660 CODE OPTIMIZATION SEC. 10.8

procedures is to assume that a call generates nothing, and that a_kilt|8 | for all
blocks 8 is as computed above. As one does nol expect many expressions to
be generated by the typical procedure, this approach is good enouwgh for most
purposes.

A more complicated, and more accurate, alternative approach to the compu-
tation of available expressions is t0 compute gen|p} for each procedure p
iteratively, We may initialize gen|p] to be the set of expressions available at
the end of p's return node according to the method above. That is, no alias-
ing is permitted for generated expressions; a+b represents only itself, even if
other variables could be aliases of a or b.

Now compute available expressions for all nodes of all procedures again.
However, a call to g{a,b)} generates those expressions in gen|q| with a and
b substituted for the corresponding formals of q. a_kill remains as before, A
new value of gen|p], for each procedure p, can be found by seeing what
expressions are available at the end of p's return. This iteration may be
repeated until we get no more changes in available expressions at any node,

10.9 DATA-FLOW ANALYSIS OF STRUCTURED FLOW GRAPHS

Gotoless programs have reducible flow graphs; so do programs encouraged by
several programming methodologies. Several studies of large classes of pro-
grams have revealed that virtually all programs wristen by peopie have flow
graphs that are reducible.'® This observation is relevani for optimization pur-
poses because we can find optimization algorithms that run significantly faster
an reducible flow graphs. In this section we discuss a variety of flow-graph
concepts, such as “interva! analysis,” that are primarily relevant to structured
flow graphs. In essence, we shall apply the syntax-directed techniques
developed in Section 10.5 to the more general setting where the syntax doesn’t
necessarily provide the structure, but the flow graph does.

Depth-First Search

There is a useful ordering of the nodes of a flow graph, known as depih-first
ordering, which is a generalization of the depth-first traversal of a tree intro-
duced in Section 2.3. A depth-first ordering can be used to detect loops in
any flow graph; it aiso helps speed up iterative data-flow algorithms such as
those discussed in Section 10.6. The depth-first ordering is created by starting
at the initial node and searching the entire graph, trying to visit nodes as far
away from the initial node as quickly as possible (depth first). The route of

the search forms a tree. Before we give the algorithm, let us consider an
example.

* “Writtcn by people’ is not redundant because we know of several programs that generate code

with “rats” nests™ of goto’s, There is nothing wrong with this; the steucture is in the input 1o these
programs.

SEC. 10,9 DATA-FLOW ANALYSIS OF STRUCTURED FLOW GRAPHS 661

Example 10.30. One possible depth-first search of the flow graph in Fig.
10.45 is illustrated in Fig. 10.46, Solid edges form the tree; dashed edges- are
the other edges of the flow graph. The depth-first search of the flow graph
corresponds to a preorder traversal of the treg, | =3 24 +6 -7 -8 = 10,
then back to 8, then to 9. We go back to 8 once more, retreating to 7, 6, and
4, and then forward to 5. We retreat from 5 back to 4, then back to 3 and 1.
From 1 we go to 2, then retreat from 2, back to 1, and we have traversed the

entire tree in preorder. Note that we have not yet explained how the tree is
selected from the flow graph. 0

Fig. 10.45. Flow graph Fig. 10.46. Depth-first presentation

The depth-first ordering of the nodes is the reverse of the order in which we
last visit the nodes in the preorder traversal.

Example 10.31. In Example 10.30, the complete sequence of nodes visited as
~we traverse the iree is

1,3,4,6,7,810,8,9,8,7,6,4,5, 4,3, 1,2, 1,
In this list, mark the last occurcence of each number to get

II 3949 6‘ 79 Bs m' 81- 23 §1 2*\- Q:41§)&! é‘: 1,2

The depth-first ordering is the sequence of marked numbers in reverse order.

Here, this sequence happens to be 1, 2, .. ., 10. That is, initially the nodes
were nembered in depth-first order. D

We now give an algorithm that computes a depth-first ordering of a flow
graph by constructing and traversing a tree rooted at the initial node, trying to
make paths in the tree as long as possible. Such a tree is called a depth-first

spanning tree (dfst). It is this algorithm that was used to construct Fig. 10.46
from Fig. 10.45. .

662 CODE OPTIMIZATION SEC. 10.9

Algorithm 10.14. Depth-first spanning tree and depth-first ordering.
Input. A flow graph G.

Quiput. A dfst T of G and an ordering of the nodes of G.

Method. We use the recursive procedure search(n) of Fig. 10.47; the algo-
rithm is to initialize all nodes of G'to “unvisited,” then call search{n,), where
ng is the initial node. When we call search(n), we first mark n “visited,” to
avoid adding » to the tree twice. We use i to count from the number of nodes
of G down to 1, assigning depth-first numbers dfn[n] to nodes n as we go.
The set of edges T forms the depth-first spanning tree for G, and they are
called tree edges. O

procedure searchin);

begin
(1) mark » “visited:
{2) for cach sucocssor s of # do
{3) if 5 is “unvisited” then begin
(4) addedge n = rsto T,
(5) searchis)

end;

{6) dfn[n] = i;
(N i=i=1

end;

/+ main program follows #/

(8) T := empty, /= setof edges «/

(9 for each node » of G do mark # “unvisited™,
(10) i ;= number of nodes of G

(1) searchin,)

Fig. 10.47. Dcpth-first scarch algorithm.

