
Interprocedural Slicing Using Dependence 
Graphs 

SUSAN HORWITZ, THOMAS REPS, and DAVID BINKLEY 
University of Wisconsin-Madison 

The notion of a program slice, originally introduced by Mark Weiser, is useful in program debugging, 
automatic parallelization, and program integration. A slice of a program is taken with respect to a 
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slice of an entire program, where the slice crosses the boundaries of procedure calls. To solve this 
problem, we introduce a new kind of graph to represent programs, called a system dependence graph, 
which extends previous dependence representations to incorporate collections of procedures (with 
procedure calls) rather than just monolithic programs. Our main result is an algorithm for interpro- 
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1. INTRODUCTION 

The slice of a program with respect to program point p and variable x consists of 
all statements and predicates of the program that might affect the value of x at 
point p. This concept, originally discussed by Mark Weiser in [22], can be 
used to isolate individual computation threads within a program. Slicing can help 
a programmer understand complicated code, can aid in debugging 1171, and can 
be used for automatic parallelization [3, 211. Program slicing is also used by the 
algorithm for automatically integrating program variants described in [ll]; slices 
are used to compute a safe approximation to the change in behavior between a 
program P and a modified version of P, and to help determine whether two 
different modifications to P interfere. 

In Weiser’s terminology, a slicing criterion is a pair ( p, V), where p is a 
program point and V is a subset of the program’s variables. In his work, a slice 
consists of all statements and predicates of the program that might affect the 
values of variables in V at point p. This is a more general kind of slice than is 
often needed: rather than a slice taken with respect to program point p and an 
arbitrary variable, one is often interested in a slice taken with respect to a variable 
x that is defined or used at p. The value of a variable x defined at p is directly 
affected by the values of the variables used at p and by the loops and conditionals 
that enclose p. The value of a variable y used at p is directly affected by 
assignments to y that reach p and by the loops and conditionals that enclose p. 
When slicing a program that consists of a single monolithic procedure (which we 
will call intraprocedural slicing), a slice can be determined from the closure of 
the directly-affects relation. Ottenstein and Ottenstein pointed out how well 
suited program dependence graphs are for this kind of slicing [ 191; once a program 
is represented by its program dependence graph, the slicing problem is simply a 
vertex-reachability problem, and thus slices may be computed in linear time. 

This paper concerns the problem of interprocedural slicing-generating a slice 
of an entire program, where the slice crosses the boundaries of procedure calls. 
Our algorithm for interprocedural slicing produces a more precise answer than 
that produced by the algorithm given by Weiser in [22]. Our work follows the 
example of Ottenstein and Ottenstein by defining the slicing algorithm in terms 
of operations on a dependence graph representation of programs [19]; however, 
in [19] Ottenstein and Ottenstein only discuss the case of programs that consist 
of a single monolithic procedure, and do not discuss the more general case where 
slices cross procedure boundaries. 

To solve the interprocedural-slicing problem, we introduce a new kind of graph 
to represent programs, called a system dependence graph, which extends previous 
dependence representations to incorporate collections of procedures (with pro- 
cedure calls) rather than just monolithic programs. Our main result is an 
algorithm for interprocedural slicing that uses the new representation. 

It is important to understand the distinction between two different but related 
“slicing problems:” 

Version 1. The slice of a program with respect to program point p and variable 
x consists of all statements and predicates of the program that might affect the 
value of x at point p. 
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Version 2. The slice of a program with respect to program point p and variable 
x consists of a reduced program that computes the same sequence of values for x 
at p. That is, at point p the behavior of the reduced program with respect to 
variable x is indistinguishable from that of the original program. 

For in&procedural slicing, a solution to Version 1 provides a solution to Version 
2, since the “reduced program” required in Version 2 can be obtained by restricting 
the original program to just the statements and predicates found in the solution 
for Version 1 [20]. 

For interprocedural slicing, restricting the original program to just the state- 
ments and predicates found for Version 1 may yield a program that is syntactically 
incorrect (and thus certainly not a solution to Version 2). The reason behind this 
phenomenon has to do with multiple calls to the same procedure: it is possible 
that the program elements found by an algorithm for Version 1 will include more 
than one such call, each passing a different subset of the procedure’s parameters. 
(It should be noted that, although it is imprecise, Weiser’s algorithm produces a 
solution to Version 2.) 

In this paper we address Version 1 of the interprocedural slicing problem (with 
the further restriction, mentioned earlier, that a slice can only be taken with 
respect to program point p and variable x if x is defined or used at p). The 
algorithm given in the paper identifies a subgraph of the system dependence 
graph whose components might affect the sequence of values for x at p. A solution 
to Version 2 requires either that the slice be extended or that it be transformed 
by duplicating code to specialize procedure bodies for particular parameter-usage 
patterns. 

Weiser’s method for interprocedural slicing is described in [22] as follows: 

For each criterion C for a procedure P, there is a set of criteria UP,(C) which 
are those needed to slice callers of P, and a set of criteria DOWN,,(C) which are 
those needed to slice procedures called by P. . . . UP,(C) and DOWNo can be 
extended to functions UP and DOWN which map sets of criteria into sets of 
criteria. Let CC be any set of criteria. Then 

UP(W = UC UP,(C) 

DOWN(CC) = o,u,, DOWNo 

The union and transitive closure of UP and DOWN are defined in the usual 
way for relations. (UP U DOWN)* will map any set of criteria into all those 
criteria necessary to complete the corresponding slices through all calling and 
called routines. The complete interprocedural slice for a criterion C is then just 
the union of the intraprocedural slices for each criterion in (UP U DOWN)*(C). 

However, this method does not produce as precise a slice as possible because 
the transitive-closure operation fails to account for the calling context of a called 
pr0cedure.l 

1 For example, the relation (UP U DOWN)*(( p, V)) includes the relation UP(DOWN(( p, V))). 
UP(DOWN( ( p, V))) includes all call sites that call procedures containing the program points in 
DOWN( ( p, V)), not just the procedure that contains p. This fails to account for the calling context, 
namely the procedure that contains p. 
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Example. To illustrate this problem, and the shortcomings of Weiser’s algo- 
rithm, consider the following example program, which sums the integers from 1 
to 10. (Except in Section 4.3, where call-by-reference parameter passing is 
discussed, parameters are passed by value-result.) 

program Main procedure A (x, y) procedure Add (n, b) procedure Increment (2) 
sum:=O; call Add (x, y); a:=a+b call Add (2, 1) 
i:=l; call Zncrement ( y) return return 
whilei<lldo return 

call A (sum, i) 
od 

end 

Using Weiser’s algorithm to slice this program with respect to variable z and the 
return statement of procedure Increment, we obtain everything from the original 
program. However, a closer inspection reveals that computations involving the 
variable sum do not contribute to the value of z at the end of procedure Increment ; 
in particular, neither the initialization of sum, nor the first actual parameter of 
the call on procedure A in Main, nor the call on Add in A (which adds the current 
value of i to sum) should be included in the slice. The reason these components 
are included in the slice computed by Weiser’s algorithm is as follows: the initial 
slicing criterion “(end of procedure Increment, z)“, is mapped by the DOWN 
relation to a slicing criterion “(end of procedure Add, a )“. The latter criterion is 
then mapped by the UP relation to two slicing criteria-corresponding to all sites 
that call Add-the criterion “(call on Add in Increment, 2)” and the (irrelevant) 
criterion “ (call on Add in A, x )“. Weiser’s algorithm does not produce as precise 
a slice as possible because transitive closure fails to account for the calling 
context (Increment) of a called procedure (Add ), and thus generates a spurious 
criterion ((call on Add in A, x ) ). 

A more precise slice consists of the following elements: 

program Main procedure A ( y) procedure Add (a, b) procedure Increment(z) 
i:=l; call Increment(y) a:=a+b call Add (z, 1) 
while i c 11 do return return return 

callA 
od 

end 

This set of program elements is computed by the slicing algorithm described in 
this paper. 

The chief difficulty in interprocedural slicing is correctly accounting for the 
calling context of a called procedure. To address the calling-context problem, 
system dependence graphs include some data dependence edges that represent 
transitive dependences due to the effects of procedure calls, in addition to the 
conventional edges for direct dependences. The presence of transitive-dependence 
edges permits interprocedural slices to be computed in two passes, each of which 
is cast as a reachability problem. 

The cornerstone of the construction of the system dependence graph is the use 
of an attribute grammar to represent calling and parameter-linkage relationships 
among procedures. The step of computing the required transitive-dependence 
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edges is reduced to the construction of the subordinate characteristic graphs for 
the grammar’s nonterminals. The need to express this step in this fashion (rather 
than, for example, with transitive closure) is discussed further in Section 3.2. 

The remainder of the paper is organized as follows: Section 2 defines the 
dependence graphs used to represent programs in a language without procedure 
calls. Section 2 also defines the operation of intraprocedural slicing on these 
dependence graphs. Section 3 extends the definition of dependence graphs to 
handle a language that includes procedures and procedure calls. The new graphs 
are called system dependence graphs. Section 4 presents our slicing algorithm, 
which operates on system dependence graphs and correctly accounts for the 
calling context of a called procedure. It then describes how to improve the 
precision of interprocedural slicing by using interprocedural summary informa- 
tion in the construction of system dependence graphs, how to handle programs 
with aliasing, how to slice incomplete programs, and how to compute forward 
slices (i.e., the program elements potentially affected by a given variable at a given 
point). Section 5 discusses the complexity of the slicing algorithm. We have not 
yet implemented this algorithm in its entirety; thus, Section 5 provides an 
analysis of the costs of building system dependence graphs and of taking inter- 
procedural slices rather than presenting empirical results. Section 6 discusses 
related work. 

