-
in, actual-out, formal-in and formal-out vertices of the procedure dependence
graph. A procedure’s control-flow graph starts with a sequence of assignments
that copy values from call temporaries to formal parameters and ends with a
sequence of assignments that copy values from formal parameters to return
temporaries. Each call statement within the procedure is represented in the
procedure’s control-flow graph by a sequence of assignments that copy values
from actual parameters to call temporaries, followed by a sequence of assignments
that copy values from return temporaries to actual parameters.

An important question is which values are transferred from a call site to the
called procedure and back again. This point is discussed further in Section 4.2,
which presents a strategy in which the results of interprocedural data-flow
analysis are used to omit some parameter vertices from procedure dependence
graphs. For now, we assume that all actual parameters are copied into the call
temporaries and retrieved from the return temporaries. Thus, the parameter
vertices associated with a call from procedure P to procedure Q are defined as
follows (Gp denotes the procedure dependence graph for P):

In Gp, subordinate to the call-site vertex that represents the call to Q, there is an
actual-in vertex for each actual parameter e of the call to Q. The actual-in vertices
are labeled r-in := e, where r is the formal parameter name.
For each actual parameter a that is a variable (rather than an expression), there
is an actual-out vertex. These are labeled a := r-out for actual parameter a and
corresponding formal parameter r.

The parameter vertices associated with the entry to procedure Q and the return
from procedure Q are defined as follows (Go denotes the procedure dependence
graph for Q):

For each formal parameter r of Q, Go contains a formal-in vertex and a formal-
out vertex. These vertices are labeled r : = r-in and r-out : = r, respectively.

Example. Figure 4 repeats the example system from the Introduction and
shows the corresponding program and procedure dependence graphs connected
with parameter-in edges, parameter-out edges, and call edges.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

38 . S. Hotwitz et al.

program Main
SUm:=o;
i:=l:

pmccdurc Add (a. b)
a:=a+b

rehlrll
al&i < 11 do

callA (sum i)
od

Fig. 4. Example system and corresponding program and procedure dependence graphs
connected with parameter-in, parameter-out, and call edges. Edges representing control
dependences are shown (unlabeled) in boldface; edges representing intraprocedural flow
dependences are shown using arcs; parameter-in edges, parameter-out edges, and call
edges are shown using dashed lines.

(In Figure 4, as well as in the remaining figures of the paper, def-order edges
are not shown. Edges representing control dependences are shown unlabeled; all
such edges in this example would be labeled true.)

3.2 The Linkage Grammar: An Attribute Grammar that Models
Procedure-Call Structure

Using the graph structure defined in the previous section, interprocedural slicing
could be defined as a graph-reachability problem, and the slices obtained would
be the same as those obtained using Weiser’s slicing method. As explained in the
Introduction, Weiser’s method does not produce as precise a slice as possible
because it fails to account for the calling context of a called procedure.
ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

Interprocedural Slicing Using Dependence Graphs l 39

Example. The problem with Weiser’s method can be illustrated using the
graph shown in Figure 4. In the graph-reachability vocabulary, the problem is
that there is a path from the vertex of procedure Main labeled “x-in := sum” to
the vertex of Main labeled “i : = y-out “, even though the value of i after the call
to procedure A is independent of the value of sum before the call. The path is as
follows:

Main: “x-in := sum” + A: “x : = x-in” +A:“a-in:=x” + Add : “a : = a-in”
+Add:“a:=a+b” + Add : ‘La-out : = a” + Inc: “z : = a-out”
+ Inc: “z-out : = 2” +A:“y:=z-out” +A:“y-out:=y”
+ Main: “i : = y-out”

The source of this problem is that not all paths in the graph correspond to
possible execution paths (e.g., the path from vertex “x-in := sum” of Main to
vertex “i := y-out” of Main corresponds to procedure Add being called by
procedure A, but returning to procedure Increment).

To overcome this problem, we add an additional kind of edge to the system
dependence graph to represent transitive dependences due to the effects of
procedure calls. The presence of transitive-dependence edges permits interpro-
cedural slices to be computed in two passes, each of which is cast as a reachability
problem. Thus, the next step in the construction of the system dependence graph
is to determine such transitive dependences. For example, for the graph shown
in Figure 4, we need an algorithm that can discover the transitive dependence
from vertex “x-in := sum” of Main to vertex “sum : = x-out” of Main. This
dependence exists because the value of sum after the call to A depends on the
value of sum before the call to A.

One’s first impulse might be to compute transitive dependences due to calls by
taking the transitive closure of the graph’s control, flow, parameter, and call
edges. However, this technique is imprecise for the same reason that transitive
closure (or, equivalently, reachability) is imprecise for interprocedural slicing,
namely that not all paths in the system dependence graph correspond to possible
execution paths. Using transitive closure to compute the dependence edges that
represent the effects of procedure calls would put in a (spurious) edge from vertex
“x-in := sum” of Main to vertex “i : = y-out” of Main.

For a language without recursion, this problem could be eliminated by using a
separate copy of a procedure dependence graph for each call site; however, to
handle a language with recursion, a more powerful technique is required. The
technique we use involves defining an attribute grammar, called the linkage
grammar, to model the call structure of each procedure as well as the intrapro-
cedural transitive flow dependences among the procedure’s parameter vertices.
Interprocedural transitive flow dependences among a system dependence graph’s
parameter vertices are determined from the linkage grammar using a standard
attribute-grammar construction: the computation of the subordinate character-
istic graphs of the linkage grammar’s nonterminals.

In this section we describe the construction of the linkage grammar and the
computation of its subordinate characteristic graphs. It should be understood
that the linkage grammar is used only to compute transitive dependences due to

6 A summary of attribute-grammar terminology can be found in the Appendix.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

40 l S. Horwitz et al.

calls; we are not interested in the language defined by the grammar, nor in actual
attribute values.

The context-free part of the linkage grammar models the system’s procedure-
call structure. The grammar includes one nonterminal and one production for
each procedure in the system. If procedure P contains no calls, the right-hand
side of the production for P is C; otherwise, there is one right-hand side nonter-
minal for each call site in P.

Example. For the example system shown in Figure 4, the productions of the
linkage grammar are as follows:

Main ---, A A + Add Increment Add + c Increment ---* Add

The attributes in the linkage grammar correspond to the parameters of the
procedures. Procedure inputs are modeled as inherited attributes, procedure
outputs as synthesized attributes. For example, the productions shown above are
repeated in Figure 5, this time in tree form.

In Figure 5, each nonterminal is annotated with its attributes; a nonterminal’s
inherited attributes are placed to its left; its synthesized attributes are placed to
its right.