Example 10.32. Consuder Fig. 1047, We set { to 10 and call search(1). At
line (2) of search we must consider each successor of node 1. Suppose we
consider s = 3 first. Then we add edge | — 3 to the tree and call search(3).
In search(3) we add edge 3 ~ 4 to T and call search(4).

Suppose in search(4) we choose s = 6 first. Then we add edge 4 =6 t0 T
and call search(6). This in turn causes us to add 6 —7 to T and call
search(7). Node 7 has two successors, 4 and 8. But 4 was already marked
“visited” by search(4), so we do nothing when s = 4. When s = 8 we add
edge 7 — 8 to T and call search(8). Suppose we then choose s = 10. We add
edge 8 — 10 and call search(10).

Now 10 has a successor, 7, but 7 is already marked ‘“‘visited,” so in
search{10), we fall through to step (6) in Fig. 10.47, setting dfrn[10] = 10 and

sEC. 10.9 DATA-FLOW ANALYSIS OF STRUCTURED FLOW GRAPHS 663

i = 9. This completes the call to search(10), so we return to search(8). We
now sel s = 9 in search(8), add edge 8 = 9 (o T and call search(9). The only
successor of 9, node |, is already “visited,” so we set dfn[9) = 9 and i = 8.
Then we return to search(8). The last successor of 8, node 3, is "visited,” so
we do nothing for 5 = 3. At this point, we have considered all successors of
§, so we set dfn[8] = 8and i = 7, returning to search(7).

All of 7T's successors have been considecred, so we set dfnl7] = 7Tand i = 6,
returning 10 search(6). Similarly, 6's successors have been considered, so we
set dfnf6] = 6 and | = 5, and we return to search(4). Successor 3 of 4 has
been “‘visited,” but 5 has not, so we add 4 — 5 to the tree and call search(3),
which results in no further calls, as successor 7 of 5 has been *‘visited.”
Thus, dfm{5] = 5, i is set to 4, and we return to search(4). We have com-
pleted consideration of the successors of 4, so we set dfnld4] = 4 and i = 3,
returning to search(3). Then we set dfn|3] = 3 and i = 2 and return to
search(1).

The final steps are to call search(2) from search(1), set dfal2] = 2, i = |,
return to search(i), set dfnji} = 1 and i = 0. Note that we chose a number-
ing of the nodes such that dfa|i} = i, but that relation need not hold for an

arbitrary graph, or eéven for another depth-first ordering of the graph of Fig.
10.45. O

Edges in a Depth-First Presentation of a Flow Graph

When we construct a dfsr for a flow graph, the edges of the flow graph fall
into three categories.

I. There are edges that go from a node m to an ancestor of » in the tree
{possibly to m itself). These edges we shall term reireating edges. For
example, 7+ 4 and 9 = | are retreating edges in Fig. 10.46. It is an
interesting and useful fact that if the flow graph is teducible, then the
retreating edges are exactly the back edges of the flow graph,'' indepen-
dent of the order in which successors are visited in step (2} of Fig. 10.47.
For any flow graph, every back edge is retreating, although if the graph

is nonreducible there will be some retreating edges that are not back
edges.

2. There are edges, called advancing edges, that go from a node m to a
proper descendant of m in the tree. Al edges in the dfsr itself are
advancing edges. There are no other advancing edges in Fig. 10.46, but,
for example, if 4 - 8 were an edge, it would be in this category.

3. There are edges m — n such that neither m nor n is an ancestor of the
other in the dfst. Edges 2 =3 and 5 =+ 7 are the only such examples n
Fig. 10.46. We call these edges cross edges. An important property of

" Recall, the back edges of a flow graph are those whose heads dominate their tails.,

664 CODE OPTIMIZATION SEC. 10.9

cross edges is that if we draw the dfit so children of a node are drawn

from left to right in the order in which they were added to the tree, then
all cross edges travel from right to lefi.

It should be noted that m - n is a retreating edge if and only f
dfnlm| = dfnln|. To see why, note that if m is a descendant of r in the dfst,
then search{m) terminates before search(n), so dfnfm| = dfnln}. Conversely,
if dfnlm| = dfnln), then search{m) terminates before search(n), or m = n.
But search(n) musi have begun before search(m} if there is an edge m —~ n, or
else the fact that n is a successor of m would have made n a descendant of m
in the dfst. Thus the time searchim) is active is a subinterval of the time
search(n) is active, from which it follows that » is an ancestor of m in the dfss.

Depth of a Flow Graph

There is an important parameter of flow graphs called the depth. Given a

depth-first spanning tree for the graph, the depth is the largest number of
retreating edges on any cycle-free path.