With the exception of the material on interprocedural data-flow analysis 
employed in Section 4.2, the paper is self-contained; an introduction to the 
terminology and concepts from attribute-grammar theory that are used in 
Section 3.2 may be found in the Appendix. 

2. PROGRAM-DEPENDENCE GRAPHS AND PROGRAM SLICES 

Different definitions of program dependence representations have been given, 
depending on the intended application; they are all variations on a theme 
introduced in [ 161, and share the common feature of having an explicit represen- 
tation of data dependences (see below). The “program dependence graphs” 
defined in [7] introduced the additional feature of an explicit representation for 
control dependences (see below). The definition of program dependence graph 
given below differs from [7] in two ways. First, our definition covers only a 
restricted language with scalar variables, assignment statements, conditional 
statements, while loops, and a restricted kind of “output statement” called an 
end statement,* and hence is less general than the one given in [7]. Second, we 
omit certain classes of data dependence edges and make use of a class introduced 
in [8, 111. Despite these differences, the structures we define and those defined 
in [7] share the feature of explicitly representing both control and data depen- 
dences; therefore, we refer to our graphs as “program dependence graphs,” 
borrowing the term from [7]. 

‘An end statement, which can only appear at the end of a program, names one or more of the 
variables used in the program; when execution terminates, only those variables will have values in 
the final state; the variables named by the end statement are those whose final values are of interest 
to the programmer. 
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2.1 The Program Dependence Graph 

The program dependence graph for program P, denoted by GP, is a directed graph 
whose vertices are connected by several kinds of edges.3 The vertices of Gp 
represent the assignment statements and control predicates that occur in program 
P. In addition, Gp includes three other categories of vertices: 

(1) There is a distinguished vertex called the entry vertex. 

(2) For each variable x for which there is a path in the standard control-flow 
graph for P on which x is used before being defined (see [l] ), there is a vertex 
called the initial definition of x. This vertex represents an assignment to x 
from the initial state. The vertex is labeled “X := InitialState(x 

(3) For each variable x named in P’s end statement, there is a vertex called the 
final use of X. It represents an access to the final value of x computed by P, 
and is labeled “FinalUse(n 

The edges of Gp represent dependences among program components. An edge 
represents either a control dependence or a data dependence. Control dependence 
edges are labeled either true or false, and the source of a control dependence 
edge is always the entry vertex or a predicate vertex. A control dependence edge 
from vertex vi to vertex up, denoted by v1 +c v 2, means that, during execution, 
whenever the predicate represented by v1 is evaluated and its value matches the 
label on the edge to v2, then the program component represented by up will 
eventually be executed if the program terminates. A method for determining 
control dependence edges for arbitrary programs is given in [7]; however, because 
we are assuming that programs include only assignment, conditional, and while 
statements, the control dependence edges of GP can be determined in a much 
simpler fashion. For the language under construction here, the control depen- 
dences reflect a program’s nesting structure; program dependence graph Gp 
contains a control dependence edge from vertex v1 to vertex v2 of GP iff one of the 
following holds: 

(1) v1 is the entry vertex and v2 represents a component of P that is not nested 
within any loop or conditional; these edges are labeled true. 

(2) vi represents a control predicate and v2 represents a component of P imme- 
diately nested within the loop or conditional whose predicate is represented 
by vl. If vi is the predicate of a while-loop, the edge v1 +c up is labeled true; 
if v1 is the predicate of a conditional statement, the edge vi +c up is labeled 
true or false according to whether up occurs in the then branch or the else 
branch, respectively.4 

3 A directed graph G consists of a set of vertices V(G) and a set of edges E(G), where E(G) C 
V(G) x V(G). Each edge (b, c) E E(G) is directed from b to c; we say that b is the source and c the 
target of the edge. 
’ In other definitions that have been given for control dependence edges, there is an additional edge 
from each -predicate of a while statement to itself, labeled true. This kind of edge is left out of our 
definition because it is not necessary for our purposes. 

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990. 



32 l S. Hotwitz et al. 

A data dependence edge from vertex u1 to vertex v2 means that the program’s 
computation might be changed if the relative order of the components represented 
by u1 and u2 were reversed. In this paper, program dependence graphs contain 
two kinds of data dependence edges, representing flow dependences and def-order 
dependences.5 The data dependence edges of a program dependence graph are 
computed using data-flow analysis. For the restricted language considered in this 
section, the necessary computations can be defined in a syntax-directed manner. 

A program dependence graph contains a flow dependence edge from vertex U, 
to vertex uz iff all of the following hold: 

(1) u1 is a vertex that defines variable X. 

(2) u2 is a vertex that uses X. 

(3) Control can reach uz after u1 via an execution path along which there is no 
intervening definition of x. That is, there is a path in the standard control- 
flow graph for the program by which the definition of x at u1 reaches the use 
of x at u2. (Initial definitions of variables are considered to occur at the 
beginning of the control-flow graph; final uses of variables are considered to 
occur at the end of the control-flow graph.) 

A flow dependence that exists from vertex u1 to vertex u2 is denoted by u1 jf v2. 
Flow dependences can be further classified as loop carried or loop independent. 

A flow dependence u1 +f vz is carried by loop L, denoted by u1 +lc(L) u2, if in 
addition to (l), (2), and (3) above, the following also hold: 

(4) There is an execution path that both satisfies the conditions of (3) above 
and includes a backedge to the predicate of loop L. 

(5) Both ul and up are enclosed in loop L. 

A flow dependence u1 +f v2 is loop-independent, denoted by ul +li u2, if in 
addition to (l), (2), and (3) above, there is an execution path that satisfies (3) 
above and includes no backedge to the predicate of a loop that encloses both u1 
and ~2. It is possible to have both u1 *k(L) ~2 and ul +li ~2. 

A program dependence graph contains a def-order dependence edge from vertex 
ul to vertex u2 iff all of the following hold: 

(1) u1 and u2 both define the same variable. 
(2) u1 and u2 are in the same branch of any conditional statement that encloses 

both of them. 

(3) There exists a program component u3 such that ul +f u3 and up +f u3. 
(4) u1 occurs to the left of up in the program’s abstract syntax tree. 

A def-order dependence from v1 to up with “witness” v3 is denoted by 
Ul +do(“,) u2. 

Note that a program dependence graph is a multigraph (i.e., it may have more 
than one edge of a given kind between two vertices). When there is more than 
one loop-carried flow dependence edge between two vertices, each is labeled by a 

5 For a complete discussion of the need for these edges and a comparison of def-order dependences 
with anti- and output dependences see [9]. 
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i := 1: 
whilei<lldo 

sum := sum+i; 
i :=i+l 

od 
end(wn, i) 

Fig. 1. An example program, which sums the integers from 1 to 10 and leaves the 
result in the variable sum, and its program dependence graph. The boldface arrows 
represent control dependence edges, solid arrows represent loop-independent flow 
dependence edges, solid arrows with a hash mark represent loop-carried flow depen- 
dence edges, and dashed arrows represent def-order dependence edges. 

different loop that carries the dependence. When there is more than one def- 
order edge between two vertices, each is labeled by a vertex that is flow-dependent 
on both the definition that occurs at the edge’s source and the definition that 
occurs at the edge’s target. 

Example. Figure 1 shows an example program and its program dependence 
graph. 

The boldface arrows represent control dependence edges; solid arrows represent 
loop-independent flow dependence edges; solid arrows with a hash mark represent 
loop-carried flow dependence edges; dashed arrows represent def-order depen- 
dence edges. 

2.2 Program Slices (of Single-Procedure Programs) 

For vertex s of program dependence graph G, the slice of G with respect to s, 
denoted by G/s, is a graph containing all vertices on which s has a transitive flow 
or control dependence (i.e., all vertices that can reach s via flow and/or control 
edges): V(G/s) = (w 1 w E V(G) A w +=zr s ). We extend the definition to a set of 
vertices S = Ui si as follows: V(G/S) = V(G/(Ui Si)) = Ui V(G/si). Figure 2 
gives a simple worklist algorithm for computing the vertices of a slice using a 
program dependence graph. 

The edges in the graph G/S are essentially those in the subgraph of G induced 
by V(G/S), with the exception that a def-order edge u ‘do(u) w is included only 
if G/S contains the vertex u that is directly flow-dependent on the definitions at 

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990. 



34 l S. Hotwitz et al. 

procedure MarkVerticesOfSlice(G. S) 
declare 

G: a program dependence graph 
s: a set of vertices in G 
WorkList: a set of vertices in G 
v. w: vertices in G 

begin 
WorkLisr := s 
while WorkList f 0 do 

Select and remove vertex Y from WorkList 
Mark Y 
for each unmarked vertex w such that edge w +, v or edge w +c v is in E(G) do 

hen w into W&List 
od 

od 
end 

Fig. 2. A worklist algorithm that marks the vertices in G/S. Vertex u is 
in G/S if there is a path along flow and/or control edges from v to some 
vertex in S. 

v and w. In terms of the three types of edges in a program dependence graph, we 
define 

E(G/S) = ((v +f w) I (v -+f w) E E(G) A v, w E V(G/S)j 
U ((v +c w)((v -+c w) E E(G) A v, w E V(G/S)j 

u (b -do(u) W)ib ‘do(u) W) E E(G) A 4 V, w E V(G/S)). 