More formally, the program’s linkage grammar has the following elements:

(1) For each procedure P, the linkage grammar contains a nonterminal P.

(2) For each procedure P, there is a production p: P + ,L?, where for each site of
a call on procedure Q in P there is a distinct occurrence of Q in @.

(3) For each actual-in vertex of P, there is an inherited attribute of nonterminal
P.

(4) For each actual-out vertex of P, there is a synthesized attribute of nonter-
minal P.

Attribute a of nonterminal X is denoted by “X.a”.
Dependences among the attributes of a linkage-grammar production are used

to model the (possibly transitive) intraprocedural dependences among the param-
eter vertices of the corresponding procedure. These dependences are computed
using (intraprocedural) slices of the procedure’s procedure dependence graph as
described in Section 2.2. For each grammar production, attribute equations are
introduced to represent the intraprocedural dependences among the parameter
vertices of the corresponding procedure dependence graph. For each attribute
occurrence a, the procedure dependence graph is sliced with respect to the vertex
that corresponds to a. An attribute equation is introduced for a so that a depends
on the attribute occurrences that correspond to the parameter vertices identified
by the slice. More formally:

For each attribute occurrence of X.a of a production p, let u be the vertex of the
procedure dependence graph Gp that corresponds to X.a. Associate with p an
attribute equation of the form X.a = f(. . . , Y.b, . . .) where the arguments Y.b
to the equation consist of the attribute occurrences of p that correspond to the
parameter vertices in Gp/v.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

Interprocedural Slicing Using Dependence Graphs l 41

Main x-h y-h A x-out y-out
I .-.
I <* -.
I I* *. .* -. I I’ -.

x-h y-It8 x x-out
I- -.

Yp”t a-h b-in Add apUt b-out z-bl IN z-out

a-in b-l” Add a-out b-out 2-h Inc z-out
8 I
I I
I I
I I
I I

E ~-III b-l” Add a-out b-out

Fig. 5. The productions of the example linkage grammar shown in tree form. Each
nonterminal is annotated with its attributes; a nonterminal’s inherited attributes
are placed to its left; its synthesized attributes are placed to its right.

Main x-In y-111 A x-out Y-0”’

a-In b-i” Add a-out b-out

e

Inc z-out

A t P-1” b-l” Add B-0” b-out

Fig. 6. The productions of Figure 5, augmented with attribute dependences.

Note that the actual function f on the right-hand side of the equation is
completely irrelevant because the attribute grammar is neuer used for evaluation;
all we need is that the equation induce the dependences described above.

Example. Figure 6 shows the productions of the grammar from Figure 5,
augmented with attribute dependences.

The dependences for production Main + A, for instance, coTrespond to the
attribute-definition equations

AX-in = fl(A.x-out, A.y-out)
A.y-in = f2(A.y-out)
As-out = f3(A.y-out)
A.y-out = f4(A.y-out)

It is entirely possible that a linkage grammar will be a circular attribute
grammar (i.e., there may be attributes in some derivation tree of the grammar
that depend on themselves); additionally, the grammar may not be well formed
(e.g., a production may have equations for synthesized attribute occurrences of
right-hand side symbols). This does not create any difficulties as the linkage
grammar is used only to compute transitive dependences and not for attribute
evaluation.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

42 * S. Horwitz et al.

Example. The equation A.y-out = f4(A.y-out) makes the example attribute
grammar both circular and not well formed. This equation is added to the
attribute grammar because of the following (cyclic) path in the graph shown in
Figure 4:

Main: “i := y-out” -+ Main: “while i < 11”
--, Main: “call A ” + Main: “i := y-out”

Transitive dependences from a call site’s actual-in vertices to its actual-out
vertices are computed from the linkage grammar by constructing the subordinate
characteristic graphs for the grammar’s nonterminals. The algorithm we give
exploits the special structure of linkage grammars to compute these graphs more
efficiently than can be done for attribute grammars in general. For general
attribute grammars, computing the sets of possible subordinate characteristic
graphs for the grammar’s nonterminals may require time exponential in the
number of attributes attached to some nonterminal. However, a linkage grammar
is an attribute grammar of a restricted nature. For each nonterminal X in the
linkage grammar, there is only one production with X on the left-hand side.
Because linkage grammars are restricted in this fashion, for each nonterminal of
a linkage grammar there is one subordinate characteristic graph that covers all
of the nonterminal’s other possible subordinate characteristic graphs. For such
grammars it is possible to give a polynomial-time algorithm for constructing the
(covering) subordinate characteristic graphs.

The computation is performed by an algorithm, called ConstructSubCGraphs,
which is a slight modification of an algorithm originally developed by Kastens to
construct approximations to a grammar’s transitive dependence relations [13].
The covering subordinate characteristic graph of a nonterminal X of the linkage
grammar is captured in the graph TDS(X) (standing for “Transitive Dependences
among a Symbol’s attributes”). Initially, all the TDS graphs are empty. The
construction that builds them up involves the auxiliary graph TDP(p) (standing
for “Transitive Dependences in a Production”), which expresses dependences
among the attributes of a production’s nonterminal occurrences.

The basic operation used in ConstructSubCGraphs is the procedure “Add-
EdgeAndInduce(TDP(p), (a, b))“, whose first argument is the TDP graph of
some production p and whose second argument is a pair of attribute occurrences
in p. AddEdgeAndInduce carries out three actions:

(1) The edge (a, b) is inserted into the graph TDP(p).
(2) Any additional edges needed to transitively close TDP(p) are inserted into

TDP(p).

(3) In addition, for each edge added to TDP(p) by (1) or (2), (i.e., either the
edge (a, b) itself or some other edge (c, d) added to reclose TDP(p)),
AddEdgeAndInduce may add an edge to one of the TDS graphs. In particular,
for each edge added to TDP(p) of the form (X,,.m, Xo.n), where X0 is the
left-hand side occurrence of nonterminal X in production p and (X.m, X.n)
4 TDS(X), an edge (X.m, X.n) is added to TDS(X).

