Journal of Software Testing, Verification and Reliability. 1999, to appear, Wiley copyright

Test-Data Generation Using Genetic Algorithms

Roy P. Pargas Mary Jean Harrold Robert R. Peck
Department of Computer Department of Computer and Department of Computer
Science Information Science Science
Clemson University The Ohio State University Clemson University
Clemson, SC USA 29634-1906 Columbus, OH USA 43210-1277 Clemson, SC USA 29634-1906
pargas@cs.clemson.edu harrold@cis.ohio-state.edu rpeck@cs.clemson.edu

Abstract

This paper presents a technique that uses a genetic algorithm for automatic test-data generation. A
genetic algorithm is a heuristic that mimics the evolution of natural species in searching for the opti-
mal solution to a problem. In the test-data generation application, the solution sought by the genetic
algorithm is test data that causes execution of a given statement, branch, path, or definition-use pair in
the program under test. The test-data-generation technique was implemented in a tool called TGen in
which parallel processing was used to improve the performance of the search. To experiment with TGen,
a random test-data generator, called Random, was also implemented. Both TGen and Random were used
to experiment with the generation of test-data for statement and branch coverage of six programs.

Keywords. Software testing, test-data generation, genetic algorithms.

1 Introduction

Software testing is an expensive component of software development and maintenance [11]. A particularly
labor-intensive component of this testing process is the generation of test data to satisfy testing requirements.
Given a testing requirement, such as an input that will cause execution of a particular statement, test-
data generation techniques attempt to find a program input that will satisfy the testing requirement. The
automation of test-data generation is an important step in reducing the cost of software development and
maintenance.

A number of test-data generation techniques have been automated. Random test-data generators (e.g.,
[18, 20, 22]) select random inputs for the test data from some distribution. Structural or path-oriented test-
data generators typically use the program’s control-flow graph, select a particular path, and use a technique
such as symbolic evaluation to generate test data for that path (e.g., [1, 3, 6, 15, 19]). Goal-oriented test-data
generators select inputs to execute the selected goal, such as a statement, irrespective of the path taken (e.g.,
[7, 16]). Intelligent test-data generators often rely on sophisticated analyses of the code, to guide the search
for new test data (e.g., [2, 17, 21]).

The weaknesses of these techniques, however, have inhibited their widespread use for generation of test
data. A random test-data generator may create many test data; however, because information about the
test requirement is not incorporated into the generation process, the test-data generator may fail to find test

data to satisfy the requirement. A path oriented test-data generator first identifies a path for which test

data is to be generated; however, because the path may be infeasible, the test-data generator may fail to find
an input that will traverse the path. An intelligent approach may, if the analysis is accurate, generate new
test data quickly; however, the analysis required for this success over a variety of programs may be quite
complex and may require great insight on the part of the designer of the test-data generator to anticipate
many different programming situations.

This paper presents a goal-oriented technique for automatic test-data generation that uses a genetic
algorithm, which is guided by the control dependencies in the program, to search for test data to satisfy
test requirements. The genetic algorithm conducts its search by constructing new test data from previously
generated test data that are evaluated as good candidates. The algorithm evaluates the candidate test data,
and hence guides the direction of the search, using the program’s control-dependence graph. To reduce the
execution time of a potentially lengthy search, the prototype implementation uses multiple processors, and
balances the load automatically to prevent processors from getting locked in time-consuming loops.

The main benefit of the approach presented is that, because it combines the salient features of random,
goal-oriented, and intelligent test-data generators, it can generate test data quickly, but with focus and
direction. New test cases are generated by applying simple operations on existing test cases that are judged
to have good potential to satisfy the test requirements. Because the operations are simple, the new test cases
are generated quickly and efficiently. Because the existing test data are judged as having good potential,
the search is focused instead of being random. The success of this approach, therefore, depends heavily on
the way in which the existing test data are measured — the empirical results suggest that the use of the
control-dependence graph provides an effective way to perform this measurement.

Another benefit of the approach presented is that it has the potential to scale for large software systems.
The approach can handle test-data generation for programs with multiple procedures. The evaluation of
test data can be weighted in a manner that encourages generation of test data that cover test requirements
embedded in nested procedure calls. The approach is also designed for parallel execution. Test requirements
can be distributed among as many processors as the user has available. The approach automatically load
balances and cannot continue infinitely searching for test data for an infeasible path: a processor that has
unsuccessfully met a test requirement within a predetermined time period is instructed to abort the search
and to start a new search with a different test requirement. These features let the user conduct simultaneously
independent searches for test data to satisfy different test requirements.

Finally, the technique will be useful during regression testing where the regression test suite can be used.
The regression test suite may be used as part of the initial set of test data. Additionally, because this
approach can be focused on specific test requirements, only those test requirements that are part of new
source code need to be targeted.

In the next section, background on genetic algorithms and control-dependence graphs is given. In the
following section, the genetic algorithm for test-data generation is presented. Then, the implementation
of the algorithm and the results of an empirical study using the implementation are discussed. Next, the

technique presented is compared to related work. Finally, conclusions and future work are given.

2 Background

This section gives an overview of genetic algorithms and control-dependence graphs.

2.1 Genetic Algorithms

A genetic algorithm is an optimization heuristic that mimics natural processes, such as selection and mutation
in natural evolution, to evolve solutions to problems whose solution spaces are impractical for traditional
search techniques, such as branch-and-bound, or optimization techniques, such as linear programming. Since
first described by Holland [14], genetic algorithms have been applied to a variety of learning and optimization
problems.!

A genetic algorithm typically begins with a random population of solutions (chromosomes) and, through a
recombination process and mutation operations, gradually evolves the population toward an optimal solution.
Obtaining an optimal solution is not guaranteed — the challenge is to design the process to maximize the
probability of obtaining such a solution. The first step is the selection of the solutions in the current
population that will serve as parents in the next generation of solutions. This selection requires that the
solutions be evaluated for their fitness as parents: solutions that are closer to an optimal solution are judged
higher, or more fit, than others.