Example 10.33. 1n Fig. 10.46, the depth is 3, since there is a path
0—=T7~4-3

with three retreating edges, but no c¢ycle-free path with four or more retreat-
ing edges. It is a coincidence that the “‘deepest”™ path here has only retreating

edges; in general we may have a mixture of retreating, advancing, and cross
edges in a “deepest™ path. O

We can prove the depth is never greater than what one would intuitively
call the depth of loop nesting in the flow graph. If a flow graph is reducible,
we may replace ‘‘retreating” by “back” in the definition of “depth,” since the
retreating edges in any dfst are exactly the back edges. The notion of depth
then becomes independent of the dfst actually chosen,

Intervals

The division of a flow graph into intervals serves to put a hierarchical struc-
ture on the flow graph. That structure in turn allows us to apply the rules for
syntax-directed data-flow analysis whose development began in Section 10.5.
Intuitively, an “interval” in a flow graph is a natural loop plus an acyclic
structure that dangles from the nodes of that loop. An important property of
intervals is that they have header nodes that dominate all the nodes in the
interval; that is, every interval is a region. Formally, given a flow graph G
with initial node ny,, and a node n of G, the interval with header n, denoted

I(#), s defined as follows,
I. nisin l(n).

2. If all the predecessors of some node m # nq are in 1(n), then mr in is I(m.
3. Nothing else is in 1(n).

SEC. 10.9 DATA-FLOW ANALYSIS OF STRUCTURED FLOW GRAPHS 663

We therefore may build I(n) by starting with n, and adding nodes m by rule
(2). It does not matter in which order we add two candidates m because once
a node’s predecessors are all in Hn), they remain in l(#), and each candidate
will eventually be added by rule (2). Eventually, no more nodes can be added
to I(n), and the resulting set of nodes is the interval with header a.

Interval Partitions

Given any flow graph G, we can partition G into disjoint intervals as follows.
Algorithm 10.15. Interval analysis of a flow graph.

inpw. A flow graph & with initial node ny.

Output. A partition of G into a set of disjoint intervals.

Method. For any node », we compute [{#) by the method sketched above:
I(n) := {n}

while there exists a node m # ny,
all of whose predecessors are in 1{n} do
I(n) := l(n) U {m}

The particular nodes that are headers of intervals in the partition are chosen
as fallows. Initially, no nodes are “selected.™

construct 1{ny) and “select” all nodes in that interval,
while there is a node m, not yet “selected,”
but with a selected predecessor do
construct I{m) and *‘select” all nodes in that interval O

Once a candidate m has a predecessor p selected, m can never be added to
some interval not containing p. Thus, candidaté m’s remain candidates until
they are selected to head their own interval, Thus, the order in which interval
headets m are picked in Algorithm 10.15 does not affect the final partition
into intervals. Also, as long as all nodes are reachable from ng, it can be
shown by induction on the length of a path from ng to n that node n will
eventually either be put in some other node’s interval, ot will become a
header of its own interval, but not both. Thus, the set of intervals constructed
in Algorithm 10.15 truly partition G.

Example 10.34. Let us find the interval partition for Fig. 10.45. We start by
constructing I{ I}, because node i is the initial node. We can add 2 to k()
because 2's only predecessor is I. However, we cannot add 3 because it has
predecessors, 4 and 8, that are not yet in I(1), and similarly, every other node
except | and 2 has predecessors not yet in I(1). Thus, [(I) = {1,2}.

We may now compute [{3) because 3 has some “'selected’ predecessors, 1
and 2, butl 3 s not itself in an interval. However, no node can be added to
1(3), so I{3) = {3}. Now 4 is a header because it has a predecessor, 3, in an
interval. We can add 5 and 6é to 1(4) because these have only 4 as a

666 CODE OPTIMIZATION SEC. 10.9

predecessor but no other nodes can be added; e.g., 7 has predecessor 10.
Next, 7 becomes a header, and we can add 8 to I{7). Then, we can add 9
and 10, because these have only 8 as predecessor. Thus, the intervals in the

partition of Fig. 10.45 are:
Kb = {1,2} &
I(3) = {3} I(7)

{4,5,6}
{7,8,9,10} D

Interval Graphs

From the intervals of one flow graph G, we can construct a new flow graph
KG) by the following rules.

I. The nodes of I{G) correspond to the intervals in the interval partition of
G.

2. The initial node of I(G) is the interval of & that contains the mitial node
of G. '

3. There is an edge from interval [to a different interval J if and only if in
G there is an edge from some node in f to the header of J. Note that
there could not be an edge entering some node n of J other than the

header, from outside J, because then there would be no way n could have
been added to J in Algorithm 10.135.

We may apply Algorithm 10.15 and the interval graph coostruction alter-
nately, producing the sequence of graphs G, KG), [((G)) , Eventually,
we shall come to a graph each of whose nodes is an interval all by itself. This
graph is called the limit flow graph of G. 1t is an interesting fact that a flow
graph is reducible if and only if its limit flow graph is a single node.'?

Example 10.35. Fig. 10.48 shows the result of applying the interval construc-
tion repeatedly to Fig. 10.45. The intervals of that graph were given in
Example 10.34, and the interval graph constructed from these is in Fig.
10.48(a). Note that the edge 10 -7 in Fig. 10.45 does not cause an edge
from the node representing {7,8,9,10} to itself in Fig. 10.48(a), because the
interval graph construction explicitly excluded such loops. Also note that the

flow graph of Fig. 10.45 is reducible because its limit flow graph is a single
node. |

Node Splitting

If we reach a limit flow graph that is other than a single node, we can proceed
further only if we split one or more nodes. If a node n has k predecessors, we
may replace r by k nodes, n|, #,, ..., #;. The ith predecessor of n
becomes the predecessor of n; only, while all successors of n become

" n fact, this definition is historically the original definition.

