
A Survey on Automatic Test Data Generation∗

Jon Edvardsson,
Dept. of Computer and Information Science,

Linköping University, Sweden

E-mail: joned@ida.liu.se

Abstract

In order to reduce the high cost of manual software
testing and at the same time to increase the reliabil-
ity of the testing processes researchers and practition-
ers have tried to automate it. One of the most impor-
tant components in a testing environment is an auto-
matic test data generator — a system that automati-
cally generates test data for a given program. Through
the years several attempts in automatic test data gen-
erations have been made. The focus of this article is
program-based generation, where the generation starts
from the actual programs. Thus, techniques such as
GUI-based and syntax-based test data generation are
not an issue in this article.

In this article I present a survey on automatic test
data generation techniques that can be found in cur-
rent literature. Basic concepts and notions of test data
generation as well as how a test data generator sys-
tem works are described. Problems of automatic gen-
eration are identified and explained. Finally important
and challenging future research topics are presented.

1. Introduction

Software testing accounts for 50% of the total cost of
software development [1]. This cost could be reduced
if the process of testing is automated. One way to do
this would be to generate input data to the program to
be tested — program-based test data generation.

Through the years a number of different methods
for generating test data have been presented. In 1996
Ferguson and Korel [5] divided these methods in three
classes: random, path-oriented, and goal-oriented test

∗Published as: J. Edvardsson. A survey on automatic test
data generation. In Proceedings of the Second Conference on
Computer Science and Engineering in Linköping, pages 21–28.
ECSEL, October 1999.

data generation. This is the most appropriate classi-
fication in terms of test data generation, although the
problem of path selection is not considered separately.
The selection of a path can largely affect the whole
process of test data generation.

Figure 1 models a typical test data generator sys-
tem, which consists of three parts: program analyzer,
path selector and test data generator. The source code
is run through a program analyzer, which produces the
necessary data used by the path selector and the test
data generator. The selector inspects the program data
in order to find suitable paths. Suitable can for in-
stance mean paths leading to a high code coverage.
The paths are then given as argument to the test data
generator which derives input values that exercise the
given paths. The generator may provide the selector
with feedback such as information concerning infeasi-
ble paths.

The structure of this paper is as follows. In sec-
tion 2 basic concepts and notions are explained. Sec-
tion 3 discusses the test data generator system with
focus on the generator and the path selector. The pro-
gram analyzer is not further investigated in this article.
In section 4 the problems I have identified in test data
generation are discussed. Finally, in section 5 conclu-
sions are made and future research topics are presented.

2. Basic Concepts

A program P could be considered as a function, P :
S → R, where S is the set of all possible inputs and R
the set of all possible outputs. More formally S is the
set of all vectors x = (d1, d2, · · · , dn) such that di ∈ Dxi

where Dxi is the domain of input variable xi.
An input variable x of P is a variable that either

appears as an input parameter of P or in an input
statement of P, e.g. read(x). Execution of P for a
certain input x is denoted by P(x).

A control flowgraph, or just flowgraph when con-
text is clear, is a graphical representation of a pro-

1

Program
Analyser

Path
Selector

Test Data
Generator

Control
Flowgraph

Test
Paths

Test Data

Control
Flowgraph

Data
Dependence

Graph Path
Info

Figure 1. Architecture of a test data generator
system.

gram. There exist many different definitions on con-
trol flowgraphs throughout the literature. Depending
on the properties of the language to model, the defi-
nition might differ [5, 6]. The definition used here has
been inspired by Beizer [1] as well as Korel et al. [5, 8].
Figure 3 shows a sample flowgraph and its correspond-
ing program.

A control flowgraph of a program P is a directed
graph G = (N,E, s, e) consisting of a set of nodes N
and a set of edges E = {(n,m)|n,m ∈ N} connect-
ing the nodes. In each flowgraph there are two special
nodes: one entry- and one exit-node, s and e respec-
tively.

Each node is defined as a basic block, which is an un-
interrupted consecutive sequence of instructions, where
the flow of control enters in the beginning and leaves at
the end without halt or possibility of branching except
at the end. Intuitively this means that if any statement
of the block is executed, then the whole block is exe-
cuted. Furthermore, there are no jumps in the program
targeting an instruction within the block.