After solutions have been evaluated, several are selected in a manner that is biased toward the solutions
with higher fitness values. The reason for the bias is that a good solution is assumed to be composed of
good components (genes). Selecting such solutions as parents increases the chances that their offspring will
inherit these genes and will be at least as fit. Although the selection is biased toward the better solutions,
the worst members of the population still have a chance of being selected as parents — even a poor solution
may have a few good genes that may benefit the population. After selection, the parents are recombined or
mutated to produce offspring. The resulting solutions form the new population, and the cycle is repeated.

Evaluation, selection, recombination, and mutation may be performed many times in a genetic algorithm;
thus, they must be as simple as possible. Selection, recombination, and mutation are generic operations in any
genetic algorithm and have been well studied in the literature. Evaluation, however, is problem dependent
and relates directly to the structure of the solutions. The major design decisions in the development of a
genetic algorithm involve the structure of the solutions and the method of evaluation. Other design decisions
include size of the population, the frequency of recombination relative to mutation, the dynamic nature of
the frequencies, and the type of population replacement. Many of these decisions are made after one or more

small trial runs of an initial genetic algorithm.

2.2 Control Dependence Graphs

Control dependence for a program is defined in terms of the program’s control-flow graph and the postdom-
inance relation that exists among the nodes in the control-flow graph [8]. In a control-flow graph, nodes
represent statements, and edges represent the flow of control between statements — an edge (X, Y) in a
control-flow graph means that program control can flow from X to Y. To facilitate analysis, a control-flow

graph is augmented with unique entry and ezxit nodes. Given such a control-flow graph, and nodes W and

LGoldberg [12] gives an introduction to the theory behind genetic algorithms; Davis provides a clear guide in his handbook
[5] and gives a comparative study between genetic algorithms and another optimization heuristic called simulated annealing [4].

Program Exanpl e

integer i, j, k
1. read i, j, k
2. if (i <j)
3. if (j <k
4. i = k;
el se
5. k =i;
endi f
endi f
6. print i, j, Kk
end Exanpl e

Figure 1: Program Example on the left, its control-flow graph (CFG) in the center, and its control-dependence
graph (CDG) on the right.

V in that graph, W is postdominated by V if every directed path from W to the exit (not including W or
exit) contains V. For statements (nodes) X and Y in a control-flow graph, Y is control dependent on X if and
only if (1) there exists a directed path P from X to Y with all Z in P (excluding X and Y) postdominated
by Y and (2) X is not postdominated by Y. In a control-dependence graph, nodes represent statements,
and edges represent the control dependencies between statements — an edge (X,Y) in a control-dependence
graph means that Y is control dependent on X. For example, Figure 1 depicts program Example on the
left, its control-flow graph in the center, and its control-dependence graph on the right; nodes in the graphs
are labeled with the statement number of the corresponding statement. In the control-flow graph, node 6
postdominates all nodes except itself and exit, nodes 3, 4, and 5 postdominate no nodes in the graph, node
2 postdominates nodes 1 and entry, and node 1 postdominates entry. Node 4 is control dependent on 3T,
node 5 is control dependent on 3F, and nodes 1, 2, and 6 are control dependent on entering the program.
An acyclic path in the control-dependence graph from the root of the graph to a node in the graph
contains a set of predicates that must be satisfied by an input that causes the statement associated with
the node to be executed; such a path is called a control-dependence predicate path. For example, in Figure
1, the set of predicates {entryT, 2T, 3T} constitutes a control-dependence predicate path for statement 4.
Unstructured transfers of control, such as goto, continue, and break, can cause the occurrence of more
than one control-dependence predicate path for statements following the transfers. However, the number of

control-dependence predicate paths is generally small.

3 Genetic Algorithm for Test-Data Generation

Figure 2 shows GenerateData, the algorithm for automatic test data generation. GenerateData uses a
genetic algorithm to search for test cases that satisfy desired testing requirements. A solution (chromosome)
is a set of test data (i.e., a list of input values). The algorithm evaluates test data by executing the program
with the test data as input, and recording the predicates in the program that execute with that test data.
This list of predicates is compared with the set of predicates found on the control-dependence predicate

paths for the node representing the current test requirement that is the target of the search. A test data’s

4

algorithm GenerateData

input Program : instrumented version of a program to be tested
CDG : control-dependence graph for Program
Initial : initial population of test cases
TestReq : list of (test requirements, mark)

output Final : set of test cases for P
TestReq : list of (test requirements, mark)
declare CDGPaths : a set of predicate paths in CDG

Scoreboard : record of satisfied test requirements
CurPopulation, NewPopulation : set of test cases
Target : test requirement for which a test case is to be generated
MazAttempts() : function that returns true when maximum number of attempts
for a single Target has been exceeded,
OutOfTime() : function that returns true when the time limit is exceeded,
and false otherwise
begin
/* Step 1: Initialization and set up*/
[1] Create CDGPaths
[2] Create and Initialize Scoreboard
(3]

/* Step 2: Generate test cases */

Generate CurPopulation

[4] while ((some (r,unmarked) € TestReq) and not OutOfTime()) do

[5] Select unmarked Target from TestReq

[6] while (Target not marked and not MazAttempts() do

[7] Compute fitness values of CurPopulation using CDGPaths

(8] Sort CurPopulation according to fitness

9] Select parents of NewPopulation

[10] Generate NewPopulation from selected members of CurPopulation
[11] Execute Program on each member of NewPopulation

[12] Update Scoreboard and mark TestReq to reflect those test requirements that are satisfied
[13] endwhile

[14] endwhile

/* Step 3: Clean up and return */
[15] Final = test cases that satisfy TestReq
[16] return (Final, TestReq)

end

Figure 2: Algorithm to automatically generate test cases for a program.

fitness evaluation depends on the number of predicates that it has in common with the predicates on a
control-dependence predicate path of the target: a solution that covers the greatest number of predicates is
given the highest fitness evaluation. GenerateData biases its selection of parents for the next generation of
test cases using the fitness evaluation, and uses recombination and mutation to generate a new population
of test cases.