SEC. 10.9 DATA-FLOW ANALYSIS OF STRUCTURED FLOW GRAPHS 667

(a) (b) (c) (d)

Fig. 10.48. Interval graph scquence.

successors of all of the n;’s.

If we apply Algorithm L3.15 to the resulting graph, each n; has a unique
predecessor, and so it will surely become part of that predecessor’s interval.
Thus, one node splitting plus one round of interval partitioning results in a
graph with fewer nodes. As a consequence, the comstruction of interval
graphs, interspersed when necessary with: node splitting, must eventually
attain a graph of a single node. The significance of this observation will
become clear in the next section, when we design data-flow amalysis algo-
rithms that are driven by these two operations on graphs.

Example 10.36. Consider the flow graph of Fig. 10.49%(a), which is its own
limit flow graph. We may split node 2 into 2a and 2b, with predecessors |
and 3, respectively. This graph is shown in Fig. 10.4%b). If we apply inter-

val partitioning twice, we get the sequence of graphs shown in Fig. 10.49(c)
and (d), leading to a single node. 0

T; - T, Analysis

A convenient way to achieve the same effect as interval analysis 15 to apply
two simple transformations to flow graphs.

T I ris a node with a loop, 1.¢., an edge n — n, delete that edge.

T,. If there is a node n, not the initial node, that has a unique predecessor,

m, then m may consume n by deleting n and making all successors of n
(including m, possibly) be successors of m.

Some interesting facts about the T and T, transformations are:

1. 1f we apply T and T to a flow graph G in any order, until a flow graph
results for which no applications of T, or T, are possible, then a unique
flow graph results. The reason is that a candidate for loop removal by T,

668 CODE OPTIMIZATION SEC. 10.9

(a) (b} (¢) (d)

Fig, 10,49, Node splitting followed by interval partitioning.

or consumption by T, remains a candidate, even if some other application
of Ty or T5 is made first.

2. The flow graph resalting from exhaustive application of T, and Ty to G is
the limit flow graph of G. The proof is somewhat subtle and left as an
exercise. As a consequence, another definition of “‘reducible flow graph™
is one that can be converted to a single node by T and T',.

Example 10.37. In Fig. 10.50 we see a sequence of 7, and T; reductions
starting from a flow graph that is a renaming of Fig. 10.4%b). In Fig.
10.50(b}, ¢ has consumed d. Note that the loop on e in Fig. 10.5b) results
from the edge d —¢ in Fig. 10.50(2). That loop is removed by T; in Fig.
10.50{(¢). Also note that when g consumes b in Fig. 10.50(d), the edges from

d and b to the node cd become a single edge. a
O . ® @O @@
NN ¢
(8) s O OO LOBNC
(¢)
() (b) () () (e)

Fig. 10.50. Reductionby T, and T,.

SEC. 10.9 DATA-FLOW ANALYSIS OF STRUCTURED FLOW GRAPHS 669

Regions

Recall from Section 10.5 that a region in a flow graph is a set of nodes N that
includes a header, which dominates all the other nodes in a region. All edges
between nodes in N are in the region, except (possibly) for some of those that
enter the header. For example, every interval is a region, but there are
regions that are not intervals because, for example, they may omit some nodes
an interval would include, or they may omit some edges back to the header.
There are also regions much larger than any interval, as we shall see.

As we reduce a flow graph G by T| and T, at all times the following con-
ditions are true:

l. A node represents a region of G,

2. An edge from a to b represents a set of edges. Each such edge is from

some node in the region represented by ¢ to the header of the region
represented by b.

3. Each node and edge of G is represented by exactly one node or edge of
the current graph.

To see why these observations hold, notice first that they hold trivially for
G iself. Every node is a region by itself, and every edge represents only
itself. Suppose we apply 7', to some node n representing a region R, while the
loop # — n represents some set of edges E, all of which must enter the header
of R. If we add the edges E lo region R, it is still a region, s0 after removing
the edge n — n, the node n represents R and the edges of E, which preserves
conditions (1}—(3) above.

If we instead use T, to consume node & by node a, let @ and b represent
regions R and S respectively. Also, let £ be the set of edges represented by
the edge a = b. We claim R, §, and E together form a region whose header is
the header of R. To prove this, we must verify that the header of R dom-
inates every node in S. If not, then there must be some path to the header of
§ that does not end with an edge of E. Then the last edge of this path would
have to be represented in the current flow graph by some other edge entering
b. But there can be no such edge, or T, cannot be used to consume &.

Example 10.38. The node labeled cd in Fig. 10.50{b) represents the region
shown in Fig. 10.51(a), which was formed by having ¢ consume 4. Note that
the edge d —~ ¢ 15 not part of the region; in Fig. 10.50(b) that edge is
represented by the loop on ¢d. However, in Fig. 10.50(c), the edge cd — cd
has been removed, and the node ¢d now represents the region shown in Fig.
10.51(b).

In Fig. 10.50(d), node cd still represents the region of Fig. 10.51(b), while
node ab represents the region of Fig. 10.51(c). The edpe ab — «d in Fig.
10.50(d) represents the edges @ = ¢ and b = ¢ of the original flow graph in
Fig. 10.50(a). When we apply T, to reach Fig. 10.50(¢}, the remaining node
represents the entire flow graph, Fig. 10.50(a). a

670 CODE OPTIMIZATION SEC. 10.9

(a) (b) (c)

Fig. 10.51. Some regions.