The relationship between a program’s dependence graph and a slice of the 
graph has been addressed in [ZO]. We say that G is a feasible program dependence 
graph iff G is the program dependence graph of some program P. For any 
S C V(G), if G is a feasible program dependence graph, the slice G/S is also a 
feasible program dependence graph; it corresponds to the program P’ ob- 
tained by restricting the syntax tree of P to just the statements and predicates 
in V(G/S) [20]. 

Example. Figure 3 shows the graph that results from taking a slice of the 
program dependence graph from Figure 1 with respect to the final-use vertex for 
i, together with the one program to which it corresponds. 

The significance of an intraprocedural slice is that it captures a portion of a 
program’s behavior in the sense that, for any initial state on which the program 
halts, the program and the slice compute the same sequence of values for each 
element of the slice [20]. In our case, a program point may be (1) an assignment 
statement, (2) a control predicate, or (3) a final use of a variable in an end 
statement. Because a statement or control predicate may be reached repeatedly 
in a program by “computing the same sequence of values for each element of the 
slice,” we mean: (1) for any assignment statement the same sequence of values 
are assigned to the target variable; (2) for the predicate the same sequence of 
Boolean values are produced; and (3) for each final use the same value for the 
variable is produced. 
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I I 

Fig. 3. The graph and the corresponding program that result from slicing the program 
dependence graph from Figure 1 with respect to the final-use vertex for i. 

3. THE SYSTEM DEPENDENCE GRAPH: AN INTERPROCEDURAL 
DEPENDENCE GRAPH REPRESENTATION 

We now turn to the definition of the system dependence graph. The system 
dependence graph, an extension of the dependence graphs defined in Section 2.1, 
represents programs in a language that includes procedures and procedure calls. 

Our definition of the system dependence graph models g language with the 
following properties: 

(1) A complete system consists of a single (main) program and a collection of 
auxiliary procedures. 

(2) Procedures end with return statements instead of end statements (as 
defined in Section 2). A return statement does not include a list of variables. 

(3) Parameters are passed by value-result. 

We make the further assumption that there are no call sites of the form P(x, x) 
or of the form P(g), where g is a global variable. The former restriction sidesteps 
potential copy-back conflicts. The latter restriction permits global variables to 
be treated as additional parameters to each procedure; thus, we do not discuss 
global variables explicitly in this paper. 

It should become clear that our approach is not tied to the particular language 
features enumerated above. Modeling different features will require some 
adaptation; however, the basic approach is applicable to languages that allow 
nested scopes and languages that use different parameter-passing mechanisms. 
Section 4.3 discusses how to deal with systems that use call-by-reference 
parameter passing and contain aliasing. 

A system dependence graph includes a program dependence graph, which 
represents the system’s main program, procedure dependence graphs, which 
represent the system’s auxiliary procedures, and some additional edges. These 
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additional edges are of two sorts: (1) edges that represent direct dependences 
between a call site and the called procedure, and (2) edges that represent transitive 
dependences due to calls. 

Section 3.1 discusses how procedure calls and procedure entry are represented 
in procedure dependence graphs and how edges representing dependences be- 
tween a call site and the called procedure are added to connect these graphs 
together. Section 3.2 defines the linkage grammar, an attribute grammar used to 
represent the call structure of a system. Transitive dependences due to procedure 
calls are computed using the linkage grammar and are added as the final step of 
building a system dependence graph. 

In the sections below, we use “procedure” as a generic term referring to both 
the main program and the auxiliary procedures when the distinction between the 
two is irrelevant. 

3.1 Procedure Calls and Parameter Passing 

Extending the definition of dependence graphs to handle procedure calls requires 
representing the passing of values between procedures. In designing the repre- 
sentation of parameter passing, we have three goals: 

(1) It should be possible to build an individual procedure’s procedure dependence 
graph (including the computation of data dependences) with minimal knowl- 
edge of other system components. 

(2) The system dependence graph should consist of a straightforward connection 
of the program dependence graph and procedure dependence graphs. 

(3) It should be possible to extract a precise interprocedural slice efficiently by 
traversing the graph via a procedure analogous to the procedure Mark- 
VerticesOfSlice given in Figure 2. 

Goal (3) is the subject of Section 4.1, which presents our algorithm for slicing a 
system dependence graph. 

To meet the goals outlined above, our graphs model the following slightly 
nonstandard, two-stage mechanism for runtime parameter passing: when pro- 
cedure P calls procedure Q, values are transferred from P to Q by means of 
intermediate temporary variables, one for each parameter. A different set of 
temporary variables is used when Q returns to transfer values back to P. Before 
the call, P copies the values of the actual parameters into the call temporaries; 
Q then initializes local variables from these temporaries. Before returning, Q 
copies return values into the return temporaries, from which P retrieves them. 

This model of parameter passing is represented in procedure dependence graphs 
through the use of five new kinds of vertices. A call site is represented using a 
call-site vertex; information transfer is represented using four kinds of parameter 
vertices. On the calling side, information transfer is represented by a set of 
vertices called actual-in and actual-out vertices. These vertices, which are control 
dependent on the call-site vertex, represent assignment statements that copy the 
values of the actual parameters to the call temporaries and from the return 
temporaries, respectively. Similarly, information transfer in the called procedure 
is represented by a set of vertices called formal-in and formal-out vertices. These 
vertices, which are control dependent on the procedure’s entry vertex, represent 
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assignment statements that copy the values of the formal parameters from the 
call temporaries and to the return temporaries, respectively. 

Using this model, data dependences between procedures are limited to depen- 
dences from actual-in vertices to formal-in vertices and from formal-out vertices 
to actual-out vertices. Connecting procedure dependence graphs to form a system 
dependence graph is straightforward, involving the addition of three new kinds 
of edges: (1) a call edge is added from each call-site vertex to the corresponding 
procedure-entry vertex; (2) a parameter-in edge is added from each actual-in 
vertex at a call site to the corresponding formal-in vertex in the called procedure; 
(3) a parameter-out edge is added from each formal-out vertex in the called 
procedure to the corresponding actual-out vertex at the call site. (Call edges are 
a new kind of control dependence edge; parameter-in and parameter-out edges 
are new kinds of data dependence edges.) 

Another advantage of this model is that flow dependences can be computed in 
the usual way, using data-flow analysis on the procedure’s control-flow graph. 
The control-flow graph for a procedure includes nodes analogous to the actual- 
in, actual-out, formal-in and formal-out vertices of the procedure dependence 
graph. A procedure’s control-flow graph starts with a sequence of assignments 
that copy values from call temporaries to formal parameters and ends with a 
sequence of assignments that copy values from formal parameters to return 
temporaries. Each call statement within the procedure is represented in the 
procedure’s control-flow graph by a sequence of assignments that copy values 
from actual parameters to call temporaries, followed by a sequence of assignments 
that copy values from return temporaries to actual parameters. 

An important question is which values are transferred from a call site to the 
called procedure and back again. This point is discussed further in Section 4.2, 
which presents a strategy in which the results of interprocedural data-flow 
analysis are used to omit some parameter vertices from procedure dependence 
graphs. For now, we assume that all actual parameters are copied into the call 
temporaries and retrieved from the return temporaries. Thus, the parameter 
vertices associated with a call from procedure P to procedure Q are defined as 
follows (Gp denotes the procedure dependence graph for P): 

In Gp, subordinate to the call-site vertex that represents the call to Q, there is an 
actual-in vertex for each actual parameter e of the call to Q. The actual-in vertices 
are labeled r-in := e, where r is the formal parameter name. 
For each actual parameter a that is a variable (rather than an expression), there 
is an actual-out vertex. These are labeled a := r-out for actual parameter a and 
corresponding formal parameter r. 

The parameter vertices associated with the entry to procedure Q and the return 
from procedure Q are defined as follows (Go denotes the procedure dependence 
graph for Q): 

For each formal parameter r of Q, Go contains a formal-in vertex and a formal- 
out vertex. These vertices are labeled r : = r-in and r-out : = r, respectively. 

Example. Figure 4 repeats the example system from the Introduction and 
shows the corresponding program and procedure dependence graphs connected 
with parameter-in edges, parameter-out edges, and call edges. 
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program Main 
SUm:=o; 
i:=l: 

pmccdurc Add (a. b) 
a:=a+b 

rehlrll 
al&i < 11 do 

callA (sum i) 
od 

Fig. 4. Example system and corresponding program and procedure dependence graphs 
connected with parameter-in, parameter-out, and call edges. Edges representing control 
dependences are shown (unlabeled) in boldface; edges representing intraprocedural flow 
dependences are shown using arcs; parameter-in edges, parameter-out edges, and call 
edges are shown using dashed lines. 

(In Figure 4, as well as in the remaining figures of the paper, def-order edges 
are not shown. Edges representing control dependences are shown unlabeled; all 
such edges in this example would be labeled true.) 