The use of a genetic algorithm for GenerateData is atypical because the algorithm does not search for a
single optimal solution. Rather, GenerateData has multiple goals — each test requirement that is the target
of a search is a goal. Thus, throughout the search, the goal of GenerateData changes as test requirements are
satisfied. Although the evaluation function remains unchanged, each set of test data must be re-evaluated
with each new test requirement that is to be covered. Thus, the fitness evaluation of a set of test data
changes as the test requirement changes: test data that may be valuable when attempting to cover one test

requirement may be a poor candidate when attempting to cover another test requirement.

GenerateData takes the following as input: Program, an instrumented version of a program to be tested;
CDQ@G, the control-dependence graph for the program; Initial, an initial set of test data, possibly empty; and
TestReq, a set of test requirements to be satisfied. Using local variables, CDGPaths, Scoreboard, CurPopula-
tion, NewPopulation, and Target, and functions, MazAttempts() and OutOfTime(), GenerateData outputs

Final, a set of test data, and TestReq, the list of satisfied (marked) test requirements.

3.1 Step 1 of GenerateData

The first step of GenerateData (lines 1-3) is an initialization and preprocessing step, which includes com-
putation of the CDGPaths, initialization of Scoreboard, and initialization of CurPopulation. First, for each
statement in Program, GenerateData generates CDGPaths, which are the acyclic paths that contain the
predicate nodes that lie between that statement node and the entry node of the CDG. Next, GenerateData
creates Scoreboard, which records the satisfied TestReq. For statement or branch coverage, for example,
Scoreboard may be a bit vector in which a bit (initially false) is set whenever the corresponding statement
or branch is satisfied by a test data. As a second example, if the execution frequency of statements or
branches is desired, Scoreboard may be an integer vector in which each element, initially zero, is incremented
by one whenever the corresponding statement or branch is satisfied by a test case. Finally, GenerateData
generates CurPopulation by first adding Initial to CurPopulation. If additional test cases are required to
provide greater diversity, the algorithm randomly generates test cases subject to constraints imposed by the
user, and adds them to CurPopulation. Diversity in the population gives GenerateData a wider variety of
test cases from which to select; this diversity in population typically translates into better performance for

genetic algorithms [12].

3.2 Step 2 of GenerateData

The second step of GenerateData (lines 4-14) is the outer while loop, which generates the test cases. To
account for the possibility of infeasible test requirements, such as statements and branches,?, the while
loop iterates until either all test requirements are marked or OutOfTime() returns true. Although reaching
the time limit in the search for a test case does not prove that unmarked requirements are infeasible, it
does suggest this possibility. After execution of GenerateData, therefore, all unmarked testing requirements
must be manually inspected. A test requirement is marked if a test case is generated that covers the test
requirement or the test requirement has somehow been identified as infeasible.

The inner while loop (lines 6-13) focuses on a single unmarked Target that is selected from the unmarked
test requirements in TestReq. The while loop iterates until either the Target is satisfied by a test case or
MazAttempts() returns true. GenerateData evaluates each test case in CurPopulation relative to Target
(line 7) using CDGPaths, and computes a fitness value for the test case: if test; contains more predicates
in CDGPaths for Target than test;, then GenerateData assigns test; a higher fitness value than test;. The
algorithm then sorts CurPopulation based on these fitness values (line 8).

The use of the control-dependence graph in the evaluation of the fitness of test cases bears further
discussion. The “intelligence” of the genetic algorithm in seeking to cover Target is derived from the use of

the control-dependence graph. The premise is that developing a test case to cover a given Target is better

2A statement (branch, path) is infeasible if no input exists that will cause execution of that statement (branch, path).

done with test cases that come close to covering Target than with random test cases or with test cases that
are nowhere near Target. For GenerateData, a test case “comes close” to satisfying a Target if it has a
high number of predicates in common with a CDGPath of the Target. A test case that has a high number of
predicates in common with a CDGPath of the Target satisfies many of the conditions required for execution
of the Target. If a test case comes close to covering a given Target, it is likely that some portions of the
test case are “good” because they caused execution near the Target. It is also likely that, by recombining
good test cases, the algorithm has a better chance than a random approach of producing a test case that
covers Target. It is believed that this use of the control-dependence graph is the reason that GenerateData
significantly outperforms Random in three of the six programs in the case study; this study is discussed
in Section 4.2. However, further evaluations that compare GenerateData with other test-data generation
strategies are needed to evaluate the effectiveness of the approach.

After computing the fitness of each test case in CurPopulation, GenerateData selects test cases from
CurPopulation that will be parents of NewPopulation (line 9); GenerateData biases this selection towards
those test cases in CurPopulation with the highest fitness values. A test case with a high fitness value
has a high probability of being selected, and may be selected multiple times; a test case with a low fitness
value has a small, possibly zero, probability of being selected, and may never be selected. GenerateData
assigns probabilities to the tests using the following algorithm. Given test case t; and its fitness value f;, the
probability assigned to t; is p; = fi/ 2?21 f; where n is the number of test cases in the population. Note
that Y"1 | p; = 1. GenerateData then generates a random number 7 (0 < r < 1) and selects test case t;
such that Ele fi <r and Zf;l fi > r. The probability of selecting an arbitrary test case t; is exactly p;.