An edge in one of the TDS graphs can be marked or unmarked; the edges that
AddEdgeAndInduce adds to the TDS graphs are unmarked.
ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

Interprocedural Slicing Using Dependence Graphs 43

procedure Const~ctSubCGraphs(L)
declare

xi. xi, x: non- 0ccutTenceF in L
a. b: attributes of nontcrminals in L
X:anontemlinalinL

begin
/” Step 1: Initialize the TDS and TDP graphs l /

for each nonterminal X in L do
TDS(x) := the graph containing B vertex for each attributeX.6 but no edges

od
for each production p in L do

TDP@) := the graph containing a vertex for each attribute occurrence Xj.b ofp but no edges
for each attribute occurrence Xi.6 ofp do

for each argument Xi.0 of the equation that deEnes X,.6 do
Insert edge (Xi.a. X,.b) into TDP@)
let X be the nonterminal correspondiig to nonterminal occurrence Xj In

If i = 0 and j = 0 and (X.O. X.6) e TDS (X) then Insert an unmarked edge (X.a, X.6) into TDS(X) 6
nl

od
od

od
P Step 2: Determine the sets of induced transitive dependences +/

while there is an unmarked edge (XXI, X.6) in one of the TDS graphs do
Mark (X.O. X.6)
for each ocyrence i of X in any production p do

U (X.a X.6) d TDP@) then AddEdgeAndfnduce(TDP@). (,?..a. 2.6)) ll
od

od
end

Fig. 7. Computation of a linkage grammar’s sets of TDP and TDS graphs.

The TDS graphs are generated by the procedure ConstructSubCGraphs,
given in Figure 7, which is a slight modification of the first two steps of
Kasten’s algorithm for constructing a set of evaluation plans for an attribute
grammar [131.

ConstructSubCGraphs performs a kind of closure operation on the TDP and
TDS graphs. Step 1 of the algorithm-the first two for-loops of Construct-
SubCGraphs-initializes the grammar’s TDP and TDS graphs; when these loops
terminate, the TDP graphs contain edges representing all direct dependences
that exist between the grammar’s attribute occurrences, and the TDS graphs
contain unmarked edges corresponding to direct left-hand-side-to-left-hand-side
dependences in the linkage grammar’s productions. Our construction of attribute
equations for the linkage grammar ensures that the graph of direct attribute
dependences is transitively closed; thus, at the end of Step 1, TDP(p) is a
transitively closed graph. In Step 2 of ConstructSubCGraphs, the invariant for
the while-loop is

If a graph TDP(p) contains an edge e’ that corresponds to a marked edge e in
one of the TDS graphs, then e has been induced in all of the other graphs
TDP(q).

When all edges in all TDS graphs have received marks, the effects of all
dependences have been induced in the TDP and TDS graphs. Thus, the TDS(X)
graphs computed by ConstructSubCGraphs are guaranteed to cover the transitive
dependences among the attributes of X that exist at any occurrence of X in any
derivation tree.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

44 * S. Horwitz et al.

Put more simply, because for each nonterminal X in a linkage grammar there
is only a single production that has X on the left-hand side, the grammar only
derives one tree. (For a recursive grammar it will be an infinite tree.) All marked
edges in TDS represent transitive dependences in this tree, and thus the TDS(X)
graph computed by ConstructSubCGraphs represents a subordinate characteris-
tic graph of X that covers the subordinate characteristic graph of any partial
derivation tree derived from X, as desired.

Example. The nonterminals of our example grammar are shown below anno-
tated with their attributes and their subordinate characteristic graphs.

x-in y-in A x-out y-out a-in b-in Add a-out b-out z-in Inc z-out

3.3 Recap of the Construction of the System Dependence Graph

The system dependence graph is constructed by the following steps:

(1) For each procedure of the system, construct its procedure dependence graph.
(2) For each call site, introduce a call edge from the call-site vertex to the

corresponding procedure-entry vertex.

(3) For each actual-in vertex u at a call site, introduce a parameter-in edge from
u to the corresponding formal-in vertex in the called procedure.

(4) For each actual-out vertex u at a call site, introduce a parameter-out edge to
u from the corresponding formal-out vertex in the called procedure.

(5) Construct the linkage grammar corresponding to the system.
(6) Compute the subordinate characteristic graphs of the linkage grammar’s

nonterminals.
(7) At all call sites that call procedure P, introduce flow dependence edges

corresponding to the edges in the subordinate characteristic graph for P.

Example. Figure 8 shows the complete system dependence graph for our
example system.

4. INTERPROCEDURAL SLICING

In this section we describe how to perform an interprocedural slice using the
system dependence graph defined in Section 3. We then discuss modifications to
the definition of the system dependence graph to permit more precise slicing and
to extend the slicing algorithm’s range of applicability.

4.1 An Algorithm for Interprocedural Slicing

As discussed in the Introduction, the algorithm presented in [22], while safe, is
not as precise as possible. The difficult aspect of interprocedural slicing is keeping
track of the calling context when a slice “descends” into a called procedure.

The key element of our approach is the use of the linkage grammar’s charac-
teristic graph edges in the system dependence graph. These edges represent
transitive data dependences from actual-in vertices to actual-out vertices due to

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

Interprocedural Slicing Using Dependence Graphs 45

Fig. 8. Example system’s system dependence graph. Control dependences, shown unla-
beled, are represented using medium-bold arrows; intraprocedural flow dependences are
represented using arcs; transitive interprocedural flow dependences (corresponding to
subordinate characteristic graph edges) are represented using heavy, bold arcs; call edges,
parameter-in edges, and parameter-out edges (which connect program and procedure
dependence graphs together) are represented using dashed arrows.

procedure calls. The presence of such edges permits us to sidestep the “calling
context” problem; the slicing operation can move “across” a call without having
to descend into it.

Our algorithm for interprocedural slicing is given in Figure 9.
In Figure 9, the computation of the slice of system dependence graph G with

respect to vertex set S is performed in two phases. Both Phases 1 and 2 operate
on the system dependence graph using essentially the method presented in
Section 2.2 for performing an intrczprocedural slice-the graph is traversed to
find the set of vertices that can reach a given set of vertices along certain kinds
of edges. The traversal in Phase 1 follows flow edges, control edges, call edges,
and parameter-in edges, but does not follow def-order edges or parameter-out
edges. The traversal in Phase 2 that follows flow edges, control edges, and
parameter-out edges, but does not follow def-order edges, call edges, or parameter-
in edges.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

46 l S. Hotwitz et al.

procedure MarkVerticesOfSlice(G. 5)
declare

G: a system dependence graph
S. S’: sets of vertices in G

begin
P Phase 1: Slice without descending into called procedures 4

MerkReachingVertices(G, S. (&f-order. parameter-out))
I+ Phase 2: Slice cdlled pmccdmw witian -cimg to call sites *I

S’ := all marked vertices in G
MarkReachingVedcw(G. S’. (&f-order. parameter-in, call))

end

procedure MarkReachingVertices(G. V, Kids)
declare

G: a system depmdence graph
V:asetofverticesinG
t&d.% *set of kinds of edges
v, w: vertices in G
Worhik a set of vertices in G

begin
wdL.ist := v
while Work.!& + 0 do

Select and remove a vertex Y from Worki%
Mark v
for each unmarked vertex w such that there is an edge w + v whose kind is not in Kinds do

Insert w into WorkList
od

od
end

Fig. 9. The procedure MarkVerticesOfSlice marks the vertices of the inter-
procedural slice G/S. The auxiliary procedure MarkReachingVertices marks all
vertices in G from which there is a path to a vertex in V along edges of kinds
other than those in the set Kinds.