3.2 The Linkage Grammar: An Attribute Grammar that Models 
Procedure-Call Structure 

Using the graph structure defined in the previous section, interprocedural slicing 
could be defined as a graph-reachability problem, and the slices obtained would 
be the same as those obtained using Weiser’s slicing method. As explained in the 
Introduction, Weiser’s method does not produce as precise a slice as possible 
because it fails to account for the calling context of a called procedure. 
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Example. The problem with Weiser’s method can be illustrated using the 
graph shown in Figure 4. In the graph-reachability vocabulary, the problem is 
that there is a path from the vertex of procedure Main labeled “x-in := sum” to 
the vertex of Main labeled “i : = y-out “, even though the value of i after the call 
to procedure A is independent of the value of sum before the call. The path is as 
follows: 

Main: “x-in := sum” + A: “x : = x-in” +A:“a-in:=x” + Add : “a : = a-in” 
+Add:“a:=a+b” + Add : ‘La-out : = a” + Inc: “z : = a-out” 
+ Inc: “z-out : = 2” +A:“y:=z-out” +A:“y-out:=y” 
+ Main: “i : = y-out” 

The source of this problem is that not all paths in the graph correspond to 
possible execution paths (e.g., the path from vertex “x-in := sum” of Main to 
vertex “i := y-out” of Main corresponds to procedure Add being called by 
procedure A, but returning to procedure Increment). 

To overcome this problem, we add an additional kind of edge to the system 
dependence graph to represent transitive dependences due to the effects of 
procedure calls. The presence of transitive-dependence edges permits interpro- 
cedural slices to be computed in two passes, each of which is cast as a reachability 
problem. Thus, the next step in the construction of the system dependence graph 
is to determine such transitive dependences. For example, for the graph shown 
in Figure 4, we need an algorithm that can discover the transitive dependence 
from vertex “x-in := sum” of Main to vertex “sum : = x-out” of Main. This 
dependence exists because the value of sum after the call to A depends on the 
value of sum before the call to A. 

One’s first impulse might be to compute transitive dependences due to calls by 
taking the transitive closure of the graph’s control, flow, parameter, and call 
edges. However, this technique is imprecise for the same reason that transitive 
closure (or, equivalently, reachability) is imprecise for interprocedural slicing, 
namely that not all paths in the system dependence graph correspond to possible 
execution paths. Using transitive closure to compute the dependence edges that 
represent the effects of procedure calls would put in a (spurious) edge from vertex 
“x-in := sum” of Main to vertex “i : = y-out” of Main. 

For a language without recursion, this problem could be eliminated by using a 
separate copy of a procedure dependence graph for each call site; however, to 
handle a language with recursion, a more powerful technique is required. The 
technique we use involves defining an attribute grammar, called the linkage 
grammar, to model the call structure of each procedure as well as the intrapro- 
cedural transitive flow dependences among the procedure’s parameter vertices. 
Interprocedural transitive flow dependences among a system dependence graph’s 
parameter vertices are determined from the linkage grammar using a standard 
attribute-grammar construction: the computation of the subordinate character- 
istic graphs of the linkage grammar’s nonterminals. 

In this section we describe the construction of the linkage grammar and the 
computation of its subordinate characteristic graphs. It should be understood 
that the linkage grammar is used only to compute transitive dependences due to 

6 A summary of attribute-grammar terminology can be found in the Appendix. 
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calls; we are not interested in the language defined by the grammar, nor in actual 
attribute values. 

The context-free part of the linkage grammar models the system’s procedure- 
call structure. The grammar includes one nonterminal and one production for 
each procedure in the system. If procedure P contains no calls, the right-hand 
side of the production for P is C; otherwise, there is one right-hand side nonter- 
minal for each call site in P. 

Example. For the example system shown in Figure 4, the productions of the 
linkage grammar are as follows: 

Main ---, A A + Add Increment Add + c Increment ---* Add 

The attributes in the linkage grammar correspond to the parameters of the 
procedures. Procedure inputs are modeled as inherited attributes, procedure 
outputs as synthesized attributes. For example, the productions shown above are 
repeated in Figure 5, this time in tree form. 

In Figure 5, each nonterminal is annotated with its attributes; a nonterminal’s 
inherited attributes are placed to its left; its synthesized attributes are placed to 
its right. 

More formally, the program’s linkage grammar has the following elements: 

(1) For each procedure P, the linkage grammar contains a nonterminal P. 

(2) For each procedure P, there is a production p: P + ,L?, where for each site of 
a call on procedure Q in P there is a distinct occurrence of Q in @. 

(3) For each actual-in vertex of P, there is an inherited attribute of nonterminal 
P. 

(4) For each actual-out vertex of P, there is a synthesized attribute of nonter- 
minal P. 

Attribute a of nonterminal X is denoted by “X.a”. 
Dependences among the attributes of a linkage-grammar production are used 

to model the (possibly transitive) intraprocedural dependences among the param- 
eter vertices of the corresponding procedure. These dependences are computed 
using (intraprocedural) slices of the procedure’s procedure dependence graph as 
described in Section 2.2. For each grammar production, attribute equations are 
introduced to represent the intraprocedural dependences among the parameter 
vertices of the corresponding procedure dependence graph. For each attribute 
occurrence a, the procedure dependence graph is sliced with respect to the vertex 
that corresponds to a. An attribute equation is introduced for a so that a depends 
on the attribute occurrences that correspond to the parameter vertices identified 
by the slice. More formally: 

For each attribute occurrence of X.a of a production p, let u be the vertex of the 
procedure dependence graph Gp that corresponds to X.a. Associate with p an 
attribute equation of the form X.a = f( . . . , Y.b, . . . ) where the arguments Y.b 
to the equation consist of the attribute occurrences of p that correspond to the 
parameter vertices in Gp/v. 
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Main x-h y-h A x-out y-out 
I .-. 
I <* -. 
I I* *. .* -. I I’ -. 

x-h y-It8 x x-out 
I- -. 

Yp”t a-h b-in Add apUt b-out z-bl IN z-out 

a-in b-l” Add a-out b-out 2-h Inc z-out 
8 I 
I I 
I I 
I I 
I I 

E ~-III b-l” Add a-out b-out 

Fig. 5. The productions of the example linkage grammar shown in tree form. Each 
nonterminal is annotated with its attributes; a nonterminal’s inherited attributes 
are placed to its left; its synthesized attributes are placed to its right. 

Main x-In y-111 A x-out Y-0”’ 

a-In b-i” Add a-out b-out 

e 

Inc z-out 

A t P-1” b-l” Add B-0” b-out 

Fig. 6. The productions of Figure 5, augmented with attribute dependences. 

Note that the actual function f on the right-hand side of the equation is 
completely irrelevant because the attribute grammar is neuer used for evaluation; 
all we need is that the equation induce the dependences described above. 

Example. Figure 6 shows the productions of the grammar from Figure 5, 
augmented with attribute dependences. 

The dependences for production Main + A, for instance, coTrespond to the 
attribute-definition equations 

AX-in = fl(A.x-out, A.y-out) 
A.y-in = f2(A.y-out) 
As-out = f3(A.y-out) 
A.y-out = f4(A.y-out) 

It is entirely possible that a linkage grammar will be a circular attribute 
grammar (i.e., there may be attributes in some derivation tree of the grammar 
that depend on themselves); additionally, the grammar may not be well formed 
(e.g., a production may have equations for synthesized attribute occurrences of 
right-hand side symbols). This does not create any difficulties as the linkage 
grammar is used only to compute transitive dependences and not for attribute 
evaluation. 
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Example. The equation A.y-out = f4(A.y-out) makes the example attribute 
grammar both circular and not well formed. This equation is added to the 
attribute grammar because of the following (cyclic) path in the graph shown in 
Figure 4: 

Main: “i := y-out” -+ Main: “while i < 11” 
--, Main: “call A ” + Main: “i := y-out” 

Transitive dependences from a call site’s actual-in vertices to its actual-out 
vertices are computed from the linkage grammar by constructing the subordinate 
characteristic graphs for the grammar’s nonterminals. The algorithm we give 
exploits the special structure of linkage grammars to compute these graphs more 
efficiently than can be done for attribute grammars in general. For general 
attribute grammars, computing the sets of possible subordinate characteristic 
graphs for the grammar’s nonterminals may require time exponential in the 
number of attributes attached to some nonterminal. However, a linkage grammar 
is an attribute grammar of a restricted nature. For each nonterminal X in the 
linkage grammar, there is only one production with X on the left-hand side. 
Because linkage grammars are restricted in this fashion, for each nonterminal of 
a linkage grammar there is one subordinate characteristic graph that covers all 
of the nonterminal’s other possible subordinate characteristic graphs. For such 
grammars it is possible to give a polynomial-time algorithm for constructing the 
(covering) subordinate characteristic graphs. 

The computation is performed by an algorithm, called ConstructSubCGraphs, 
which is a slight modification of an algorithm originally developed by Kastens to 
construct approximations to a grammar’s transitive dependence relations [13]. 
The covering subordinate characteristic graph of a nonterminal X of the linkage 
grammar is captured in the graph TDS(X) (standing for “Transitive Dependences 
among a Symbol’s attributes”). Initially, all the TDS graphs are empty. The 
construction that builds them up involves the auxiliary graph TDP( p) (standing 
for “Transitive Dependences in a Production”), which expresses dependences 
among the attributes of a production’s nonterminal occurrences. 