The algorithm repeats this selection process until there are enough parents to generate NewPopulation.
Two parents are required for recombination, which produces two offspring. One parent is required for
mutation, which produces one offspring. Because the number of parents required for each operation equals
the number of offspring produced, the total number of parents required is the size of NewPopulation.

After the selection process, GenerateData generates the NewPopulation by pairing the selected parents
for recombination or considering them individually for mutation (line 10). Recombination, the first method
for generating new test cases, takes two parent test cases and produces two children; it is the primary
method of producing new test cases. The specific recombination method used in this study is one-point
crossover [12]. Let (ag, a1, ...ax) and (bo, b1, ... bg) represent the k+ 1 input values of two selected test cases,
GenerateData selects a random integer between 1 and k&, inclusive. If the integer generated is m (1 < m < k),
the two children produced are (ag, a1, ..., Gm—1, bm, bmt1; -, bk) and (bo, b1, -oey b—1, Gmy Gty vy GK)-
These children are added to the new population. In the initial implementation of GenerateData, which is
described in the next section, one-point crossover is used for recombination.

Mutation, the second method of generating new test cases, lets new chromosomes be introduced into the
population; this is necessary to prevent stagnation, or freezing, of the population. Without mutation, the
values of test cases in NewPopulation are limited to those values generated during SetUp. Mutation takes
one of the selected test cases, (ag, a1, ...ar) generates a number m (0 < m < k) and replaces the value of
input variable m, (i.e., a,,), with a randomly generated value. This mutation process creates a new, single,
child test case that GenerateData adds to NewPopulation.

The relative frequency with which mutation is used is usually lower than that of recombination. In the

current implementation, which is described in the next section, frequencies of 10% and 90% were used for

Table 1: Test Cases and Statement Traces for Example of Figure 1
| Test Case | Input Data i, j,k | Statement Trace |

i1 1,69 1,2,3,4,6
) 0,1,4 1,2,3,4,6
13 5,0, 1 1,26
t4 2,2,3 1,26

mutation and recombination, respectively. Both one-point crossover and mutation are simple operations,
characteristic of genetic algorithms. The strategy is to employ fast and inexpensive operations, focused
on covering the Target. Because the operations are fast and simple, they can be performed many times,
increasing the chances that the Target will indeed be covered.

In the final step of the inner while loop, GenerateData executes Program on each member of NewPopula-
tion (line 11), and updates Scoreboard accordingly. If at least one test case in CurPopulation satisfies Target,
the algorithm marks Target in TestReq, the inner while loop terminates, and the algorithm attempts to find
a new Target. Otherwise, NewPopulation is assigned to CurPopulation, and the algorithm makes another
attempt to satisfy Target. If GenerateData fails to find a test case to satisfy Target before MazAttempts(),
the algorithm temporarily abandons Target, and selects the next test requirement in TestReq as the new
Target. The entire search continues until either all test requirements are met or the time limit is exceeded,

at which time the outer while loop terminates.

3.3 Step 3 of GenerateData

In this last step, the algorithm assigns the union of test cases that satisfied TestReg to Final (line 15), and
returns Final and TestReq (line 16).

3.4 Example

To illustrate the operation of GenerateData, consider program Example and its CDG, which are shown
in Figure 1. Suppose at some point during processing using GenerateData, CurPopulation contains the
four test cases shown in Table 1. Inspection of the statement traces for the four test cases reveals that
CurPopulation covers all statements except statement 5. Thus, GenerateData selects statement 5, whose
CDGpathis {entryT, 2T, 3F}, for its search. In the while loop, the algorithm first computes the fitness values
for each of the four test cases in CurPopulation. The fitness values of test cases t1 through ¢4 are {2,2,0,0},
respectively (entry is ignored as a predicate because it is on all paths): ¢t1 and ¢2 have two predicates (i.e.,
2, 3) in common with Target and 3 and 4 share no predicates with Target. The fitness values of ¢; and ¢,
ought to be higher because the paths associated with these test cases have more predicates in common with
Target than the other two test cases. Thus, these test cases stand a better chance of contributing as parents
to the next generation of test cases than t3 and t4.

Using the technique that was described for assigning probabilities, the algorithm assigns probabilities of
{0.5, 0.5, 0.0, 0.0}, respectively, to the four test cases. Next, GenerateData selects the parents of NewPopula-
tion. Suppose that the algorithm selects the following test cases in order {(1,6,9),(0,1,4),(0,1,4),(0,1,4)};
recall that a test case may be selected multiple times. Then, recombining the first two parents using one-
point crossover, yields ¢5(1,6,4) and t¢(0,1,9), and mutating the last two selected test cases yields ¢7(0,6,4)
and tg(5,1,4). NewPopulation, therefore, is {ts, ts,t7,ts}, two of which (¢5 and t7) satisfy the Target.

3.5 Analysis

Next, the major components that contribute to the complexity of GenerateData and the time complexity
of a random approach are discussed. The following variables are used in the analyses: n, the number
of statements in the original program; P, the population size; e, the execution time of the instrumented
program; k, the depth of nesting of conditionals and loops in the source code; r, the number of testing
requirements, m, the maximum attempts a process is allowed to generate test cases for a Target, and the
length L, in bytes, of a test.

The time complexity of GenerateData is dominated by the initialization and set up (lines 1-3) and the
loop that generates tests (lines 4-14). The initialization and set up consists of generation of the CDGPaths,
which requires the control-dependence graph for the program (O(n?)), generation of the Scoreboard (O(n)),
and generation of the initial population CurPopulation (O(P)). Thus, this first step has time complexity
O(maz(n?,P)). The loop that generates tests evaluates each test in CurPopulation for fitness, generates
NewPopulation, and updates Scoreboard, all of which have O(P) time complexity. The loop also sorts
CurPopulation (O(P log P)) and executes the instrumented program on each test (O(P x e)). Thus, each
iteration of the inner loop has O(maxz(P x e, Plog P)). The number of times the inner loop is executed
ranges from one to a maximum of m. Thus, the total execution time of the inner loop has complexity
O(m x maz(P X e, Plog P)).