Suppose the goal is to slice system dependence graph G with respect to some
vertex s in procedure P; Phases 1 and 2 can be characterized as follows:

Phase 1. Phase 1 identifies vertices that can reach s, and are either in P itself
or in a procedure that calls P (either directly or transitively). Because parameter-
out edges are not followed, the traversal in Phase 1 does not “descend” into
procedures called by P. The effects of such procedures are not ignored, however;
the presence of transitive fLow dependence edges from actual-in to actual-out
vertices (subordinate-characteristic-graph edges) permits the discovery of vertices
that can reach s only through a procedure call, although the graph traversal does
not actually descend into the called procedure.

Phase 2. Phase 2 identifies vertices that can reach s from procedures (transi-
tively) called by P or from procedures called by procedures that (transitively)
call P. Because call edges and parameter-in edges are not followed, the traversal
in Phase 2 does not “ascend” into calling procedures; the transitive flow
dependence edges from actual-in to actual-out vertices make such “ascents”
unnecessary.

Figures 10 and 11 illustrate the two phases of the interprocedural slicing
algorithm. Figure 10 shows the vertices of the example system dependence graph
that are marked during Phase 1 of the interprocedural slicing algorithm when
the system is sliced with respect to the formal-out vertex for parameter z in
ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

Interprocedural Slicing Using Dependence Graphs 47

Fig. 10. The example program’s system dependence graph is sliced with respect to the
formal-out vertex for parameter z in procedure Increment. The vertices marked by Phase
1 of the slicing algorithm as well as the edges traversed during this phase are shown above.

procedure Increment. Edges “traversed” during Phase 1 are also included in
Figure 10.

Figure 11 adds (in boldface) the vertices that are marked and the edges that
are traversed during Phase 2 of the slice.

The result of an interprocedural slice consists of the sets of vertices identi-
fied by Phase 1 and Phase 2 and the set of edges induced by this vertex set.
Figure 12 shows the completed example slice (excluding def-order edges.)

4.2 Using Interprocedural Summary Information to Build
Procedure Dependence Graphs

The slice shown in Figure 12 illustrates a shortcoming of the method for
constructing procedure dependence graphs described in Section 3. The problem
is that including both an actual-in and an actual-out vertex for every argument
in a procedure call can affect the precision of an interprocedural slice. The slice
shown in Figure 12 includes the call vertex that represents the call to Add from
A; however, this call does not in fact affect the value of z in Increment. The
problem is that an actual-out vertex for argument y in the call to Add from A is

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

48 - S. Horwitz et al.

EmERMoin

i := 1 wide i < 11

call A

y-in :- i

~

I

:

Fig. 11. The example program’s system dependence graph is sliced with respect to the
formal-out vertex for parameter z in procedure Increment. The vertices marked by Phase
2 of the slicing algorithm as well as the edges traversed during this phase are shown above
in boldface.

included in A’s procedure dependence graph even though Add does not change
the value of y.

To achieve a more precise interprocedural slice, we use the results of interpro-
cedural data-flow analysis when constructing procedure dependence graphs, in
order to exclude vertices like the actual-out vertex for argument y.

The appropriate interprocedural summary information consists of the following
sets, which are computed for each procedure P [43:

GMOD(P): The set of variables that might be modified by P itself or by a
procedure (transitively) called from P.

GREF(P): The set of variables that might be referenced by P itself or by a
procedure (transitively) called from P.

GMOD and GREF sets are used to determine which parameter vertices are
included in procedure dependence graphs as follows: for each procedure P, the
parameter vertices subordinate to P’s entry vertex include one formal-in vertex

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

Interprocedural Slicing Using Dependence Graphs 49

-..----.------A ,

Fig. 12. The complete slice (excluding def-order edges) of the example program’s
system dependence graph sliced with respect to the formal-out vertex for parameter z in
procedure Increment.

for each variable in GMOD(P) U GREF(P) and one formal-out vertex for each
variable in GMOD(P). Similarly, for each site at which P is called, the parameter
vertices subordinate to the call-site vertex include one actual-in vertex for each
variable in GMOD(P) U GREF(P) and one actual-out vertex for each variable
in GMOD(P). (It is necessary to include an actual-in and a formal-in vertex for
a variable x that is in GMOD(P) and is not in GREF(P) because there may be
an execution path through P on which x is not modified. In this case, a slice of P
with respect to the final value of x must include the initial value of X; thus, there
must be a formal-in vertex for x in P and a corresponding actual-in vertex at the
call to P.)

Example. The GMOD and GREF sets for our example system are:

y%J?q?q

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

50 l S. Horwitz et al.

Fig. 13. Procedure A’s procedure dependence graph built using interprocedural summary
information. The actual-out vertex for argument y of the call to Add has been omitted,
and the flow edge from that vertex to the vertex “z-in := y” has been replaced by an edge
from the vertex “y := y-in” to the vertex “z-in := y”.

Because parameter b is not in GMOD(Add), Add’s procedure dependence graph
should not include a formal-out vertex for b, and the call to Add from A should
not include the corresponding actual-out vertex.

Figure 13 shows A’s procedure dependence graph as it would be built using
GMOD and GREF information.

The actual-out vertex for argument y of the call to Add is omitted, and the
flow edge from that vertex to the actual-in vertex “z-in := y” is replaced by an
edge from the formal-in vertex “y := y-in” to the actual-in vertex “z-in := y”.
The new edge is traversed during Phase 1 of the interprocedural slice instead of
the (now omitted) flow edge from “y := a-out ” to “z-in := y”, thus (correctly)
bypassing the call to Add in procedure A.

4.3 Interprocedural Slicing in the Presence of Call-By-Reference Parameter
Passing and Aliasing

Our definitions of system dependence graphs and interprocedural slicing have
assumed that parameters are passed by value-result. The same definitions hold
for call-by-reference parameter passing in the absence of aliasing; however, in
the presence of aliasing, some modifications are required. This section presents
two approaches for dealing with systems that use call-by-reference parameter
passing and contain aliasing. The first approach provides a more precise slice
than the second, at the expense of the time and space needed to convert the
original system into one that is alias-free. (These costs may, in the worst case,
be exponential in the maximum number of parameters passed to a procedure.)
The second approach avoids this expense by making use of a generalized notion
of flow dependence that includes flow dependences that exist under the possible
aliasing patterns.