An edge between two nodes n and m corresponds to
a possible transfer from n to m. All edges are labeled
with a condition or a branch predicate. The branch
predicate might be the empty predicate which is always
true. In order to traverse the edge the condition of
the edge must hold. At any given time no node can
have two or more edges with a condition yielding true
(otherwise we would end up with a non-deterministic
flowgraph). If a node has more than one outgoing edge

int triType(int a, int b, int c) {
1 int type = PLAIN;
1 if (a < b)
2 swap(a, b);
3 if (a < c)
4 swap(a,c)
5 if (b < c)
6 swap(b, c)

7 if (a == b) {
8 if (b == c)
9 type = EQUILATERAL;
. else
10 type = ISOSCELES;
. }

11 else if (b == c)
12 type = ISOSCELES;
13 return type;
}

Figure 2. A program that determines the type
of a triangle given its sides.

we sometimes refer to the node as a condition and the
edges as branches.

A (specific) path is a sequence of nodes p = 〈p1,
p2, · · · , pqp〉, where pqp is the last node of path p and
(pi, pi+1) ∈ E for 1 ≤ i < qp − 1. Whenever the execu-
tion of P(x) traverses a path p, we say that x traverses
p. A path is (absolutely) feasible if there exists an in-
put x ∈ S that traverses the path, otherwise the path
is (absolutely) infeasible. For a certain input x, an ab-
solutely feasible path p could be infeasible [12]. We
say that p is infeasible relative to x or just relatively
infeasible.

A path that begins with the entry node and ends
with the exit node is called a complete path. Otherwise
it is called an incomplete path or a path segment.

Let p = 〈p1, p2, · · · , pqp〉 and w = 〈w1, w2, · · · ,
wqw〉 be two paths then pw = 〈p1, p2, · · · , pqp , w1, w2,
· · · , wqw〉 denotes the concatenation of p and w. Let
first(p) denote the first node p1 of path p and let
last(p) denote the last node pqp of p. We say that
two paths connect if (last(p), first(w)) ∈ E, where E
is the set of edges.

If p and w are two specific paths (or path segements),
we say that pw is an unspecific path if p and w do not
connect. Moreover, we say that a path q complements
pw if and only if pqw is specific.

2

1

2

3

4

5

6

7

8

910

11

12

13

a ≤ b

a > b

a ≤ c

a > c

b ≤ c

b > c

a 6= b

a = b

b 6= c b = c

b = c

b 6= c

s

e

Figure 3. A flowgraph of the program in fig-
ure 2.

For an unspecific path u = p1p2 · · · pn, where pi is
specific, we define the closure of u, denoted by u∗, as
the set of all paths p1q1p2q2 · · · qn−1pn such that qi
complements pipi+1.

Example 1 Informally an unspecific path is a path
with some path segments missing. For instance, p =
〈3, 10, 13〉 in figure 3 is an unspecific path segment com-
posed by 〈3〉 and 〈10, 13〉. 2

Example 2 The complement of p in example 1 is the
path segment 〈4, 5, 7, 8〉, since 〈3, 4, 5, 7, 8, 10, 13〉 is a
specific path. 2

Example 3 Intuitively an unspecific path is a wild
card for paths. The closure then represent a list-
ing of those paths. For instance in figure 3 we
have the path that begins in the start node and
ends in the exit node 〈s, e〉. Its closure would then
be all paths between the entry and exit node in-
clusively. The closure 〈1, 2, 13〉∗ contains all paths

that start in node 1, end in node 13 and have 2 as
the second node. The closure of path 〈3, 10, 13〉 is
the set of paths {〈3, 5, 7, 8, 10, 13〉, 〈3, 4, 5, 7, 8, 10, 13〉,
〈3, 5, 6, 7, 8, 10, 13〉, 〈3, 4, 5, 6, 7, 8, 10, 13〉}. 2

In order for execution to continue through a branch
the corresponding branch predicate has to be true.
Thus, to traverse a certain path a conjunction P =
c1 ∧ c2 ∧ · · · ∧ cn of branch predicates ci must hold. We
say that P is a path predicate.

3. An Automatic Test Data Generator
System

A test data generator system consists of three parts:
a program analyzer, a path selector, and a test data
generator. In this article I will keep the focus on the
selector and the generator. Therefore let us assume
that the analyzer exists and works properly.