The outer loop (lines 4-14) executes until all test requirements are marked or until the time limit has
been exceeded. This means that the outer loop can iterate zero or more times; the exact number varies from
run to run. The time limit is set by the user and serves as an upper bound on the execution time of Step 2.

Unlike GenerateData, a random approach requires no set up or sorting of the population. Thus, the
execution time of Random is at least P X e because it takes at least one execution of the instrumented program
to determine whether all test requirements have been met. As with GenerateData, the user may set an upper
bound on the execution time.

The space complexity of GenerateData depends on the major structures that it uses. CDGPaths is
O(n x k) space; because k may be considered constant (rarely greater than seven), this structure grows as
O(n). CurPopulation, NewPopluation is O(P x L); Scoreboard is O(r). For statement coverage, r is the
number of statements, for branch coverage, r is the number of branches. Thus, for statement and branch
coverage, Scoreboard grows as O(n). For path coverage, r is the number of paths to be covered. Thus, for

path coverage, the growth of Scoreboard depends on the number of paths generated.

4 Case Study

To determine the potential effectiveness of GenerateData over a random approach, a prototype of GenerateData
in C that provides both statement and branch coverage was implemented; the discussion describes test-data
generation only for statement coverage. With this prototype, an experiment involving a small set of C

programs was performed. This section describes the implementation and experiments.

user

source
program
map

control
dependence
graph

instrumented
source
program

instrumented
executable
source
program

coverage
vector

instrumented
executable
source
program

Figure 3: Dataflow diagram of the implementation of TGen.

4.1 Prototype Implementation

Figure 3 gives a dataflow diagram of the architecture of the implementation of GenerateData, called TGen.
TGen-specific processes are shown inside the large circle in the figure. TGen, the prototype implementation
of GenerateData makes use of the Aristotle analysis system [13] to generate a program map, a control-
dependence graph, and an instrumented version of the program; the instrumented program is compiled, and
the executable instrumented version of the program is stored in the file system.

TGen contains four major types of components: SetUp, which initializes the system; Host, which manages
the dispatching of test-data generation jobs to Node components; Node, which implements our TGen algorithm
to generate new tests; and Execution, which executes the program with the test cases generated by the
associated Node. A particular implementation of TGen contains a single SetUp and Host component, but
may have multiple Nodes, each executing on one processor.

The SetUp component of TGen inputs program map information, and generates the initial Scoreboard and
a map vector that charts the locations and relationships among variables and predicates in the program. The
SetUp component also inputs the control-dependence graph for the program, and computes the CDGPaths
for statement nodes in the program. Finally, if the user provides an initial set of test cases, SetUp reads the
test cases and passes them as the initial Population to each Node component.

The Host component of TGen acts as a manager for the test generation. This component inputs the map
vector and the initial Scoreboard, and identifies and outputs one or more Targets to be satisfied. A Node
component inputs the initial Population and the CDGPaths from SetUp, and a Target from the Host. A Node
component works towards covering the Target that it receives from the Host. A Node performs its task by
executing TGen, creating and evolving populations, and constantly striving to cover the Target. This version

of TGen can generate test cases for statement or branch coverage. The Node returns its results to the Host if

10

either the Target is covered or the maximum number of attempts allowed is exceeded. The Node outputs its
results in the form of a Scoreboard that summarizes its attempts at satisfying a Target. The Host collects
and merges the Scoreboards it gets from the Node processes until either the Targets are covered, or the time
limit has been exceeded. If more Targets remain, Nodes receive additional Targets, and the cycle repeats.

The Node process issues an operating system call to cause the Execution to begin executing the instru-
mented program. Communication between the Node and the executing program accomplished using UNIX
named pipes. The Node process passes the system call and a test case to the Execution, which loads the
instrumented executable source program, executes this program, and returns information regarding which
source program statements were covered.

TGen achieves parallelism by running multiple Node processes simultaneously on a network of Sun work-
stations running under either SunOS or Solaris operating systems. The user determines the number of
workstations to be used in the system; this number is limited only by the number of workstations available
on the local network. Each Node process runs on a separate workstation; a software package called Parallel
Virtual Machines (PVM) [10] provides the communication and synchronization software tools required to
allow Host and Nodes to work harmoniously. The parallel execution of TGen is a convenience and is not
essential. The advantage of parallelism is the reduction in execution time, which may be a factor equal to
the number of workstations used, allowing the user to run multiple runs in batch mode when network usage
is low. However, TGen, as depicted in Figure 3, can just as easily be implemented on a single processor.

Although TGen currently handles statement and branch coverage, with minor modifications, it can also
provide path and definition-use coverage. For path coverage, the Target is a specific path through the
predicates of the program. Thus, to facilitate path coverage, the Scoreboard in TGen is altered so that each
entry in it represents a set of statements rather than a single statement. Each entry in Scoreboard now
represents one of these sets of statements, and the new objective of TGEN is to target statement sets rather
than individual statements. The approach used for definition-use coverage is similar to the path-coverage
approach.

TGen can also be extended to handle automatic generation of test data for programs with multiple
procedures. Suppose that procedure A calls procedure B, that procedure B calls procedure C, and that
statements in procedure C are to be covered. TGen proceeds as in the original algorithm with a slight
modification in the evaluation function. If during test-case evaluation for fitness, the algorithm finds that
the test case covers a call-site statement, it increases that test case’s evaluation, over that obtained using
the control-dependence graph, by a predetermined value multiplied by the number of marked statements it
covers. This change in the method of evaluation of a test case causes those test cases that execute the call
site from A to B to have a higher evaluation than those that do not. Furthermore, test cases that execute
call sites from B to C are evaluated even higher. Higher evaluations for test cases translate into greater
probability of selection. Hence, the population of test cases should tend to contain test cases that execute

into B and C, letting TGen work toward those statements of interest in C.