The basic operation used in ConstructSubCGraphs is the procedure “Add- 
EdgeAndInduce(TDP(p), (a, b))“, whose first argument is the TDP graph of 
some production p and whose second argument is a pair of attribute occurrences 
in p. AddEdgeAndInduce carries out three actions: 

(1) The edge (a, b) is inserted into the graph TDP(p). 
(2) Any additional edges needed to transitively close TDP(p) are inserted into 

TDP(p). 

(3) In addition, for each edge added to TDP(p) by (1) or (2), (i.e., either the 
edge (a, b) itself or some other edge (c, d) added to reclose TDP(p)), 
AddEdgeAndInduce may add an edge to one of the TDS graphs. In particular, 
for each edge added to TDP(p) of the form (X,,.m, Xo.n), where X0 is the 
left-hand side occurrence of nonterminal X in production p and (X.m, X.n) 
4 TDS(X), an edge (X.m, X.n) is added to TDS(X). 

An edge in one of the TDS graphs can be marked or unmarked; the edges that 
AddEdgeAndInduce adds to the TDS graphs are unmarked. 
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procedure Const~ctSubCGraphs(L) 
declare 

xi. xi, x: non- 0ccutTenceF in L 
a. b: attributes of nontcrminals in L 
X:anontemlinalinL 

begin 
/” Step 1: Initialize the TDS and TDP graphs l / 

for each nonterminal X in L do 
TDS(x) := the graph containing B vertex for each attributeX.6 but no edges 

od 
for each production p in L do 

TDP@) := the graph containing a vertex for each attribute occurrence Xj.b ofp but no edges 
for each attribute occurrence Xi.6 ofp do 

for each argument Xi.0 of the equation that deEnes X,.6 do 
Insert edge (Xi.a. X,.b) into TDP@) 
let X be the nonterminal correspondiig to nonterminal occurrence Xj In 

If i = 0 and j = 0 and (X.O. X.6) e TDS (X) then Insert an unmarked edge (X.a, X.6) into TDS(X) 6 
nl 

od 
od 

od 
P Step 2: Determine the sets of induced transitive dependences +/ 

while there is an unmarked edge (XXI, X.6) in one of the TDS graphs do 
Mark (X.O. X.6) 
for each ocyrence i of X in any production p do 

U (X.a X.6) d TDP@) then AddEdgeAndfnduce(TDP@). (,?..a. 2.6)) ll 
od 

od 
end 

Fig. 7. Computation of a linkage grammar’s sets of TDP and TDS graphs. 

The TDS graphs are generated by the procedure ConstructSubCGraphs, 
given in Figure 7, which is a slight modification of the first two steps of 
Kasten’s algorithm for constructing a set of evaluation plans for an attribute 
grammar [ 131. 

ConstructSubCGraphs performs a kind of closure operation on the TDP and 
TDS graphs. Step 1 of the algorithm-the first two for-loops of Construct- 
SubCGraphs-initializes the grammar’s TDP and TDS graphs; when these loops 
terminate, the TDP graphs contain edges representing all direct dependences 
that exist between the grammar’s attribute occurrences, and the TDS graphs 
contain unmarked edges corresponding to direct left-hand-side-to-left-hand-side 
dependences in the linkage grammar’s productions. Our construction of attribute 
equations for the linkage grammar ensures that the graph of direct attribute 
dependences is transitively closed; thus, at the end of Step 1, TDP(p) is a 
transitively closed graph. In Step 2 of ConstructSubCGraphs, the invariant for 
the while-loop is 

If a graph TDP(p) contains an edge e’ that corresponds to a marked edge e in 
one of the TDS graphs, then e has been induced in all of the other graphs 
TDP(q). 

When all edges in all TDS graphs have received marks, the effects of all 
dependences have been induced in the TDP and TDS graphs. Thus, the TDS(X) 
graphs computed by ConstructSubCGraphs are guaranteed to cover the transitive 
dependences among the attributes of X that exist at any occurrence of X in any 
derivation tree. 
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Put more simply, because for each nonterminal X in a linkage grammar there 
is only a single production that has X on the left-hand side, the grammar only 
derives one tree. (For a recursive grammar it will be an infinite tree.) All marked 
edges in TDS represent transitive dependences in this tree, and thus the TDS(X) 
graph computed by ConstructSubCGraphs represents a subordinate characteris- 
tic graph of X that covers the subordinate characteristic graph of any partial 
derivation tree derived from X, as desired. 

Example. The nonterminals of our example grammar are shown below anno- 
tated with their attributes and their subordinate characteristic graphs. 

x-in y-in A x-out y-out a-in b-in Add a-out b-out z-in Inc z-out 

3.3 Recap of the Construction of the System Dependence Graph 

The system dependence graph is constructed by the following steps: 

(1) For each procedure of the system, construct its procedure dependence graph. 
(2) For each call site, introduce a call edge from the call-site vertex to the 

corresponding procedure-entry vertex. 

(3) For each actual-in vertex u at a call site, introduce a parameter-in edge from 
u to the corresponding formal-in vertex in the called procedure. 

(4) For each actual-out vertex u at a call site, introduce a parameter-out edge to 
u from the corresponding formal-out vertex in the called procedure. 

(5) Construct the linkage grammar corresponding to the system. 
(6) Compute the subordinate characteristic graphs of the linkage grammar’s 

nonterminals. 
(7) At all call sites that call procedure P, introduce flow dependence edges 

corresponding to the edges in the subordinate characteristic graph for P. 

Example. Figure 8 shows the complete system dependence graph for our 
example system. 

4. INTERPROCEDURAL SLICING 

In this section we describe how to perform an interprocedural slice using the 
system dependence graph defined in Section 3. We then discuss modifications to 
the definition of the system dependence graph to permit more precise slicing and 
to extend the slicing algorithm’s range of applicability. 

4.1 An Algorithm for Interprocedural Slicing 

As discussed in the Introduction, the algorithm presented in [22], while safe, is 
not as precise as possible. The difficult aspect of interprocedural slicing is keeping 
track of the calling context when a slice “descends” into a called procedure. 

The key element of our approach is the use of the linkage grammar’s charac- 
teristic graph edges in the system dependence graph. These edges represent 
transitive data dependences from actual-in vertices to actual-out vertices due to 
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Fig. 8. Example system’s system dependence graph. Control dependences, shown unla- 
beled, are represented using medium-bold arrows; intraprocedural flow dependences are 
represented using arcs; transitive interprocedural flow dependences (corresponding to 
subordinate characteristic graph edges) are represented using heavy, bold arcs; call edges, 
parameter-in edges, and parameter-out edges (which connect program and procedure 
dependence graphs together) are represented using dashed arrows. 

procedure calls. The presence of such edges permits us to sidestep the “calling 
context” problem; the slicing operation can move “across” a call without having 
to descend into it. 

Our algorithm for interprocedural slicing is given in Figure 9. 
In Figure 9, the computation of the slice of system dependence graph G with 

respect to vertex set S is performed in two phases. Both Phases 1 and 2 operate 
on the system dependence graph using essentially the method presented in 
Section 2.2 for performing an intrczprocedural slice-the graph is traversed to 
find the set of vertices that can reach a given set of vertices along certain kinds 
of edges. The traversal in Phase 1 follows flow edges, control edges, call edges, 
and parameter-in edges, but does not follow def-order edges or parameter-out 
edges. The traversal in Phase 2 that follows flow edges, control edges, and 
parameter-out edges, but does not follow def-order edges, call edges, or parameter- 
in edges. 
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procedure MarkVerticesOfSlice(G. 5) 
declare 

G: a system dependence graph 
S. S’: sets of vertices in G 

begin 
P Phase 1: Slice without descending into called procedures 4 

MerkReachingVertices(G, S. (&f-order. parameter-out)) 
I+ Phase 2: Slice cdlled pmccdmw witian -cimg to call sites *I 

S’ := all marked vertices in G 
MarkReachingVedcw(G. S’. (&f-order. parameter-in, call)) 

end 

procedure MarkReachingVertices(G. V, Kids) 
declare 

G: a system depmdence graph 
V:asetofverticesinG 
t&d.% *set of kinds of edges 
v, w: vertices in G 
Worhik a set of vertices in G 

begin 
wdL.ist := v 
while Work.!& + 0 do 

Select and remove a vertex Y from Worki% 
Mark v 
for each unmarked vertex w such that there is an edge w + v whose kind is not in Kinds do 

Insert w into WorkList 
od 

od 
end 

Fig. 9. The procedure MarkVerticesOfSlice marks the vertices of the inter- 
procedural slice G/S. The auxiliary procedure MarkReachingVertices marks all 
vertices in G from which there is a path to a vertex in V along edges of kinds 
other than those in the set Kinds. 

Suppose the goal is to slice system dependence graph G with respect to some 
vertex s in procedure P; Phases 1 and 2 can be characterized as follows: 

Phase 1. Phase 1 identifies vertices that can reach s, and are either in P itself 
or in a procedure that calls P (either directly or transitively). Because parameter- 
out edges are not followed, the traversal in Phase 1 does not “descend” into 
procedures called by P. The effects of such procedures are not ignored, however; 
the presence of transitive fLow dependence edges from actual-in to actual-out 
vertices (subordinate-characteristic-graph edges) permits the discovery of vertices 
that can reach s only through a procedure call, although the graph traversal does 
not actually descend into the called procedure. 