We should observe that the property of T, and T, reduction mentioned
above holds also for interval analysis. We leave as an exercise the fact that as
we construct KG), [(I(G)), and so on, each node in each of these graphs

represents a region, and each edge a set of edges satisfying property (2)
above.

Finding Dominators

We close this section with an efficient algorithm for a concept that we have
used frequently, and will continue to use in developing the theory of flow
graphs and data-flow analysis. We shall give a simple algorithm for comput-
ing the dominators of every node n in a flow graph, based on the principle
that if py, p2,. ... px are all the predecessors of »#, and & # n, then
d dom n if and only if d dom p; for each i. The method is akin to forward
data-flow analysis with intersection as the confluence operator (e.g., available
expressions), in that we take an approximation (o the set of dominators of n
and refine it by repeatedly visiting all the nodes in turn.

In this case, the initial approximation we choose has the inttial node dom-
inated only by the initial node, and everything dominating everything besides
the initial node. [ntuitively, the reason this approach works is that dominator
candidates are ruled out only when we find a path that proves, say, m dom n

is false. If we cannot find such a path, from the initial node to n avoiding m,
then m really is a dominator of ».

Algorithm 10.16. Finding dominators.
Input. A flow graph G with set of nodes N, set of edges E and initial node ny.

Ourput. The relation dom.

Method. We compute D (n}, the set of dominators of n, iteratively by the pro-
cedure in Fig. 10.52. At the end, d is in D (n) if and only if d dom n. The
reader may supply the details regarding how changes to D(n) are detected;
Algorithm 10.2 will serve as a model.

One can show that D{n) computed at line (5) of Fig. 10.52 is always a sub-
set of the currenmt D(xn). Since D (a) cannot get smaller indefinitely, we must
eventually terminate the while-loop. A proof that, after convergence, D(n) is

SEC 10.10 EFFICIENT DATA-FLOW ALGORITHMS 671

(1} D(ng) := {ng}
(2) forninN - {ny}doD(n):=N;

/% end initialization »/
(3) while changes to any D(n) occur do

(4) for nin N — {n;} do

(5 Din) = {n} U ﬂtd D{p).

Fapred:
soessor of n

Fig, 10.52. Dominator computing algorithm,

the set of dominators of n is left for the interested reader. The algorithm of
Fig. 10.52 is quite efficient, as D(n) can be represented by a bit vector and
the set operations of line (5) can be done with logical and and or. C

Example 16,39, Let us return to the flow graph of Fig. 10.45, and suppose in
the for-loop of line (4) nodes are visited in numerical order. Node 2 has only
I for a predecessor, so D(2) := {2} U D(1). Since 1 is the initial node, D (1)
was assigned {1} at line (). Thus, D(2) is set to {l, 2} at line (5).

Then node 3, with predecessors 1, 2, 4, and 8, is considered. Line (5)
gives us D) =3tudyn{n2in{,2, ..., 10h = {1,3}. The remain-
ing calculations are:

D& = 4@ N DY = {4V {L3INEL2, L 10h = {1.3,4}
D(5) = {5} U D) = {5} V{1,3,4} = {1,3,4,5)
D(6) = {6} U D(4) = {6} U {1,3,4} = {1,3.4,6}
D7) = {7} U (D(5) N D(6) N D(10))
= MU dnL3.45 N {1,346 N{1,2,...,10p = {1,347
D(8) = {8} U D(T = {8} U {1,3,4,7} = {1,3,4,7,8}
D9 = {9} U D(® = {91 U {1,3,4,7,8} = {1,3,4,7,8,9}
D10y = {10} U D(8) = {10} U {1,3.4,7,8} = {1,3,4,7.8,10}

The second pass through the while-loop 1s seer to produce no changes, so
the above values yield the relation dom. 0

10.10 EFFICIENT DATA-FLOW ALGORITHMS

In this section we shall consider two ways to use flow-graph theory to speed
data-flow analysis. The Ffirst is an application of depth-first ordering to reduce
the number of passes that the iterative algorithms of Sections 10.6 take, and
the second uses intervals or the T and T, transformations to generalize the
syntax-directed approach of Section 10.5.

672 CODE OPTIMIZATION SEC 10.10

Depth-First Ordering in Iterative Afgorithms

In all the problems studied so far, such as reaching definitions, available
expressions, or live variables, any event of significance at a node will be pro-
pagated to that node along an acyclic path. For example, if a definition & is in
in|B], then there is some acyclic path from the block containing d to B such
that d is in the ir’s and out's all along that path. Similarly, if an expression
x+y 15 not available at the entrance to block B, then there is some acyclic path
that demonstrates that fact; either the path is from the initial node and
includes no statement that kills or generates x+y, or the path is from a bleck
that kills x+y and along the path there is no subsequent gencration of x+y.
Finally, for live variables, if x is live on exit from biock B, then there is an
acyclic path from B to a use of x, along which there are no definitions of x.

The reader should check that in each of these cases, paths with cycles add
nothing. For example, if a use of x is reached from the end of block B along
a path with a cycle, we can eliminate that cycle to find a shorter path along
which the use of x is still reached from 8.