4.2 Empirical Results

To determine the potential effectiveness of TGen over a random approach, a case study was performed on
six C programs; Table 2 gives information about these programs. For each subject program, the table lists

the number of lines of code, the cyclomatic complexity, and a short description of the program. For each

11

Table 2: Subject programs for our study.
Lines Cyclomatic

Programs | of Code | Complexity Description of Program
Bub.c 32 4 Given an array of integers, bubble sorts the array
Find.c 66 5 Given array A[],and index F, places all elements less than

or equal to A[F] to the left of A[F], and all elements that are
greater to or equal to A[F] to the right of A[F)

Mid.c 21 4 Given three integers, determines the middle value

Bisect.c 36 3 Given an epsilon and X, computes sqrt(X) to within epsilon using
bisection method

Fourballs.c 82 7 Given four integers representing the weights of balls, determines
the weights of the balls relative to each other

Tritype.c 61 7 Given three integers, representing possible lengths of a

triangle’s sides determine the type of triangle (if any)

Table 3: Results of TGen and Random runs for programs Bisect.c, Fourballs.c, and Tritype.c.

Program Generator | #Runs | Mean | Median | Mode | StdDev | Min | Max | Range
Bisect.c TGen 32 29 24 20 13 13 70 57
Random 32 40 41 40 8 23 62 39
Fourballs.c TGen 32 95 87 71 27 52 168 116
Random 32 159 154 153 26 110 | 229 119
Tritype.c TGen 32 145 134 49 97 21 392 371
statement Random 32 1259 202 n/a 1141 24 | 3707 | 3683
Tritype.c TGen 32 132 93 46 109 21 436 415
branch Random 32 1100 691 n/a 1204 40 | 4881 | 4841

subject program, 32 TGen runs and 32 Random runs were performed. Tritype.c was used to generate test
cases for statement coverage and branch coverage; the remaining programs were used to generate test cases
for statement coverage.

The results of the experiments on three of the subject programs, Bub.c, Find.c, Mid.c, were virtually
identical for both TGen and Random in that statement coverage was achieved immediately. The code did not
involve nested conditionals, the predicates of the conditionals and loops were easily satisfied, and most of
the code in the programs is straight line. TGen, achieved 100% statement coverage in the initial population.
Random achieved similar results.

The results of the experiments on the other three programs, Bisect.c, Fourballs.c, and Tritype.c,
however, were very different; Table 3 summarizes these results. TGen achieved 100% statement coverage of
Bisect.c after iterating an average of 29 times; this is equivalent to generating 29 NewPopulations. Random
achieved 100% statement coverage of Bisect.c after iterating an average of 40 times. (To produce a fair
comparison, Random was designed to randomly generate sets of 100 test cases in one iteration, 100 being the
size of the population of TGen.) The median and mode of Random are also higher than those of TGen.

Figure 4 summarizes graphically the results of the experiment with Bisect — TGen in on the top and
Random is on the bottom. In each graph, the horizontal axis gives the number of iterations required by a
run. The left vertical axis gives the frequency that such a run occurred. Thus, the sum of the heights of
the vertical bars equals 32. The right vertical axis gives a cumulative frequency of the percentage of the 32
runs. Thus, three of the total 32 runs of TGen required 15 iterations to achieve 100% coverage of bisect.c.

Over 50% (reading from the right vertical axis) of the 32 runs required 24 or fewer iterations.

12

TGen Bisect.c

7T - 100%

T 90%

: + 80%
5T 1 70%
Eu ; FrequenFy 1 oo
% —— Cumulative % | o
g3 - 40%
2 - 30%

- 20%

: g - 10%

0 %
5
=
Iterations (100 cases per iteration)
Random Bisect.c

6T - 100%

+ 90%

57 ez Fraguency -+ 80%
44 —— Curnulative % 1 7o

g L E0%
S 34 - 50%
E 5 - 40%
- 30%

14 - 20%
10%

0 - - %

— = -~ o MmO W oo ™~ W 0 — = M~
L o Y L L L L T T & R ¥ R ¥ Ay U

Ivlore

Iterations {100 Cases per lteration)

Figure 4: Runs of TGen and Random for Bisect.c.

By comparison, Random could not achieve 100% coverage with fewer than 24 iterations. More than half
of the Random runs required 42 or more iterations to achieve full coverage. The cumulative curve of Random
is shifted further to the right, indicating that overall, it takes greater effort for Random to achieve the goal
of 100% coverage.

The differences in the results for Fourballs.c are greater. Table 3 shows that TGen required an average
of 95 iterations to achieve 100% coverage, compared with 159 iterations for Random. Median and mode values
are similar. In Figure 5, the horizontal axes are not identical: the graph for TGen ranges from 50 to 160,
whereas the graph for Random ranges from 110 to 230. Also, over 90% of the TGen runs completed in 130
iterations or less. By contrast the best Random run required 110 iterations, with most runs requiring between
150 and 175 iterations. Only eight of the 32 Random runs completed in fewer than 150 iterations.