Our first approach to the problem of interprocedural slicing in the presence of
aliasing is to reduce the problem to that of interprocedural slicing in the absence
of aliasing. The conversion is performed by simulating the calling behavior of
the system (using the usual activation-tree model of procedure calls [4]) to
discover, for each instance of a procedure call, exactly how variables are aliased
at that instance. (Although a recursive system’s activation tree is infinite, the
number of different alias configurations is finite; thus, only a finite portion of

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

Interprocedural Slicing Using Dependence Graphs 51

the activation tree is needed to compute aliasing information.) A new copy of the
procedure (with a new procedure name) is created for each different alias
configuration; the procedure names used at call sites are similarly adjusted.
Within each procedure, variables are renamed so that each set of aliased variables
is replaced by a single variable.

This process may generate multiple copies of the vertex v, with respect to
which we are to perform a slice. If this happens, it is necessary to slice the
transformed system with respect to all occurrences of v. The slice of the original
system is obtained from the slice of the transformed system by projecting
elements in the slice of the transformed system back into the original system; a
vertex is in the slice of the original system if any of its copies are in the slice of
the transformed system.

Example. Figure 14 shows a system with aliasing, and the portion of the
system’s activation tree that is used to compute alias information for each call
instance.

We use the notation of [4], in which each node of the activation tree is labeled
with the mapping from variable names to memory locations. The transformed,
alias-free version of the system is shown below.

program Main procedure P 1(x, y) procedure P 2(xy)
a := 1; ify=Othen if xy = 0 then
b := 0; call P2(x) call P 2(xy)
call Pl(a, b); fi; fi;
z := b y:=y+ 1 xy := xy + 1

end return return

If our original goal had been to slice with respect to the statement
“y := y + 1” in procedure P, we must now slice with respect to the set of
statements (“y := y + l”, “xy := xy + l”].

Our second approach to the problem of interprocedural slicing in the presence
of aliasing is to generalize the definition of a flow dependence to include
dependences that arise under the possible aliasing patterns. A procedure depen-
dence graph has a flow dependence edge from vertex LJ, to vertex v2 iff all of the
following hold:

(1) v1 is a vertex that defines variable I.

(2) v2 is a vertex that uses variable y.

(3) x and y are potential aliases.

(4) Control can reach v2 after v1 via a path in the control-flow graph along which
there is no intervening definition of x or y.

Note that clause (4) does not exclude there being definitions of other variables
that are potential aliases of x or y along the path from v1 to v2. An assignment
to a variable z along the path from v1 to up only overwrites the contents of the
memory location written by u1 if x and z refer to the same memory location. If z
is a potential alias of x, then there is only a possibility that x and z refer to the
same memory location; thus, an assignment to 2 does not necessarily overwrite
the memory location written by v 1, and it may be possible for v2 to read a value
written by vl.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

52 l S. Hotwitz et al.

program Main
cl:= 1;
b := 0;
CPU P(o. b):
z := b

end

procedure P@, y)
lfy=Otllen

Call P (1, x)
B:
y:=y+1

return

Fig. 14. A program with aliasing and the portion of its activation
tree needed to compute all alias configurations.

The notion of a def-order edge must also be generalized in the presence of
aliasing. A procedure dependence graph has a def-order dependence edge from
vertex u1 to vertex u2 iff all of the following hold:

(1) u1 and u2 define variables x1 and x2, respectiveIy.

(2) x1 and 3t2 are potential aliases.

(3) u1 and u2 are in the same branch of any conditional statement that encloses
both of them.

(4) There exists a program component u3 such that u1 -+f u3 and u2 +f us.

(5) u1 occurs to the left of uz in the procedure’s abstract syntax tree.

The interprocedural slice of a system dependence graph containing dependence
edges as defined above is computed by the same two-phase algorithm used to
compute the interprocedural slice of a system in the absence of aliasing. The
data dependences in a procedure provide a safe approximation to the true
dependences required for each alias configuration. Because these edges cover all
possible alias configurations, the resulting slice may contain unnecessary program
elements.

Example. Consider again the system shown in Figure 14. The possibility of
aliasing between formal parameters x and y of procedure P gives rise to flow
dependences from the actual-out vertices “x := x-out” and “x := y-out” of the
call P(x, X) to the vertex “y := y + 1”. Because of these dependences, the slice
with respect to the statement “z := b” in the main program yields the entire
system, even though the statement “a := 1” in Main and the conditional
statement in P have no effect on the value computed for z. The approach based
on replicating procedures determines a more precise slice that does not include
the statement “a := 1” or the conditional statement, as shown below:

program Main procedure P l(y)
b := 0; y:=y+l
call P 1 (b); return
z := b

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

Interprocedural Slicing Using Dependence Graphs 53

4.4 Slicing Partial System Dependence Graphs

The interprocedural slicing algorithm presented above is designed to be applied
to a complete system dependence graph. In this section we discuss how to slice
incomplete system dependence graphs.

The need to handle incomplete systems arises, for example, when slicing a
program that calls a library procedure that is not itself available, or when slicing
programs under development. In the first case, the missing components are
procedures that are called by the incomplete system; in the second case, the
missing components can either be not-yet-written procedures called by the
incomplete system (when the program is developed top-down), or possible calling
contexts (when the program is developed bottom-up).

In either case, information about the possible effects of missing calls and
missing calling contexts is needed to permit slicing. This information takes the
form of (safe approximations to) the subordinate characteristic graphs for missing
called procedures and the superior characteristic graphs for missing calling
contexts.

When no information about missing program components is available, subor-
dinate characteristic graphs in which there is an edge from each inherited
attribute to each synthesized attribute, and superior characteristic graphs in
which there is an edge from each synthesized attribute to each other attribute
(including the other synthesized attributes), must be used. This is because the
slice of the incomplete system should include all vertices that could be included
in the slice of some “completed” system, and it is always possible to provide a
call or a calling context that corresponds to the graphs described above.

For library procedures, it is possible to provide precise subordinate character-
istic graphs even when the procedures themselves are not provided. For programs
under development, it might be possible to compute characteristic graphs, or at
least better approximations to them than the worst-case graphs, given specifi-
cations for the missing program components.

4.5 Forward Slicing

Whereas the slice of a program with respect to a program point p and variable x
consists of all statements and predicates of the program that might affect the
value of x at point p, the forward slice of a program with respect to a program
point p and variable z consists of all statements and predicates of the program
that might be affected by the value of x at point p. An algorithm for forward
interprocedural slicing can be defined on system dependence graphs, using the
same concepts employed for (backward) interprocedural slicing. As before, the
key element is the use of the linkage grammar’s characteristic graph edges in the
system dependence graph to represent transitive dependences from actual-in
vertices to actual-out vertices due to the effects of procedure calls.

An algorithm for forward interprocedural slicing is given as procedure
MarkVerticesOfForwardSlice of Figure 15.