If all useful information propagates along acyclic paths, we have an oppor-
tunity to tailor the order in which we visit nodes in iterative data-flow aigo-
rithms so that after relatively few passes through the nodes, we can be sure
imformation has passed along all the acyclic paths. In particular, statistics
gathered in Knuth [1971b] show that typical flow graphs have a very low
interval depth, which is the number of times one must apply the interval parti-
tion to reach the limit flow graph; an average of 2.75 was found. Further-
more, it can be shown that the interval depth of a flow graph is never less
thann what we have cafled the “depth,” the maximum number of retreating
edges on any acyclic path. (If the flow graph is mot reducible, the depth may
depend on the depth-first spanning tree chosen.)

Recalling our discussion of the depth-first spanning tree in the previous sec-
tion, we note that if ¢ — b is an edge, then the depth-first number of b is less
than that of a only when the edge is a retreating edge. Thus, replace line (5

of Fig. 10.26, which tells us to visit each block 8 of the flow graph for which
we are computing reaching definitions, by:

for cach block 8 in depth-first order do
Suppose we have a path along which a definition o propagates, such as
J -5-+19 =35 =16 -23 =45 24 -+ |0 - |7

where integers represent the depth-first numbers of the blocks along the path.
Then the first time through the loop of lines (5)—(2) in Fig, 10.26, d will pro-
pagate from cu|3) to in|5) to owt|5|, and so on, up to cut]35). 1t will not
reach in[16] on that round. because as 16 precedes 35, we had already com-
puted in}16] by the time J was put in ow}35]. However, the next time we run
through the leop of lines (3)—(9), when we compute jn| 16|, ¢ will be included
because it is in out]35). Definition 4 will also propagate to our] 16|, in|23), and
s0 on, up to ow45], where it must wait because inf4] was already computed.

UrF S e

b

hif

SEC 10.10 EFFICIENT DATA-FLOW ALGORITHMS 673

On the third pass, 4 travels to inl4), out|4), in[10], out] 101, and in|17], so after
three passes we establish that 4 reaches block 17.1

It should not be hard to extract the general principle from this example. If
we use depth-first order in Fig. 10.26, then the number of passes needed to
propagate any reaching definition along any acyclic path is no more than one
greater than the number of edges along that path that go from a higher num-
bered block to a lower numbered block. Those edges are exactly the retreat-
ing edges, so the number of passes needed is one plus the depth. Of course
Algorithm 10.2 does not detect the fact that all definitions have reached wher-
ever they can reach for one more pass, so the upper bound on the number of
passes taken by that algorithm with depth-first block ordering is actually two
plus the depth, or 5 if we believe the results of Knuth [1971b] to be typical.

The depth-first order is also advantageous for available expressions (Algo-
rithm 10.3), or any data flow problem that we solved by propagation in the
forward direction. For problems like live variables, where we propagate back-

- wards, the same average of five passes can be achieved if we chose the reverse

of the depth-first order. Thus, we may propagate a use of a variable in block

|7 backwards along the path

351923516 =23 =45 =4 ~ 10 - |7

in one pass to in|4], where we must wait for the next pass to in order reach
out|45]). On the second pass it reaches in|16], and on the third pass it goes
from out[35] to onf3). In general, one plus the depth passes suffices to carry
the use of a variable backward, along any acyclic path, if we choose the
reverse of depth-first order to visit the nodes in a pass, because then, uses
propagate along any decreasing sequence in a single pass.

Structure-Based Data-Flow Analysis

With a bit more effort, we can implement data-flow algorithms that visit
nodes (and apply data-flow equations) no more times than the interval depth
of the flow graph, and frequently the average node will be visited even fewer
times than that. Whether the extra effort results in a true time savings has
not been firmly established, but a technique like this one, based on interval
analysis, has been used in several compilers. Further, the ideas exposed here
apply to syntax-directed data-flow algorithms for all sorts of structured control
statements, not just the if -« - then and do - - - while discussed in Section
10.5, and these have also appeared in several compilers.

We shall base our algorithm on the structure induced on flow graphs by the
T, and T, transformations. As in Section 10.5, we are concerned with the
definitions that are generated and killed as control flows through a region.
Unlike the regions defined by if or while statements. a general region can
have muluple exits, so for each block B in region R we shall compute sets

Y Definition d also reaches owt|17], but that is irrelevant to the paih in guestion.

674 CODE OPTIMIZATION SEC 10.10

geng g and killy o of definitions generated and killed, respectively, along paths
within the region from the header 1o the end of block B. These sets will be
used o define a transfer function transg g(§) that tells for any set § of defini-
tions, what set of definitions reach the ¢nd of block B by traveling along paths
wholly within R, given that all and only the definitions in S reach the header
of R.

As we have seen in Sections 10.5 and 10.6, the definitions reaching the end
of block B fall into two classes.

I. Those that are generated within R and propagate to the end of B indepen-
dent of §.

2. Those that are not generated in R, but that also are not killed along some
path from the header of R to the end of B, and therefore are in
transp p(8) if and only if they are in §.

Thus, we may write trans in the form:
transg g(8) = gengp U (5 —killg g)

The heart of the algorithm is a way to compute transg g for progressively
larger regions defined by some (T, T;)-decomposition of a flow graph. For
the motment, we assume that the flow graph is reducible, although a simple
modification allows the algorithm to work for nonreducible graphs as well.