The differences in the results for Tritype.c are even greater. Table 3 shows that TGen required an

average of 145 iterations compared with 1259 iterations for Random. Figure 6 shows that only five Random

13

TGen Fourballs.c

T T 100%
: 4 90%
5 4
+ B80%
3l EzzA Frequency 1 70%
E‘ —a— Cumulative % | | g
g 5 1 50%
= 4 40%
i + 30%
i) 1 20%
E - 10%
0 A i %
- an
™ =
=

Iterations (100 Cases per lteration)

Random Fourballs.c

BT 1 100%
T 90%:
) 1 a0%
1 T0%
- 4+ ez Frequency
= —— Curmnulative % T B0%
2 74 1 500
=
f—: 1 40%
£ 1 a0%
T 20%
1 -
E I 110%
04 —— —— —+— ko
=2
[1p]
(o]

Iterations (100 Cases per lteration)

Figure 5: Runs of TGen and Random for Fourballs.c.

runs completed in 150 iterations or less; the rest required 350 iterations or greater, with 12 requiring over
1000 iterations. By contrast, 90% of TGen runs completed within 260 iterations. Table 3 also shows results
for TGen and Random runs attempting 100% branch coverage of Tritype.c. The results are similar to the
statement coverage runs with TGen requiring an average of 132 iterations and Random requiring an average
of 1100 iterations.

The results show that for those source programs with some complexity, TGen outperforms Random over a
number of runs, at times dramatically. For those source programs with little complexity, TGen and Random
perform identically, achieving 100% coverage immediately. TGen performs better than Random when the

source code contains nested conditionals or nested loops in which the predicates are difficult to satisfy.

14

TGen Tritype.c

- 100%
r 90%
r 80%
ez Fraquency L 709,

—— Cumulative % L B
- 50%
- 40%
- 30%
20%
10%
0%

Frequency

s s s S s o |

340
360
380

Iterations (100 cases per iteration)

Random Tritype.c

- 100%
- 90%
- 80%
T 70%
ez Frequency | E0%

—— Cumulative % L 50,
- 40%
- 30%
- 20%
- 10%
- 0%

Fregquency

]
L
|

lterations (100 cases per iteration)

Figure 6: Runs of TGen and Random for Tritype.c.

5 Related Work

Other researchers have investigated the use of optimization techniques for test-data generation. Jones et
al. [9] developed a genetic algorithm for test-data generation for branch coverage. They use a control-flow
graph that represents one, two, and three iterations of each loop; because their representation unrolls each
loop a specified number of times, their control-flow graphs are acyclic. A program is instrumented so that
as it executes with a test case, it records the branches it reaches and the fitness of that test case. The
fitness function uses the branch value, along with the value of the branch condition, to determine the fitness
of the test case. The authors implemented the approach and performed experiments with number of small
programs.

The approach presented in this paper also uses branch information to evaluate the fitness function, except

it uses the control-dependence graph for fitness evaluation, which can given a more precise fitness evaluation

15

than the Jones et al. approach. To see this, consider the following control-flow graph.

;/ F
OO
3%

Suppose that there were two test cases, t1 and 2, such that the path through the control-flow graph for
tlis 1, 2, 4, and for ¢2 is 1, 7. Furthermore, suppose that node 5 is the target of the search. Under the
approach presented in this paper, t1 would be given a higher fitness than ¢2 because it has predicate 1T in
common with the predicate path of target node 5. Under the Jones et al. approach, ¢t1 and 2 would be given
the same low fitness because neither test case executes the target or one of its siblings (in the control-flow
graph); the fact that ¢t1 is “closer” to the target than ¢2 is not incorporated into the fitness calculation.

Michael et al. [17] present an approach that is an implementation of Korel’s function minimization
approach to test-data generation [16] using a genetic algorithm. Korel applied gradient descent to find test
data that caused a “branch function” to take on a negative value; these branch functions are developed so
that, when the value is negative, the correct branch is selected on a path to a particular target. Ferguson
and Korel later added “chaining” to the algorithm to handle cases for which function minimization cannot
be applied (e.g., branches based on booleans or other non-arithmetic conditions) or for which the gradient
descent method of minimization fails [7].

One goal of this test-data generation approach, as stated by the authors, is to cover all branches in
a program, which means that all code locations should ultimately be reached (unless they are infeasible).
Thus, they delay attempts to satisfy a certain condition until they have found test cases that reach that
condition.

The technique presented in this paper has several advantages over Michael et al.’s technique. First, the
use of the control-dependence graph to identify predicate paths for the target and the test case lets the
algorithm quickly, and more efficiently than applying function minimization, compute the fitness of a test
case. Second, the approach does not require coverage of all test requirements in the program. Rather,
the approach can generate test data for single or multiple sets of targets, which makes it more useful for
applications, such as regression testing.

Finally, Tracey et al. [21] use another optimization technique, simulated annealing, to generate test
data, and performed a few small experiments. They state that to compare their approach to one using
genetic algorithms would require implementation of a genetic-algorithm approach. However, neither of their
approaches has been implemented. Thus, there is no data that could be used to compare the efficiency
and effectiveness of simulated annealing approaches and genetic algorithm approaches. Future work could
develop implementations of, and experiment with, simulated annealing and genetic algorithm approaches to

test-data generation.

16

6 Conclusions

This paper presents GenerateData, an algorithm for automatic generation of test data for a given program.
GenerateData uses a search heuristic called a genetic algorithm directed by the control-dependence graph
of the program. The simplicity of the genetic algorithm and the direction provided by the use of the control-
dependence graph combine to produce an effective tool for test-data generation. Parallel processing is also
employed in the implementation of GenerateData for additional computational power to speed up what
could possibly be a lengthy search.

Currently, the prototype, TGen, is implemented for statement and branch coverage. Results of experiments
with TGen (the implementation of the algorithm GenerateData used in this study) show that for programs
with little complexity, TGen and Random provide statement and branch coverage immediately. With programs
of some complexity, TGen outperforms Random, at times significantly. At the heart of the success of TGen
is the use of the control-dependence graph to direct the search for test cases. At different points in time
during execution, the implementation targets different test requirements (currently statements and branches,
eventually paths and definition-use pairs) and uses the control-dependence graph to help form new test cases.
This procedure may be superior to random methods of generating test cases, and possibly to other goal-
directed methods that require more time-consuming analyses of the source code to generate new test cases.