In Figure 15, the computation of the forward slice of system dependence graph
G with respect to vertex set S is performed in two phases. The traversal in
Phase 1 follows flow edges, control edges, and parameter-out edges, but does
not follow call edges, def-order edges, or parameter-in edges. Because call edges

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

54 l S. Hotwitz et al.

procedure MerkVerticesotForw~lice(G. S)
declare

G: a system dependence graph
s. S’: sets of venices in G

wn
P Phase 1: Slice forward without descending into called procedures */

MarkVerticesReached(G, S. (def-order, parameter-in call))
I+ Phase 2: Slice forward into called pocedures without ascending to call sites *I

S’ := ell marked vertices in G
MarkVerticesReached(G, S’. (&f-order, parameter-out))

end

procedure MarkVerticesReached(G. V. Kinds)
declare

G: e system dependence graph
V:asetofverticcsinG
Ki&asetofkindsofedgcs
Y, w:verticesinG
WorkLirt: a set of vertices in G

begin
WorkLkt := v
while WorkLit # 0 do

Select and remOve e vems. Y fbn WorkList
Mark Y
for each unmarked vertex w such that there is en edge Y +w whose kind is not in Kinds do

InsmWilUOWOrkLisr
od

od
end

Fig. 15. The procedure MarkVerticesOfForwardSlice marks the vertices of
the forward interprocedural slice G/S. The auxiliary procedure Mark-
VerticesReached marks all vertices in G to which there is a path from a vertex
in V along edges of kinds other than those in the set Kinds.

and parameter-in edges are not followed, the traversal in Phase 1 does not
descend into called procedures. The traversal in Phase 2 follows flow edges,
control edges, call edges, and parameter-in edges, but does not follow def-order
edges or parameter-out edges. Because parameter-out edges are not followed, the
traversal in Phase 2 does not ascend into calling procedures.

5. THE COMPLEXITY OF THE SLICING ALGORITHM

This section discusses the complexity of the interprocedural slicing algorithm
presented in Section 4.1. In the absence of aliasing, the cost is polynomial in
(various) parameters of the system. In the presence of aliasing, the cost remains
polynomial if we use the generalized definitions of data dependences given in
Section 4.3 (at the price of somewhat less precision in taking slices). Alternatively,
if we follow the approach of transforming the system to one that is alias-free,
more precise slices can be obtained, but the cost can increase by an exponential
factor that reflects the blow-up in size that can occur due to the number of
aliasing patterns in the program. The measures of system size used below are
those associated with the system dependence graph created according to one or
the other of these approaches. In particular, if the approach of transforming to
an alias-free system is used, the measures of system size used below are those
associated with the alias-free system.
ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

Interprocedural Slicing Using Dependence Graphs l 55

5.1 Cost of Constructing the System Dependence Graph

The cost of constructing the system dependence graph can be expressed in terms
of the parameters given in the following tables:

Parameters that measure the size of an individual procedure

V The larest number of predicates and assignments in a single procedure
E The largest number of edges in a single procedure dependence graph
Params The largest number of formal parameters in any procedure
Sites The largest number of call sites in any procedure

Parameters that measure the size of the entire system

P The number of procedures in the system
(= the number of productions in the linkage grammar)

Globals The number of global variables in the system
TotalSites 5 P . Sites The total number of call sites in the system

Interprocedural data-flow analysis is used to compute summary information
about side effects. Flow-insensitive interprocedural summary information (e.g.,
GMOD and GREF) can be determined particularly efficiently. In particular, in
the absence of nested scopes, GMOD and GREF can be determined in time
O(P2 + P . TotalSites) steps by the algorithm described in [6].

Intraprocedural data-flow analysis is used to determine the data dependences
of procedure dependence graphs. For the structured language under consideration
here, this analysis can be performed in a syntax-directed fashion (for example,
using an attribute grammar) [8]. This involves propagating sets of program
points, where each set consists of program points in a single procedure. This
computation has total cost O(V’).

The cost of constructing the linkage grammar and computing its subordinate
characteristic graphs can be expressed in terms of the following parameters:

Parameters that measure the size of the linkage grammar

R = Sites + 1 The largest number of nonterminal occurrences in a
single production

G = P + TotalSites The number of nonterminal occurrences in the linkage
grammar

5P.R
= P . (Sites + 1)

X = Globals + Params The largest number of attributes of a single nonterminal
D5R.X The largest number of attribute occurrences in a single

production
= (Sites + 1)

+ (Global + Params)

To determine the dependences among the attribute occurrences in each produc-
tion, its corresponding procedure is sliced with respect to the linkage vertices
that correspond to the attribute occurrences of the production. The cost of each
slice is linear in the size of the procedure dependence graph; that is, the cost is
bounded by O(V + E). Consequently, the total cost of constructing the linkage
grammar is bounded by O(G . X . (V+ E)).

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

56 l S. Horwitz et al.

It remains for us to analyze the cost of computing the linkage grammar’s
subordinate characteristic graphs. Because there are at most 0’ edges in each
TDP(p) relation, the cost of AddEdgeAndInduce, which recloses a single TDP(p)
relation, is O(D2). The cost of initializing the TDP relations with all direct
dependences in ConstructSubCGraphs is bounded by O(P . D2).

In the inner loop of Step 2 of procedure ConstructSubCGraphs, AddEdge-
AndInduce is called once for each occurrence of nonterminal N. There are at
most X2 edges in each graph TDS(N) and G nonterminal occurrences where an
edge may be induced. No edge is induced more than once because of the marks
on TDS edges; thus, the total cost of procedure ConstructSubCGraphs is bounded
by O(G . X2 . D2) [13].

5.2 Slicing Costs

An interprocedural slice is performed by two traversals of the system depen-
dence graph, starting from some initial set of vertices. The cost of each
traversal is linear in the size of the system dependence graph, which is bounded
by O(P ’ (V + E) + TotalSites - X).

6. RELATED WORK

In recasting the interprocedural slicing problem as a reachability problem in a
graph, we are following the example of [19], which does the same for intrapro-
cedural slicing. The reachability approach is conceptually simpler than the data-
flow equation approach used in [22], and is also much more efficient when more
than one slice is desired.

The recasting of the problem as a reachability problem does involve some loss
of generality; rather than permitting a program to be sliced with respect to
program point p and an arbitrary variable, a slice can only be taken with respect
to a variable that is defined or used at p. For such slicing problems the interpro-
cedural slicing algorithm presented in this paper is an improvement over Weiser’s
algorithm because our algorithm is able to produce a more precise slice than the
one produced by Weiser’s algorithm. However, the extra generality is not the
source of the imprecision of Weiser’s method; as explained in the Introduction
and in Section 3.2, the imprecision of Weiser’s method is due to the lack of a
mechanism to keep track of the calling context of a called procedure.