The basis is a region consisting of a single block, 8. Here the transfer func-
tion of the region is the transfer function of the block itself, since a definition
reaches the end of the block if and only if it is either generated by the block
or is in the set § and not killed. That is,

geng g = gen|B |
kitly 5 = Kill|B |

Now, let us consider the construction of a region R by T;; that is, R is
formed when R, consumes R,, as suggested in Fig. 10.53. First, note that
within region R there are no edges from R, back to R, since any edge from
R 10 the header of R, is not a part of R. Thus any path totally within R goes
(optionally) through R, first, then (optionally) through R,, but cannot then
return to 8. Also note that the header of R is the header of R,. We may

conclude that within R, R, does not affect the transfer function of nodes in
Rl; that iS,'

Bép g = geng g
ki”R,B - kl—”ﬂ;.ﬂ'

forall Bin R,.

For 8 in Ry, a definition can reach the end of B if any of the following con-
ditiens hold.

SEC 10.1(EFFICIENT DATA-FLOW ALGORITKMS 675

Fig. 10.53. Region building by 7,.

. The definition is generated within K.

2. The definition is generated within R, reaches the end of some predeces-

sor of the header of R, and is not Killed going from the header of R, to
B.

3. The definition is in the set § available at the header of R,, not killed

going to some predecessor of the header of R4, and not Killed going from
the header of R, to B.

Hence, the definitions reaching the ends of those blocks in R, that are prede-
cessors of the header of R, play a special role. In essence, we see what hap-
pens to a set S entering the header of R as its definitions try to reach the
header of R,, via one of its predecessors. The set of definitions that reach
one of the predecessors of the header of R, becomes the input set for R, and
we apply the transfer functions for R to that set.

Thus, let G be the union of genp p for all predecessors P of the header of
R,, and let K be the intersection of killy ,» for all those predecessors £. Then
if S is the set of definitions that reach the header of R, the set of definitions
that reach the header of R, along paths staying wholly within R is

G U (§—K). Therefore, the (ransfer function in R for those blocks 8 in R,
may be computed by

gengy = geng, g V(G —killy, g)
kl‘ﬂ‘g‘a = kl'uaz.s U (K—gengz.ﬂ)

Next, consider what happens when a region R is built from a region R,
using transformation 7,. The general situation is shown in Fig. 10.54; note
that R consists of R plus some back edges to the header of R, (which is also
the header of R, of course). A path going through the header twice would be
cyclic and, as we argued earlier in the section, need not be considered. Thus,

all definitions generated at the end of block B are generated in one of two
ways.

676 CODE OPTIMIZATION SEC 10.10

Fig. 10.54, Region building by 7.

1. The definition is generated within R, and does not need the back edges
incorporated into R in order to reach the end of B.

2. The definition is generated somewhere within R, reaches a predecessor
of the header, follows one back edge, and is not Killed going from the
header (o B.

If we let G be the union of geng, p for all predecessors of the header in R,
then

genpg = genp g Y (G —&illy p)

A definition is killed going from the header to B if and only if it is killed

along all acyclic paths, so the back edges incorporated inte R do not cause
more definitions to be killed. That is,

kf”R.B = ki”ﬁ',.ﬁ

Example 10.40. Let us reconsider the flow graph of Fig. 10.50, whose
(T, Ty)-decomposition is shown in Fig. 10.55, with the regions of the decom-
position named. We also show in Fig. 10.56 some hypothetical bit vectors
representing three definitions and whether they are generated or killed by
each of the blocks in Fig. 10.55.

Starting from the inside out, we note that for single-node regions, which we
call A, B, C, and D, gen and kill are given by the table in Fig. 10.56. We may
then proceed to region R, which i1s formed when € consumes D by 74, Fol-

lowing the rules for T, above, we note that gen and kilf do not change for C.
that is,

geng ¢ = gene o = 000
kiHR.C = kl.”(*.c 010

i

For node D, we have to find in region C the union of gen for all the predeces-
sors of the header of the region D. Of course the header of region D ts node

SeC 10,10 EFFICIENT DATA-FLOW ALGORITHMS 677

Fig. 10.55. Dccomposition of a flow .graph.

BLOCK | gen | kill
A 100 | 010

& oo {101
C 000 | 010
D 001 | 000

Fig. 10.56. gen and kilf information for blocks in Fig. 10.55.

D, and there ts only one predecessor of that node in region C, namely, the
node C. Thus,

geng p = geny p U (gene e —kitly p) = 001+ (000-000) = 001
kil'-fR_;) = kjﬂ."),ﬂ U {kf”(_“(‘_g{’ﬂn.”) = OOO"’{O]O"(H]]) = 010

Now, we build region § from region R by Ty. The &ifl’s don’t change, so
we have

kl”sﬂ = kEHRT{' = 0]0
ki”s_u = kf”R_” = 010

To compule the gea's for § we note that the only back edge to the header of §
that is incorporated going from R to § is the edge D —~ C. Thus,

Beng ¢+ = Helg ¢ U (gcnn.,;—fdﬁ,g‘c) = 0(])"‘(00]_‘0“]) = (00l

By o = BURg U (g{’ﬂgin_kf”k_”) = 00|+(00I-‘U|0) = 00t

The computation for region T is analogous to that for region R and we
obtain

678 CODE OPTIMIZATION SEC 10.10

genp 4 = 100
kitly , = 010
genp g = 010
killy g = 101

Finally, we compute gen and kill for region U/, the entire flow graph. Since
{/ is constructed when T consumes § by transformation T, the values of gen
and kill for nodes A and B do not change from what was just given above.
For C and D, we note that the header of S, node C, has two predecessors in
region T, namely A and B. Therefore, we compute