Phase 2. Phase 2 identifies vertices that can reach s from procedures (transi- 
tively) called by P or from procedures called by procedures that (transitively) 
call P. Because call edges and parameter-in edges are not followed, the traversal 
in Phase 2 does not “ascend” into calling procedures; the transitive flow 
dependence edges from actual-in to actual-out vertices make such “ascents” 
unnecessary. 

Figures 10 and 11 illustrate the two phases of the interprocedural slicing 
algorithm. Figure 10 shows the vertices of the example system dependence graph 
that are marked during Phase 1 of the interprocedural slicing algorithm when 
the system is sliced with respect to the formal-out vertex for parameter z in 
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Fig. 10. The example program’s system dependence graph is sliced with respect to the 
formal-out vertex for parameter z in procedure Increment. The vertices marked by Phase 
1 of the slicing algorithm as well as the edges traversed during this phase are shown above. 

procedure Increment. Edges “traversed” during Phase 1 are also included in 
Figure 10. 

Figure 11 adds (in boldface) the vertices that are marked and the edges that 
are traversed during Phase 2 of the slice. 

The result of an interprocedural slice consists of the sets of vertices identi- 
fied by Phase 1 and Phase 2 and the set of edges induced by this vertex set. 
Figure 12 shows the completed example slice (excluding def-order edges.) 

4.2 Using Interprocedural Summary Information to Build 
Procedure Dependence Graphs 

The slice shown in Figure 12 illustrates a shortcoming of the method for 
constructing procedure dependence graphs described in Section 3. The problem 
is that including both an actual-in and an actual-out vertex for every argument 
in a procedure call can affect the precision of an interprocedural slice. The slice 
shown in Figure 12 includes the call vertex that represents the call to Add from 
A; however, this call does not in fact affect the value of z in Increment. The 
problem is that an actual-out vertex for argument y in the call to Add from A is 
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EmERMoin 

i := 1 wide i < 11 

call A 

y-in :- i 

~ 

I 

: 

Fig. 11. The example program’s system dependence graph is sliced with respect to the 
formal-out vertex for parameter z in procedure Increment. The vertices marked by Phase 
2 of the slicing algorithm as well as the edges traversed during this phase are shown above 
in boldface. 

included in A’s procedure dependence graph even though Add does not change 
the value of y. 

To achieve a more precise interprocedural slice, we use the results of interpro- 
cedural data-flow analysis when constructing procedure dependence graphs, in 
order to exclude vertices like the actual-out vertex for argument y. 

The appropriate interprocedural summary information consists of the following 
sets, which are computed for each procedure P [43: 

GMOD(P): The set of variables that might be modified by P itself or by a 
procedure (transitively) called from P. 

GREF(P): The set of variables that might be referenced by P itself or by a 
procedure (transitively) called from P. 

GMOD and GREF sets are used to determine which parameter vertices are 
included in procedure dependence graphs as follows: for each procedure P, the 
parameter vertices subordinate to P’s entry vertex include one formal-in vertex 

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990. 



Interprocedural Slicing Using Dependence Graphs 49 

_-.._----.------A , 

Fig. 12. The complete slice (excluding def-order edges) of the example program’s 
system dependence graph sliced with respect to the formal-out vertex for parameter z in 
procedure Increment. 

for each variable in GMOD(P) U GREF(P) and one formal-out vertex for each 
variable in GMOD(P). Similarly, for each site at which P is called, the parameter 
vertices subordinate to the call-site vertex include one actual-in vertex for each 
variable in GMOD(P) U GREF(P) and one actual-out vertex for each variable 
in GMOD(P). (It is necessary to include an actual-in and a formal-in vertex for 
a variable x that is in GMOD(P) and is not in GREF(P) because there may be 
an execution path through P on which x is not modified. In this case, a slice of P 
with respect to the final value of x must include the initial value of X; thus, there 
must be a formal-in vertex for x in P and a corresponding actual-in vertex at the 
call to P.) 

Example. The GMOD and GREF sets for our example system are: 

y%J?q?q 
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Fig. 13. Procedure A’s procedure dependence graph built using interprocedural summary 
information. The actual-out vertex for argument y of the call to Add has been omitted, 
and the flow edge from that vertex to the vertex “z-in := y” has been replaced by an edge 
from the vertex “y := y-in” to the vertex “z-in := y”. 

Because parameter b is not in GMOD(Add), Add’s procedure dependence graph 
should not include a formal-out vertex for b, and the call to Add from A should 
not include the corresponding actual-out vertex. 

Figure 13 shows A’s procedure dependence graph as it would be built using 
GMOD and GREF information. 

The actual-out vertex for argument y of the call to Add is omitted, and the 
flow edge from that vertex to the actual-in vertex “z-in := y” is replaced by an 
edge from the formal-in vertex “y := y-in” to the actual-in vertex “z-in := y”. 
The new edge is traversed during Phase 1 of the interprocedural slice instead of 
the (now omitted) flow edge from “y := a-out ” to “z-in := y”, thus (correctly) 
bypassing the call to Add in procedure A. 

4.3 Interprocedural Slicing in the Presence of Call-By-Reference Parameter 
Passing and Aliasing 

Our definitions of system dependence graphs and interprocedural slicing have 
assumed that parameters are passed by value-result. The same definitions hold 
for call-by-reference parameter passing in the absence of aliasing; however, in 
the presence of aliasing, some modifications are required. This section presents 
two approaches for dealing with systems that use call-by-reference parameter 
passing and contain aliasing. The first approach provides a more precise slice 
than the second, at the expense of the time and space needed to convert the 
original system into one that is alias-free. (These costs may, in the worst case, 
be exponential in the maximum number of parameters passed to a procedure.) 
The second approach avoids this expense by making use of a generalized notion 
of flow dependence that includes flow dependences that exist under the possible 
aliasing patterns. 

Our first approach to the problem of interprocedural slicing in the presence of 
aliasing is to reduce the problem to that of interprocedural slicing in the absence 
of aliasing. The conversion is performed by simulating the calling behavior of 
the system (using the usual activation-tree model of procedure calls [4]) to 
discover, for each instance of a procedure call, exactly how variables are aliased 
at that instance. (Although a recursive system’s activation tree is infinite, the 
number of different alias configurations is finite; thus, only a finite portion of 
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the activation tree is needed to compute aliasing information.) A new copy of the 
procedure (with a new procedure name) is created for each different alias 
configuration; the procedure names used at call sites are similarly adjusted. 
Within each procedure, variables are renamed so that each set of aliased variables 
is replaced by a single variable. 

This process may generate multiple copies of the vertex v, with respect to 
which we are to perform a slice. If this happens, it is necessary to slice the 
transformed system with respect to all occurrences of v. The slice of the original 
system is obtained from the slice of the transformed system by projecting 
elements in the slice of the transformed system back into the original system; a 
vertex is in the slice of the original system if any of its copies are in the slice of 
the transformed system. 

Example. Figure 14 shows a system with aliasing, and the portion of the 
system’s activation tree that is used to compute alias information for each call 
instance. 

We use the notation of [4], in which each node of the activation tree is labeled 
with the mapping from variable names to memory locations. The transformed, 
alias-free version of the system is shown below. 

program Main procedure P 1(x, y) procedure P 2(xy) 
a := 1; ify=Othen if xy = 0 then 
b := 0; call P2(x) call P 2(xy) 
call Pl(a, b); fi; fi; 
z := b y:=y+ 1 xy := xy + 1 

end return return 

If our original goal had been to slice with respect to the statement 
“y := y + 1” in procedure P, we must now slice with respect to the set of 
statements (“y := y + l”, “xy := xy + l”]. 

Our second approach to the problem of interprocedural slicing in the presence 
of aliasing is to generalize the definition of a flow dependence to include 
dependences that arise under the possible aliasing patterns. A procedure depen- 
dence graph has a flow dependence edge from vertex LJ, to vertex v2 iff all of the 
following hold: 

(1) v1 is a vertex that defines variable I. 

(2) v2 is a vertex that uses variable y. 

(3) x and y are potential aliases. 

(4) Control can reach v2 after v1 via a path in the control-flow graph along which 
there is no intervening definition of x or y. 

Note that clause (4) does not exclude there being definitions of other variables 
that are potential aliases of x or y along the path from v1 to v2. An assignment 
to a variable z along the path from v1 to up only overwrites the contents of the 
memory location written by u1 if x and z refer to the same memory location. If z 
is a potential alias of x, then there is only a possibility that x and z refer to the 
same memory location; thus, an assignment to 2 does not necessarily overwrite 
the memory location written by v 1, and it may be possible for v2 to read a value 
written by vl. 
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program Main 
cl:= 1; 
b := 0; 
CPU P(o. b): 
z := b 

end 

procedure P@, y) 
lfy=Otllen 

Call P (1, x) 
B: 
y:=y+1 

return 

Fig. 14. A program with aliasing and the portion of its activation 
tree needed to compute all alias configurations. 

The notion of a def-order edge must also be generalized in the presence of 
aliasing. A procedure dependence graph has a def-order dependence edge from 
vertex u1 to vertex u2 iff all of the following hold: 

(1) u1 and u2 define variables x1 and x2, respectiveIy. 

(2) x1 and 3t2 are potential aliases. 

(3) u1 and u2 are in the same branch of any conditional statement that encloses 
both of them. 

(4) There exists a program component u3 such that u1 -+f u3 and u2 +f us. 