After the initial publication of our interprocedural-slicing algorithm [lo], a
different technique for computing interprocedural slices was presented by Hwang
et al. [12]. The slicing algorithm presented in [la] computes an answer that is as
precise as our algorithm, but differs significantly in how it handles the calling-
context problem. The algorithm from [12] constructs a sequence of slices of the
system-where each slice of the sequence essentially permits there to be one
additional level of recursion-until a fixed-point is reached (i.e., until no further
elements appear in a slice that uses one additional level of recursion). Thus, each
slice of the sequence represents an approximation to the final answer. During
each of these slice approximations, the algorithm uses a stack to keep track of
the calling context of a called procedure. In contrast, our algorithm for interpro-
cedural slicing is based on a two-phase process for propagating marks on the
system dependence graph. In Phase 1 of the algorithm, the presence of the linkage

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

Interprocedural Slicing Using Dependence Graphs 57

grammar’s subordinate-characteristic-graph edges (representing transitive de-
pendences due to the effects of procedure calls) permits the entire effect of a call
to be accounted for by a single backward step over the call site’s subordinate-
characteristic-graph edges.

Hwang et al. do not include an analysis of their algorithm’s complexity in [121,
which makes a direct comparison with our algorithm difficult; however, there are
several reasons why our algorithm may be more efficient. First, the algorithm
from [12] computes a sequence of slices, each of which may involve reslicing a
procedure multiple times; in contrast, through its use of marks on system-
dependence-graph vertices, our algorithm processes no vertex more than once
during the computation of a slice. Second, if one wishes to compute multiple
slices of the same system, our approach has a significant advantage. The system
dependence graph (with its subordinate-characteristic-graph edges) need be com-
puted only once; each slicing operation can use this graph, and the cost of each
such slice is linear in the size of the system dependence graph. In contrast, the
approach of [121 would involve finding a new fixed point (a problem that appears
to have complexity comparable to the computation of the subordinate character-
istic graphs) for each new slice.

In [18], Myers presents algorithms for a specific set of interprocedural data-
flow problems, all of which require keeping track of calling context; however,
Myers’s approach to handling this problem differs from ours. Myers performs
data-flow analysis on a graph representation of the program, called a super graph,
which is a collection of control-flow graphs (one for each procedure in the
program), connected by call and return edges. The information maintained at
each vertex of the super graph includes a memory component, which keeps track
of calling context (essentially by using the name of the call site). Our use of the
system dependence graph permits keeping track of calling context while propa-
gating simple marks rather than requiring the propagation of sets of names.

It is no doubt possible to formulate interprocedural slicing as a data-flow
analysis problem on a super graph and to solve the problem using an algorithm
akin to those described by Myers to account correctly for the calling context of
a called procedure. As in the comparison with [121, our algorithm has a significant
advantage when one wishes to compute multiple slices of the same system.
Whereas the system dependence graph can be computed once and then used for
each slicing operation, the approach postulated above would involve solving a
new data-flow analysis problem from scratch for each slice.

The vertex-reachability approach we have used here has some similarities to a
technique used in [5], [6], and [Xi] to transform data-flow analysis problems to
vertex-reachability problems. In each case, a data-flow analysis problem is solved
by first building a graph representation of the program and then performing a
reachability analysis on the graph, propagating simple marks rather than, for
example, sets of variable names. One difference between the interprocedural
slicing problem and the problems addressed by the work cited above, is that
interprocedural slicing is a “demand problem” [2] whose goal is to determine
information concerning a specific set of program points rather than an “exhaus-
tive problem” in which the goal is to determine information for all program
points.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

58 l S. Horwitz et al.

APPENDIX: ATTRIBUTE GRAMMARS AND ATTRIBUTE DEPENDENCES

An attribute grammar is a context-free grammar extended by attaching attributes
to the terminal and nonterminal symbols of the grammar and by supplying
attribute equations to define attribute values [14]. In every production p: X,, +
Xl, .“, X,, each Xi denotes an occurrence of one of the grammar symbols;
associated with each such symbol occurrence is a set of attribute occurrences
corresponding to the symbol’s attributes.

Each production has a set of attribute equations; each equation defines one of
the production’s attribute occurrences as the value of an attribute-definition
function applied to other attribute occurrences in the production. The attributes
of a symbol X are divided into two disjoint classes: synthesized attributes and
inherited attributes.

An attribute grammar is well formed when the terminal symbols of the grammar
have no synthesized attributes, the root nonterminal of the grammar has no
inherited attributes, and each production has exactly one attribute equation for
each of the left-hand side nonterminal’s synthesized attribute occurrences and
for each of the right-hand side symbols’ inherited attribute occurrences. (The
grammars that arise in this paper are potentially not well formed, in that a
production may have equations for synthesized attribute occurrences of right-
hand side symbols. The reason that this does not cause problems is that the
“linkage grammar” of the interprocedural slicing algorithm is used only to
compute transitive dependences due to calls; we are not interested in the language
defined by the grammar, nor in actual attribute values.)

A derivation tree node that is an instance of symbol X has an associated set
of attribute instances corresponding to the attributes of X. An attributed tree is a
derivation tree together with an assignment of either a value or the special token
null to each attribute instance of the tree.

Ordinarily, although not in this paper, one is interested in analyzing a string
according to its attribute-grammar specification. To do this, one first constructs
the string’s derivation tree with an assignment of null to each attribute instance
and then evaluates as many attribute instances as possible, using the appropriate
attribute equation as an assignment statement. The latter process is termed
attribute evaluation.

Functional dependences among attribute occurrences in a production p (or
attribute instances in a tree T) can be represented by a directed graph, called a
dependence graph, denoted by D(p) (respectively, D(T)), and defined as follows:

(1) For each attribute occurrence (instance) b, the graph contains a vertex b’.
(2) If attribute occurrence (instance) b appears on the right-hand side of the

attribute equation that defines attribute occurrence (instance) c, the graph
contains the edge b ’ ---, c ‘.

An attribute grammar that has a derivation tree whose dependence graph contains
a cycle is called a circular attribute grammar. (The grammars that arise in this
paper can be circular grammars.)

A node’s subordinate and superior characteristic graphs provide a convenient
representation of transitive dependences among the node’s attributes. (A transi-
tive dependence exists between attributes that are related in the transitive closure

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

Interprocedural Slicing Using Dependence Graphs l 59

of the tree’s attribute dependence relation, or, equivalently, that are connected
by a direct path in the tree’s dependence graph.) The vertices of the characteristic
graphs at node r correspond to the attributes of r; the edges of the characteristic
graphs at r correspond to transitive dependences among r’s attributes.