3.1. The Test Data Generator

At this point let us define the problem of automatic
test data generation as follows: given a program P and
a (unspecific) path u, generate input x ∈ S, so that x
traverses u.

This means that we can assume to have a program
analyzer and a path selector such as in figure 1. The
program analyzer provides all information concerning
the program: data-dependence graphs, control flow-
graphs etc. In turn the path selector identifies paths
for which the test data generator will derive input val-
ues. Depending on the type of generator system paths
could either be specific or unspecific.

Our goal is to find input values that will traverse
the paths received from the selector. This is achieved
in two steps. First find the path predicate for the
path. Second, solve the path predicate in terms of
input variables. The solution will then be a system
of (in)equalities describing how input data should be
formed in order to traverse the path.

Having such a system we can apply various search
methods to come up with a solution. Examples of
search methods are alternating variable, simulated an-
nealing, and different heuristics based on equation-
rewriting systems [5, 14, 3].

Due to the complexity of the derived equation sys-
tems some techniques solve one branch predicate at a
time. This leads to a loss of performance since it makes
it necessary to check that violations of other previously
solved predicates do not occur.

3

Example 4 Find a path predicate for p = 〈1, 2, 3, 5,
6, 7, 8, 10, 13〉 in figure 3.

Before getting in to the details of finding such a path
predicate we will see what happens if we execute the
program on the input (5, 4, 4). Doing this we find that
path p is actually traversed. Let us now construct a
path predicate P ′ that is a conjunction of all branch
predicates encountered when traversing the path.

P ′ = (a > b) ∧ (a ≤ c) ∧ (b > c) ∧ (a = b) ∧ (b 6= c)

By letting a = 5, b = 4, and c = 4, we check whether
P ′ holds. Since (5, 4, 4) does traverse the path p, then
any path predicate corresponding to p must hold.

P ′ = (5 > 4) ∧ (5 ≤ 4) ∧ (4 > 4) ∧ (5 = 4) ∧ (4 6= 4)

Plainly we see that this is not the case. But why?
When we constructed the path predicate we ignored the
execution of the nodes of 1, 2, 6, and 10. Consequently,
by not letting the side effects propagate over the path
predicate it ended up incorrectly. For instance, assume
that the program is executed on input (5, 4, 4) and that
we pause the execution when it reaches node 7. Now,
at this point we should expect a = 4 and b = 5, be-
cause before reaching node 7 the statement swap(a,b)
was executed and thus setting a = 4 and b = 5. In
the case of path predicate P ′ the swap(a,b) was not
considered and therefore a and b still are equal to 5 and
4 respectively.

1 (a > b) int type = PLAIN;
3 (a ≤ c) swap(a, b);
5 (b > c)
7 (a = b) swap(b, c);
8 (b 6= c)

13 > type = ISOSCELES;


The above structure illustrates the data dependen-

cies among the branch predicates. Each row depends
upon execution of itself as well as the previous rows.
For instance, before checking whether (a = b) in row
7 holds, the following must be executed: int type =
PLAIN; swap(a, b); swap(b, c);.

Thus, in order to adjust the branch predicates to
take data dependence into account do the following.
Start with the first row and execute its code. Update
all succeeding rows (including the current condition)
according to the side effects. Continue with the next
row until all rows have been processed.

· · · 2 iter
;


1 (a > b)
3 (b ≤ c)
5 (a > c)
7 (b = a) swap(a, c);
8 (a 6= c)

13 > type = ISOSCELES;



· · · 4 iter
;


1 (a > b)
3 (b ≤ c)
5 (a > c)
7 (b = c)
8 (c 6= a)

13 >


Now each row corresponds to a branch predicate

which is adjusted according to the execution of nodes
1, 2, 6, and 10. This gives us the new path predicate
P = (a > b) ∧ (b ≤ c) ∧ (a > c) ∧ (b = c) ∧ (c 6= a). If
we again substitute a = 5, b = 4, and c = 4 we see that
P holds.

P = (5 > 4) ∧ (4 ≤ 4) ∧ (5 > 4) ∧ (4 = 4) ∧ (4 6= 5)

Thus, P is a valid path predicate for p = 〈1, 2, 3, 5,
6, 7, 8, 10, 13〉. 2

Basically there are three approaches when construct-
ing a test data generator: randomly generate test data,
generate test data for an unspecific path, or generate
test data for a specific path. These approaches fall into
the three classes of random, goal-oriented, and path-
oriented test data generation. Each of these can be
implemented statically or dynamically.