The use of parallel processing improved overall execution time almost linearly. This is because TGen
is designed to distribute the most time-consuming task, that of executing the instrumented program on a
single test case, among as many processors as are available. The manner of distribution is round robin,
which automatically balances the total load.

TGen is useful for regression testing, particularly when the original test suite is available. TGen allows the
user to target for coverage only the new or modified sections of code, thus instructing TGen to ignore those
sections already tested. This targeting of code concentrates TGen'’s full attention and computing power only
to that section of code of interest. Furthermore, the original test suite may be used as part of the initial
population, which is beneficial because the original test suite should contains a variety of test cases that
cover the requirements of the original program. Thus, the test suite has good genetic material with which
TGen can work.

This paper has outlined ways to extend TGen to provide path and definition-use coverage. Once path
and definition-use coverage are restated as problems of covering sets of statements, the TGen approach
can be applied. The paper also outlined a straightforward way to use TGen for programs with multiple
procedures. This is possible because of the ease with which TGen can focus on specific sections of code.
TGen’s evaluation function can be modified to give much greater weight to those test cases which cover the
calls to the procedures of interest. Thus, TGen can ignore the majority of the code and work only with test
cases that execute the procedure being analyzed.

GenerateData represents a potentially powerful approach in the area of automatic test-data generation.
Tts power lies in the fact that the generation of new test cases is both simple and yet goal-directed. The
results presented here, however, are preliminary. GenerateData has been tested on only six programs and,
although the results are promising, more experimentation must be done before any conclusive statements
can be made. As more is learned about the strengths and weaknesses of TGen, a metric that can be applied

to a program and that will predict the likely success of an application of TGen on the program can be

17

developed. It seems probable, however, that GenerateData’s real potential is not in generating test data
for small programs, such as those described in this paper. Rather, TGen’s real strength is in working with
large programs, particularly on programs with multiple procedures. It is on these programs that the guided
search capability of TGen’s approach will be fully utilized.

Another possibility is to couple TGen with other, possibly exhaustive, search techniques to see if cooper-
ation among different search algorithms is possible. The implementation of TGen can be extended to handle
test-data generation for multiple procedures. Finally, the implementation will be extended to allow path

and definition-use coverage.

References

[1] R. S. Boyer, B. Elspas, and K. N. Levitt. Select - A formal system for testing and debugging programs by symbolic
execution. Proceedings of the International Conference on Reliable Software, June 1975.

[2] K-H. Chang, J. H. Cross, W. H. Carlisle, and D. B. Brown. A framework for intelligent test data generators.
Journal of Intelligent and Robotic Systems - Theory and Applications, July 1991.

[3] L. A. Clarke. A system to generate test data and symbolically execute programs. IEEE Transactions on Software
Engineering, 2(3):215-222, September 1976.

[4] L. Davis. Genetic Algorithms and Simulated Annealing. Morgan Kaufmann, 1987.
[5] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991.

[6] R. A. DeMillo and A. J. Offutt. Constraint-based automatic test data generation. IEEE Transactions on Software
Engineering, 17(9):900-910, September 1991.

[7] R. Ferguson and B. Korel. The chaining approach for software test data generation. ACM TOSEM, vol. 5, no.
1, pages 63-86, January 1996.

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and its use in optimization.
TOPLAS, vol. 9, no. 3, pages, 319-349, July 1987.

[9] B. Jones, H. Sthamer, D. Eyres. Automatic Structural Testing Using Genetic Algorithms. Software Engineering
Journal 11(5), September 1996, pp. 299-306.

[10] A. Geist, A. Beguelin, J. Dongarra, W. C. Jiang, R. Manchek, V. Sunderam. PVM: Parallel Virtual Machine A
Users’ Guide and Tutorial for Networked Parallel Computing. The MIT Press, 1994, Cambridge, MA.

[11] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Englewood
Cliffs, NJ, 1991.

[12] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading,
Massachusetts, 1989.

[13] M. J. Harrold and G. Rothermel. Aristotle: A system for research on and development of program-analysis-based
tools, OSU-CISRC-3/97-TR17,The Ohio State University, March 1997.

[14] J. Holland. Adaptation in natural and artificial systems. Ann Arbor: The University of Michigan Press, 1975.

[15] W. E. Howden. Symbolic testing and the DISSECT symbolic evaluation system. IEEE Transactions on Software
Engineering 3(4): 266-278, July 1977.

[16] B. Korel. Automated software test data generation. IEEE Transactions on Software Engineering, 16(8):870-879,
August 1990.

[17] C. C. Michael, G. E. McGraw, M. A. Schatz, and C. C. Walton.. Genetic Algorithms for Dynamic Test Data
Generations. Technical Report RSTR-003-97-11, May 1997.

18

[18] H. D. Mills, M. D. Dyer, and R. C. Linger. Cleanroom software engineering. IEEE Software 4(5): 19-25,
September 1987.

[19] C. V. Ramamoorthy, S. F. Ho, and W. T. Chen. On the automated generation of program test data. IEEE
Transactions on Software Engineering, 2(4):293-300, December 1976.

[20] P. Thévenod-Fosse, H. Waeselynck. STATEMATE: Applicd to Statistical Software Testing. ACM SIGSOFT
Proceedings of the 1993 International Symposium on Software Testing and Analysis, Software Enginering Notes
23(2), pp. 78-81, June 1993.

[21] N. Tracey, J. Clark, K. Mander. Automated Program Flaw Finding Using Simulated Annealing. ACM SIGSOFT
Proceedings of the 1998 International Symposium on Software Testing and Analysis, March 1998.

[22] J. M. Voas, L. Morell, and K. W. Miller. Predicting where faults can hide from testing. IEEE Software, 8(2),
41-48, March 1991.

19