The subordinate characteristic graph at r is the projection of the dependences
of the subtree rooted at r onto the attributes of r. To form the superior
characteristic graph at node r, we imagine that the subtree rooted at r has been
pruned from the derivation tree, and project the dependence graph of the
remaining tree onto the attributes of r. To define the characteristic graphs
precisely, we make the following definitions:

(1) Given a directed graph G = (V, E), a path from vertex a to
vertex b is a sequence of vertices, [ul, up, . . . , uk], such that a = ul, b = uk, and
((Vi, u~+I) 1 i = 1, m e e 9 k - 11 G Em

(2) Given a directed graph G = (V, E) and a set of vertices V’ c V, the projection
of G onto V’ is defined as

G//V’ = (V’, E’)

whereE’=((u,w)lu,~EV’,andthereexistsapath[u=u~,u~,...,u~=
w] in G such that u2, . . . , u&l @ V’). (That is, G//V’ has an edge from
u E V’ to w E V’ when there exists a path from u to w in G that does not
pass through any other elements of V’.)

The subordinate and superior characteristic graphs of a node r, denoted r.C and
r.f?, respectively, are defined formally as follows. Let r be a node in tree T, let
the subtree rooted at r be denoted T,, and let the attribute instances at r be
denoted A (r), then the subordinate and superior characteristic graphs at r satisfy:

r.C = D(T,)//A(r)
r.C = (D(T) - D(T,))//A(r).

A characteristic graph represents the projection of attribute dependences onto
the attributes of a single tree node; consequently, for a given grammar, each
graph is bounded in size by some constant.

REFERENCES

1. AHO, A. V., SETHI, R., AND ULLMAN, J. D. Compilers: Principles, Techniques, and Tools,
Addison-Wesley, Reading, Mass., 1986.

2. BABICH, W. A., AND JAZAYERI, M. The method of attributes for data flow analysis: Part II.
Demand analysis. Acta Znf. 10, 3 (Oct. 1978), 265-272.

3. BADGER, L., AND WEISER, M. Minimizing communication for synchronizing parallel dataflow
programs. In Proceedings of the 1988 International Conference on Parallel Processing (St. Charles,
IL, Aug. 15-19,1988). Pennsylvania State University Press, University Park, PA, 1988.

4. BANNING, J. P. An efficient way to find the side effects of procedure calls and the aliases of
variables. In Conference Record of the Sixth ACM Symposium on Principles of Programming
Languages (San Antonio, Tex., Jan. 29-31,1979). ACM, New York, 1979, pp. 29-41.

5. CALLAHAN, D. The program summary graph and flow-sensitive interprocedural data flow
analysis. In Proceedings of the ACM SZGPLAN 88 Conference on Programming Language Design
and Implementation (Atlanta, Ga., June 22-24, 1988). ACM SZGPLAN Not. 23, 7 (July 1988),
47-56.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

60 * S. Horwitz et al.

6. COOPER, K. D., AND KENNEDY, K. Interprocedural side-effect analysis in linear time. In
Proceedings of the ACM SIGPLAN 88 Conference on Programming Language Design and Imple-
mentation (Atlanta, Ga., June 22-24, 1988). ACM SZGPLAN Not. 23, 7 (July 1988), 57-66.

7. FERRANTE, J., OTTENSTEIN, K., AND WARREN, J. The program dependence graph and its use
in optimization. ACM Trans. Program. Lang. Syst. 9, 3 (July 1987), 319-349.

8. HORWITZ, S., PRINS, J., AND REPS, T. Integrating non-interfering versions of programs.
TR-690, Computer Sciences Dept., Univ. of Wisconsin, Madison, March 1987.

9. HORWITZ, S., PRINS, J., AND REPS, T. On the adequacy of program dependence graphs for
representing programs. In Conference Record of the Fifteenth ACM Symposium on Principles of
Programming Languages (San Diego, Calif., Jan. 13-15, 1988). ACM, New York, 1988,
pp. 146-157.

10. HORWITZ, S., REPS, T., AND BINKLEY, D. Interprocedural slicing using dependence graphs. In
Proceedings of the ACM SIGPLAN 88 Conference on Programming Language Design and Imple-
mentation (Atlanta, Ga., June 22-24, 1988). ACM SZGPLAN Not. 23, 7 (July 1988), 35-46.

11. HORWITZ, S., PRINS, J., AND REPS, T. Integrating non-interfering versions of programs. ACM
Trans. Program. Lung. Syst. 11, 3 (July 1989), 345-387.

12. HWANG, J. C., Du, M. W., AND CHOU, C. R. Finding program slices for recursive procedures.
In Proceedings of the IEEE COMPSAC 88 (Chicago, Oct. 3-7, 1988). IEEE Computer Society,
Washington, D.C., 1988.

13. KASTENS, U. Ordered attribute grammars. Acta Znf. 13, 3 (1980), 229-256.
14. KNUTH, D. E. Semantics of context-free languages. Math. Syst. Theor. 2, 2 (June 1968),

127-145.
15. KOU, L. T. On live-dead analysis for global data flow problems. J. ACM 24, 3 (July 1977),

473-483.
16. KUCK, D. J., MURAOKA, Y., AND CHEN, S. C. On the number of operations simultaneously

executable in FORTRAN-like programs and their resulting speed-up. IEEE Trans. Comput.
C-21,12 (Dec. 1972), 1293-1310.

17. LYLE, J., AND WEISER, M. Experiments on slicing-based debugging tools. In Proceedings of the
First Conference on Empirical Studies of Programming (June 1986).

18. MYERS, E. A precise inter-procedural data flow algorithm. In Conference Record of the Eighth
ACM Symposium on Principles of Programming Languages (Williamsburg, Va., Jan. 26-28,1981).
ACM, New York, 1981, pp. 219-230.

19. OTTENSTEIN, K. J., AND OTTENSTEIN, L. M. The program dependence graph in a software
development environment. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineer-
ing Symposium on Practical Software Development Environments (Pittsburgh, Pa., April 23-25,
1984). ACM SZGPLAN Not. 19,5 (May 1984), 177-184.

20. REPS, T., AND YANG, W. The semantics of program slicing. TR-777, Computer Sciences Dept.,
Univ. of Wisconsin, Madison, June 1988.

21. WEISER, M. Reconstructing sequential behavior from parallel behavior projections. Inf. Process.
Lett. 17 (Oct. 1983), 129-135.

22. WEISER, M. Program slicing. IEEE Trans. Softw. Eng. SE-lo, 4 (July 1984), 352-357.

Received April 1988; revised August 1989; accepted August 1989

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