G = genry U genpp = 110
K= kﬂln_& N ki”r.ﬂ = 000

Then we may compute

geny c = gengc U (G —killg o}y = 101
kf”u_c = kf”slc U (K—gengl(;) = 010
geny p = geng p U LG —killy p) = 101
kI‘HU.D = kl."_g'[) U (K_geﬂs.p) = 010 Q

Having computed geny 5 and killy, p for each block B, where U is the region
consisting of the entire flow graph, we essentially have computed oui(B] for
each block B. That is, if we look at the definition of fransy g(S) =
gengp U (§—killy p), we note that transy p((J) is exactly ow|[B]. But
transy g({&) = geny 5. Thus, the completion of the structure-based reaching
definition algorithm is to use the gen’s as the out’s, and compute the in's by

taking the union of the out’s of the predecessors. These steps are summarized
in the following algorithm.

Algorithm 10.17. Structure-based reaching definitions.

Inpur. A ceducible flow graph G and sets of definitions gen[B] and kill{B) for
each biock B of G.

Cutput. in[B] for each block B.
Method.
1. Find the (T, Ty)-decompesition for G.

2. For each region R in the decomposition, from the inside out, compute
geng g and killy 5 for each block 8 in R,

3. If U is the name of the region consisting of the entire graph, then for
each block B, set in[B] to the union, over all predecessors P of block B,
of genyp. O

SEC 10.10 EFFICIENT DATA-FLOW ALGORITHMS 679

Some Speedups to the Structure-Based Algorithm

First, notice that if we have a transfer function G U (§ — K), the function is

not changed if we delete from X some members of G. Thus, when we apply
T,, instead of using the formulas

geng g = geng, p J (G ~ killg, p)

killg g = killy, g V(K — geng, 4)
we can replace the second by

kiflg y = killg, 3 U K

thus saving an operation for each block in region R,.

Another useful idea is to notice that the only time we apply T, is after we
have first consumed some region R, by R, and there are some back edges
from R, 1o the header of R,. Instead of first making changes in R; because
of the T, operation, and then making changes in R and R, due 10 the T
operation, we can combine the two sets of changes if we do the following.

1. Using the T, rule, compute the new transfer function for those nodes in
R that are predecessors of the header of R .

2. Using the T, rule, compute the new transfer function for all the nodes of
R,.

3. Using the T; rule, compute the new transfer function for all the nodes of
R,. Note that feedback due to the application of T, has reached the
predecessors of R; and is passed to all of R, by the T, rule; there is no
need to apply the T rule for R,

Handling Nonreducible Flow Graphs

if the (T, T;)-reduction of a flow graph stops at a limit flow graph that is
not a single node, then we must perform a node splitting. Splitting a node of
the limit flow graph corresponds to duplicating the entire region represented
by that node. For example, in Fig. 10.57 we suggest the effect that node
splitting might have on an original nine-node flow graph that was partiioned
by T; and T, into three regions connected by some edges.

As mentioned in the previous section, by alternating splits with sequences of
reductions, we are guaranieed to reduce the flow graph to a singie node. The
result of the splits is that some of the nodes of the original graph will have
more than one copy in the region represented by the one-node graph. We
may apply Algorithm 10.17 to this region with little change. The oniy differ-
ence is that when we split a node, the gen’s and kifl's for the nodes of the ort-
ginal graph in the region represented by the split node must be duplicated.
For example, whatever the values of gen and kill are for the nodes in the
two-node region of Fig. 10.57 on the left become gen and kifl for each of the
corresponding nodes in both two-node regions on the right. At the final step,

680 CODE OPTIMIZATION SEC 10.10

Fig. 10.57, Splitting a nonreducible flow graph.

when we compute the in’s for all the nodes, those nodes of the original graph
that have several representatives in the final region have their in's computed
by taking the union of the in’s of all their representatives.

In the worst case, splitting of nodes could exponentiate the total number of
nodes represcnted by all the regions. Thus, if we expect many flow graphs to
be nonreducible, we probably should not use structure-based methods. For-

tunately, nonreducible flow graphs are sufficiently rare that we can generally
ignore the cost of node splitting.

10.11 A TOOL FOR DATA-FLOW ANALYSIS

As we have pointed out before, there are strong similaritics among the various

data-flow problems studied. The data-flow equations of Section 10.6 were
seen to be distinguished by:

{. The transfer function used, which in each case studied was of the form

f(Xy=AUX-8). For example, A = kill and B = gen for reaching
definitions.

2. The confluence operator, which in all cases so far has been either union
or intersection.

3. The direction of propagation of information: forward or backward.

Since these distinctions are not great, it should not be surprising that all
these problems can be treated inm a uwnified way. Such an approach was
described in Kildall [1973], and a tool to simplify the implementation of data-
flow problems was implemented by Kildall and used by him in several com-
piler projects. It has not seen widespread use, probably because the amount
of labor saved by the system is not as great as that saved by tools like parser
generators. However, we should be aware of what can be done not only
because it does suggest a simplification for implementers of optimizing