(5) u1 occurs to the left of uz in the procedure’s abstract syntax tree. 

The interprocedural slice of a system dependence graph containing dependence 
edges as defined above is computed by the same two-phase algorithm used to 
compute the interprocedural slice of a system in the absence of aliasing. The 
data dependences in a procedure provide a safe approximation to the true 
dependences required for each alias configuration. Because these edges cover all 
possible alias configurations, the resulting slice may contain unnecessary program 
elements. 

Example. Consider again the system shown in Figure 14. The possibility of 
aliasing between formal parameters x and y of procedure P gives rise to flow 
dependences from the actual-out vertices “x := x-out” and “x := y-out” of the 
call P(x, X) to the vertex “y := y + 1”. Because of these dependences, the slice 
with respect to the statement “z := b” in the main program yields the entire 
system, even though the statement “a := 1” in Main and the conditional 
statement in P have no effect on the value computed for z. The approach based 
on replicating procedures determines a more precise slice that does not include 
the statement “a := 1” or the conditional statement, as shown below: 

program Main procedure P l(y) 
b := 0; y:=y+l 
call P 1 (b); return 
z := b 
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4.4 Slicing Partial System Dependence Graphs 

The interprocedural slicing algorithm presented above is designed to be applied 
to a complete system dependence graph. In this section we discuss how to slice 
incomplete system dependence graphs. 

The need to handle incomplete systems arises, for example, when slicing a 
program that calls a library procedure that is not itself available, or when slicing 
programs under development. In the first case, the missing components are 
procedures that are called by the incomplete system; in the second case, the 
missing components can either be not-yet-written procedures called by the 
incomplete system (when the program is developed top-down), or possible calling 
contexts (when the program is developed bottom-up). 

In either case, information about the possible effects of missing calls and 
missing calling contexts is needed to permit slicing. This information takes the 
form of (safe approximations to) the subordinate characteristic graphs for missing 
called procedures and the superior characteristic graphs for missing calling 
contexts. 

When no information about missing program components is available, subor- 
dinate characteristic graphs in which there is an edge from each inherited 
attribute to each synthesized attribute, and superior characteristic graphs in 
which there is an edge from each synthesized attribute to each other attribute 
(including the other synthesized attributes), must be used. This is because the 
slice of the incomplete system should include all vertices that could be included 
in the slice of some “completed” system, and it is always possible to provide a 
call or a calling context that corresponds to the graphs described above. 

For library procedures, it is possible to provide precise subordinate character- 
istic graphs even when the procedures themselves are not provided. For programs 
under development, it might be possible to compute characteristic graphs, or at 
least better approximations to them than the worst-case graphs, given specifi- 
cations for the missing program components. 

4.5 Forward Slicing 

Whereas the slice of a program with respect to a program point p and variable x 
consists of all statements and predicates of the program that might affect the 
value of x at point p, the forward slice of a program with respect to a program 
point p and variable z consists of all statements and predicates of the program 
that might be affected by the value of x at point p. An algorithm for forward 
interprocedural slicing can be defined on system dependence graphs, using the 
same concepts employed for (backward) interprocedural slicing. As before, the 
key element is the use of the linkage grammar’s characteristic graph edges in the 
system dependence graph to represent transitive dependences from actual-in 
vertices to actual-out vertices due to the effects of procedure calls. 

An algorithm for forward interprocedural slicing is given as procedure 
MarkVerticesOfForwardSlice of Figure 15. 

In Figure 15, the computation of the forward slice of system dependence graph 
G with respect to vertex set S is performed in two phases. The traversal in 
Phase 1 follows flow edges, control edges, and parameter-out edges, but does 
not follow call edges, def-order edges, or parameter-in edges. Because call edges 
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procedure MerkVerticesotForw~lice(G. S) 
declare 

G: a system dependence graph 
s. S’: sets of venices in G 

wn 
P Phase 1: Slice forward without descending into called procedures */ 

MarkVerticesReached(G, S. (def-order, parameter-in call)) 
I+ Phase 2: Slice forward into called pocedures without ascending to call sites *I 

S’ := ell marked vertices in G 
MarkVerticesReached(G, S’. (&f-order, parameter-out)) 

end 

procedure MarkVerticesReached(G. V. Kinds) 
declare 

G: e system dependence graph 
V:asetofverticcsinG 
Ki&asetofkindsofedgcs 
Y, w:verticesinG 
WorkLirt: a set of vertices in G 

begin 
WorkLkt := v 
while WorkLit # 0 do 

Select and remOve e vems. Y fbn WorkList 
Mark Y 
for each unmarked vertex w such that there is en edge Y +w whose kind is not in Kinds do 

InsmWilUOWOrkLisr 
od 

od 
end 

Fig. 15. The procedure MarkVerticesOfForwardSlice marks the vertices of 
the forward interprocedural slice G/S. The auxiliary procedure Mark- 
VerticesReached marks all vertices in G to which there is a path from a vertex 
in V along edges of kinds other than those in the set Kinds. 

and parameter-in edges are not followed, the traversal in Phase 1 does not 
descend into called procedures. The traversal in Phase 2 follows flow edges, 
control edges, call edges, and parameter-in edges, but does not follow def-order 
edges or parameter-out edges. Because parameter-out edges are not followed, the 
traversal in Phase 2 does not ascend into calling procedures. 

5. THE COMPLEXITY OF THE SLICING ALGORITHM 

This section discusses the complexity of the interprocedural slicing algorithm 
presented in Section 4.1. In the absence of aliasing, the cost is polynomial in 
(various) parameters of the system. In the presence of aliasing, the cost remains 
polynomial if we use the generalized definitions of data dependences given in 
Section 4.3 (at the price of somewhat less precision in taking slices). Alternatively, 
if we follow the approach of transforming the system to one that is alias-free, 
more precise slices can be obtained, but the cost can increase by an exponential 
factor that reflects the blow-up in size that can occur due to the number of 
aliasing patterns in the program. The measures of system size used below are 
those associated with the system dependence graph created according to one or 
the other of these approaches. In particular, if the approach of transforming to 
an alias-free system is used, the measures of system size used below are those 
associated with the alias-free system. 
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5.1 Cost of Constructing the System Dependence Graph 

The cost of constructing the system dependence graph can be expressed in terms 
of the parameters given in the following tables: 

Parameters that measure the size of an individual procedure 

V The larest number of predicates and assignments in a single procedure 
E The largest number of edges in a single procedure dependence graph 
Params The largest number of formal parameters in any procedure 
Sites The largest number of call sites in any procedure 

Parameters that measure the size of the entire system 

P The number of procedures in the system 
(= the number of productions in the linkage grammar) 

Globals The number of global variables in the system 
TotalSites 5 P . Sites The total number of call sites in the system 

Interprocedural data-flow analysis is used to compute summary information 
about side effects. Flow-insensitive interprocedural summary information (e.g., 
GMOD and GREF) can be determined particularly efficiently. In particular, in 
the absence of nested scopes, GMOD and GREF can be determined in time 
O(P2 + P . TotalSites) steps by the algorithm described in [6]. 

Intraprocedural data-flow analysis is used to determine the data dependences 
of procedure dependence graphs. For the structured language under consideration 
here, this analysis can be performed in a syntax-directed fashion (for example, 
using an attribute grammar) [8]. This involves propagating sets of program 
points, where each set consists of program points in a single procedure. This 
computation has total cost O( V’). 

The cost of constructing the linkage grammar and computing its subordinate 
characteristic graphs can be expressed in terms of the following parameters: 

Parameters that measure the size of the linkage grammar 

R = Sites + 1 The largest number of nonterminal occurrences in a 
single production 

G = P + TotalSites The number of nonterminal occurrences in the linkage 
grammar 

5P.R 
= P . (Sites + 1) 

X = Globals + Params The largest number of attributes of a single nonterminal 
D5R.X The largest number of attribute occurrences in a single 

production 
= (Sites + 1) 

+ (Global + Params) 

To determine the dependences among the attribute occurrences in each produc- 
tion, its corresponding procedure is sliced with respect to the linkage vertices 
that correspond to the attribute occurrences of the production. The cost of each 
slice is linear in the size of the procedure dependence graph; that is, the cost is 
bounded by O( V + E). Consequently, the total cost of constructing the linkage 
grammar is bounded by O(G . X . (V+ E)). 
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It remains for us to analyze the cost of computing the linkage grammar’s 
subordinate characteristic graphs. Because there are at most 0’ edges in each 
TDP( p) relation, the cost of AddEdgeAndInduce, which recloses a single TDP( p) 
relation, is O(D2). The cost of initializing the TDP relations with all direct 
dependences in ConstructSubCGraphs is bounded by O(P . D2). 

In the inner loop of Step 2 of procedure ConstructSubCGraphs, AddEdge- 
AndInduce is called once for each occurrence of nonterminal N. There are at 
most X2 edges in each graph TDS(N) and G nonterminal occurrences where an 
edge may be induced. No edge is induced more than once because of the marks 
on TDS edges; thus, the total cost of procedure ConstructSubCGraphs is bounded 
by O(G . X2 . D2) [13]. 

5.2 Slicing Costs 

An interprocedural slice is performed by two traversals of the system depen- 
dence graph, starting from some initial set of vertices. The cost of each 
traversal is linear in the size of the system dependence graph, which is bounded 
by O(P ’ (V + E) + TotalSites - X). 