3.1.1. Static and Dynamic Test Data Generation

To come up with a transformed system of equations
as in example 4 we can use either symbolic execution
or actual execution, i.e. the generation occurs either
statically or dynamically.

In the 70’s most approaches made use of symbolic
execution. Executing a program symbolically means
that instead of using actual values variable substitution
is used. The idea is to end up with an expression in
terms of input variables. For instance, let a and b be
input variables.

c := a + b;
d := a - b;
e := c*d;

Then e in the above code will contain a*a - b*b.
One realizes that this technique requires plenty of com-
puter resources, e.g. expressions have to be resolved
and transformed. It also puts a lot of restrictions on
the program. For instance, how should function calls
to modules where there is no access to source code be
handled? Furthermore, symbolic execution also implies
that a symbolic evaluator for the particular language
is built which indeed requires a great amount of work.

4

But there are gains as well. For instance, it requires no
violation checks of branch predicates since all can be
solved at once.

The opposite of symbolic execution is actual exe-
cution. Instead of using variable substitution run the
program with some, possibly randomly, selected input.
Consequently, values of variables are known at any time
of the execution. By monitoring the program flow the
system can determine if the intended path was taken.
If not, it backtracks to the node where the flow took
the wrong direction. Using different kinds of search
methods the flow can be altered by manipulating the
input in a way that the intended branch is taken. This
technique is quite expensive. It can require many iter-
ations before a suitable input is found. Upon changing
the flow at a particular node, the flow at an earlier
point may accidently change. Actual execution also
suffers from the speed of execution for the program to
analyze. Besides, to monitor the program flow code
is instrumented, i.e. to put probes in the program to
ascertain path traversal.

In an article by Gupta et al. [7] a hybrid of the two
forms is presented. It combines the gains of both kinds,
thus it does not requires as many executions to find an
appropriate input.

3.1.2. Random Test Data Generation

Random testing is the simplest method of genera-
tion techniques. It could actually be used to generate
input values for any type of program since, ultimately,
a data type such as integer, string, or heap is just a
stream of bits. Thus, for a function taking a string
as an argument we can just randomly generate a bit
stream and let it represent the string.

On the contrary, random testing mostly does not
perform well in terms of coverage. Since it merely re-
lies on probability it has quite low chances in finding
semantically small faults [11], and thus accomplish high
coverage. A semantically small fault is such a fault that
is only revealed by a small percentage of the program
input. Consider the following piece of code:

void foo(int a, int b) {
if (a == b) then
write(1);

else
write(2);

}

The probability of exercising the write(1) state-
ment is 1/n, where n is the maximum integer, since in
order to execute this statement variables a and b must
be equal. We can easily imagine that generating even

more complex structures than integers will give us even
worse probability.

Often evaluation of search methods uses random
testing as a benchmark [3, 2, 5], since it is considered
to be of the lowest acceptance rate.

3.1.3. Goal-Oriented Test Data Generation

The goal-oriented approach is much stronger than
random generation, in the sense of providing a guid-
ance towards a certain set of paths. Instead of letting
the generator generate input that traverses from the
entry to the exit of a program, it generates input that
traverses a given unspecific path u. Because of this, it
is sufficient for the generator to find input for any path
p ∈ u∗. This in turn reduces the risk of encountering
relatively infeasible paths and provides a way to direct
the search for input values as well.

Two methods using this technique have been found:
the chaining approach and assertion-oriented approach.
The latter is an interesting extension of the chaining
approach. They have all been implemented in the
TESTGEN system [5, 9].

Typical for the chaining approach is the use of data
dependence to find solutions to branch predicates. The
characteristics of chaining is to identify a chain of nodes
that are vital to the execution of the goal node. This
chain is built up iteratively during execution.

Since this method uses the find-any-path concept it
is hard to predict the coverage given a set of goals.

Assertion-oriented testing truly utilizes the power of
goal-oriented generation. Certain conditions, called as-
sertions are either manually or automatically inserted
in the code. When an assertion is executed it is sup-
posed to hold, otherwise there is an error either in the
program or in the assertion. For instance, with the
following code:

void fie(int a) {
int b = (a+1)*(a-1);
assert(b != 0);
write(1/b);

}

we say that before executing 1/b the variable b must
not be zero. The goal of assertion-oriented generation
is then to find any path to an assertion that does not
hold.