6. RELATED WORK 

In recasting the interprocedural slicing problem as a reachability problem in a 
graph, we are following the example of [19], which does the same for intrapro- 
cedural slicing. The reachability approach is conceptually simpler than the data- 
flow equation approach used in [22], and is also much more efficient when more 
than one slice is desired. 

The recasting of the problem as a reachability problem does involve some loss 
of generality; rather than permitting a program to be sliced with respect to 
program point p and an arbitrary variable, a slice can only be taken with respect 
to a variable that is defined or used at p. For such slicing problems the interpro- 
cedural slicing algorithm presented in this paper is an improvement over Weiser’s 
algorithm because our algorithm is able to produce a more precise slice than the 
one produced by Weiser’s algorithm. However, the extra generality is not the 
source of the imprecision of Weiser’s method; as explained in the Introduction 
and in Section 3.2, the imprecision of Weiser’s method is due to the lack of a 
mechanism to keep track of the calling context of a called procedure. 

After the initial publication of our interprocedural-slicing algorithm [lo], a 
different technique for computing interprocedural slices was presented by Hwang 
et al. [12]. The slicing algorithm presented in [la] computes an answer that is as 
precise as our algorithm, but differs significantly in how it handles the calling- 
context problem. The algorithm from [12] constructs a sequence of slices of the 
system-where each slice of the sequence essentially permits there to be one 
additional level of recursion-until a fixed-point is reached (i.e., until no further 
elements appear in a slice that uses one additional level of recursion). Thus, each 
slice of the sequence represents an approximation to the final answer. During 
each of these slice approximations, the algorithm uses a stack to keep track of 
the calling context of a called procedure. In contrast, our algorithm for interpro- 
cedural slicing is based on a two-phase process for propagating marks on the 
system dependence graph. In Phase 1 of the algorithm, the presence of the linkage 
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grammar’s subordinate-characteristic-graph edges (representing transitive de- 
pendences due to the effects of procedure calls) permits the entire effect of a call 
to be accounted for by a single backward step over the call site’s subordinate- 
characteristic-graph edges. 

Hwang et al. do not include an analysis of their algorithm’s complexity in [ 121, 
which makes a direct comparison with our algorithm difficult; however, there are 
several reasons why our algorithm may be more efficient. First, the algorithm 
from [12] computes a sequence of slices, each of which may involve reslicing a 
procedure multiple times; in contrast, through its use of marks on system- 
dependence-graph vertices, our algorithm processes no vertex more than once 
during the computation of a slice. Second, if one wishes to compute multiple 
slices of the same system, our approach has a significant advantage. The system 
dependence graph (with its subordinate-characteristic-graph edges) need be com- 
puted only once; each slicing operation can use this graph, and the cost of each 
such slice is linear in the size of the system dependence graph. In contrast, the 
approach of [ 121 would involve finding a new fixed point (a problem that appears 
to have complexity comparable to the computation of the subordinate character- 
istic graphs) for each new slice. 

In [18], Myers presents algorithms for a specific set of interprocedural data- 
flow problems, all of which require keeping track of calling context; however, 
Myers’s approach to handling this problem differs from ours. Myers performs 
data-flow analysis on a graph representation of the program, called a super graph, 
which is a collection of control-flow graphs (one for each procedure in the 
program), connected by call and return edges. The information maintained at 
each vertex of the super graph includes a memory component, which keeps track 
of calling context (essentially by using the name of the call site). Our use of the 
system dependence graph permits keeping track of calling context while propa- 
gating simple marks rather than requiring the propagation of sets of names. 

It is no doubt possible to formulate interprocedural slicing as a data-flow 
analysis problem on a super graph and to solve the problem using an algorithm 
akin to those described by Myers to account correctly for the calling context of 
a called procedure. As in the comparison with [ 121, our algorithm has a significant 
advantage when one wishes to compute multiple slices of the same system. 
Whereas the system dependence graph can be computed once and then used for 
each slicing operation, the approach postulated above would involve solving a 
new data-flow analysis problem from scratch for each slice. 

The vertex-reachability approach we have used here has some similarities to a 
technique used in [5], [6], and [Xi] to transform data-flow analysis problems to 
vertex-reachability problems. In each case, a data-flow analysis problem is solved 
by first building a graph representation of the program and then performing a 
reachability analysis on the graph, propagating simple marks rather than, for 
example, sets of variable names. One difference between the interprocedural 
slicing problem and the problems addressed by the work cited above, is that 
interprocedural slicing is a “demand problem” [2] whose goal is to determine 
information concerning a specific set of program points rather than an “exhaus- 
tive problem” in which the goal is to determine information for all program 
points. 
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APPENDIX: ATTRIBUTE GRAMMARS AND ATTRIBUTE DEPENDENCES 

An attribute grammar is a context-free grammar extended by attaching attributes 
to the terminal and nonterminal symbols of the grammar and by supplying 
attribute equations to define attribute values [14]. In every production p: X,, + 
Xl, .“, X,, each Xi denotes an occurrence of one of the grammar symbols; 
associated with each such symbol occurrence is a set of attribute occurrences 
corresponding to the symbol’s attributes. 

Each production has a set of attribute equations; each equation defines one of 
the production’s attribute occurrences as the value of an attribute-definition 
function applied to other attribute occurrences in the production. The attributes 
of a symbol X are divided into two disjoint classes: synthesized attributes and 
inherited attributes. 

An attribute grammar is well formed when the terminal symbols of the grammar 
have no synthesized attributes, the root nonterminal of the grammar has no 
inherited attributes, and each production has exactly one attribute equation for 
each of the left-hand side nonterminal’s synthesized attribute occurrences and 
for each of the right-hand side symbols’ inherited attribute occurrences. (The 
grammars that arise in this paper are potentially not well formed, in that a 
production may have equations for synthesized attribute occurrences of right- 
hand side symbols. The reason that this does not cause problems is that the 
“linkage grammar” of the interprocedural slicing algorithm is used only to 
compute transitive dependences due to calls; we are not interested in the language 
defined by the grammar, nor in actual attribute values.) 

A derivation tree node that is an instance of symbol X has an associated set 
of attribute instances corresponding to the attributes of X. An attributed tree is a 
derivation tree together with an assignment of either a value or the special token 
null to each attribute instance of the tree. 

Ordinarily, although not in this paper, one is interested in analyzing a string 
according to its attribute-grammar specification. To do this, one first constructs 
the string’s derivation tree with an assignment of null to each attribute instance 
and then evaluates as many attribute instances as possible, using the appropriate 
attribute equation as an assignment statement. The latter process is termed 
attribute evaluation. 

Functional dependences among attribute occurrences in a production p (or 
attribute instances in a tree T) can be represented by a directed graph, called a 
dependence graph, denoted by D(p) (respectively, D(T)), and defined as follows: 

(1) For each attribute occurrence (instance) b, the graph contains a vertex b’. 
(2) If attribute occurrence (instance) b appears on the right-hand side of the 

attribute equation that defines attribute occurrence (instance) c, the graph 
contains the edge b ’ ---, c ‘. 

An attribute grammar that has a derivation tree whose dependence graph contains 
a cycle is called a circular attribute grammar. (The grammars that arise in this 
paper can be circular grammars.) 

A node’s subordinate and superior characteristic graphs provide a convenient 
representation of transitive dependences among the node’s attributes. (A transi- 
tive dependence exists between attributes that are related in the transitive closure 
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of the tree’s attribute dependence relation, or, equivalently, that are connected 
by a direct path in the tree’s dependence graph.) The vertices of the characteristic 
graphs at node r correspond to the attributes of r; the edges of the characteristic 
graphs at r correspond to transitive dependences among r’s attributes. 

The subordinate characteristic graph at r is the projection of the dependences 
of the subtree rooted at r onto the attributes of r. To form the superior 
characteristic graph at node r, we imagine that the subtree rooted at r has been 
pruned from the derivation tree, and project the dependence graph of the 
remaining tree onto the attributes of r. To define the characteristic graphs 
precisely, we make the following definitions: 

(1) Given a directed graph G = (V, E), a path from vertex a to 
vertex b is a sequence of vertices, [ul, up, . . . , uk], such that a = ul, b = uk, and 
((Vi, u~+I) 1 i = 1, m e e 9 k - 11 G Em 

(2) Given a directed graph G = (V, E) and a set of vertices V’ c V, the projection 
of G onto V’ is defined as 

G//V’ = (V’, E’) 

whereE’=((u,w)lu,~EV’,andthereexistsapath[u=u~,u~,...,u~= 
w ] in G such that u2, . . . , u&l @ V’). (That is, G//V’ has an edge from 
u E V’ to w E V’ when there exists a path from u to w in G that does not 
pass through any other elements of V’.) 

The subordinate and superior characteristic graphs of a node r, denoted r.C and 
r.f?, respectively, are defined formally as follows. Let r be a node in tree T, let 
the subtree rooted at r be denoted T,, and let the attribute instances at r be 
denoted A (r), then the subordinate and superior characteristic graphs at r satisfy: 

r.C = D(T,)//A(r) 
r.C = (D(T) - D(T,))//A(r). 

A characteristic graph represents the projection of attribute dependences onto 
the attributes of a single tree node; consequently, for a given grammar, each 
graph is bounded in size by some constant. 
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