An advantage with assertion-oriented testing is that
the oracle (see section 4.7) is given in the code. That
is, in all the other methods the expected value of an ex-
ecution of the generated test data has to be calculated
from some other source than the code. With assertions
this is not necessary since expected value is provided
within the assertion.

5

3.1.4. Path-Oriented Test Data Generation

Path-oriented generation is strongest among the
three approaches. It does not provide the generator
with a possibility of selecting among a set of paths,
but just one specific. In this way it is the same as a
goal-oriented test data generation, except for the use
of specific paths. Successively this leads to a better
prediction of coverage. On the other hand it is harder
to find test data.

CASEGEN [13] and TESTGEN [8] are two systems
using this technique. Since they are solely based on
the control flow graph they often lead to selection of
infeasible paths (both relatively and absolutely).

DeMillo and Offutt [4] have proposed a constraint-
based test data generation method. It is focused
on fault-based testing using mutants, i.e. a deliberate
change in the source code. However, it is not clear how
paths are selected and since this technique is somewhat
similar to assertion-oriented testing it could fit under
goal-oriented test data generation as well.

3.2. The Path Selector

The other component of the test data generator sys-
tem in figure 1 is the path selector. Effectiveness of
the whole system is highly dependent on how paths
are selected.

In path selection we would rather define the auto-
matic test data generation problem as given a program
P find the least set of paths in P such that it meets a
specified coverage criterion.

This means, not only it is vital to find test data
given a path, but also to find good test data. By care-
fully selecting paths we can come up with a set test of
test data that covers the program. The stronger the
coverage criterion the more paths have to be selected.
Below is a list of the most cited criteria.

Statement coverage Execute all statements in the
flowgraph.

Branch coverage Encounter all branches in the pro-
gram, e.g. the predicate of an if-statement must
be evaluated to both true and false.

Condition coverage Each clause within each condi-
tion of the flowgraph must be executed to both
true and false, some time during execution.

Multiple-condition coverage Each combination of
truth values of each clause of each condition must
be executed during execution.

Path coverage Traverse each path in the flowgraph.

1

2

3

4

Figure 4. A sample control flowgraph

Statement coverage is the weakest of them, though
it is not obvious. Figure 4 illustrates the weakness: to
achieve statement coverage it is enough to select the
path 〈1, 2, 3, 4〉, on the other hand, to achieve branch
coverage the path of 〈1, 3, 4〉 must also be traversed.
This means that in statement coverage it is possible
that faults depending on non-execution of node 2 are
left unexplored.

The stronger criteria of condition, multiple-condi-
tion and path coverage are often infeasible to achieve
for programs of more than moderate complexity, and
thus branch coverage has been recognized as basic mea-
sure for testing[12].

Up to my knowledge only one method of how to
achieve coverage has been proposed: the path-prefix
strategy introduced by Prather and Myers [12] that
ensures branch coverage modulo (relatively) infeasible
paths. The strategy has been adopted by Chang et
al. [2] in their heuristic approach for test data genera-
tion. More research in path selection is desirable.

4. Problems of Test Data Generation

In this section problems encountered in test data
generation are explored. Due to the complexity of the
generation problem a great deal of the work has been
based on toy programs, i.e. programs that either are
very short in length, low in complexity, or lack the use
of many standard language features such as abstract
data types and pointers. Hence, not resembling any-
thing that is developed for instance in industry.

4.1. Arrays and Pointers

Arrays and pointers are actually similar constructs
and suffer from the same kind of problems, though
some are more evident for one or the other. In symbolic
execution arrays and pointers complicate the substitu-
tion, since values of variables are not known. Consider

6

a condition statement using an array element by index-
ing with a variable:

input(i,j);
a[j] = 2;
a[i] = 0;
a[j] = a[j] + 1;
if (a[j] = 3) ...

If i is equal to j then a[j] in the if statement
is 1 otherwise it is 3. This is similar as saying if
(something = 3) Ramamoorthy et al. [13] pro-
pose an approach to solve this problem by creating a
new instance of the assigned array whenever there is an
unambiguity. Whenever such unambiguity is resolved
so are the array instances as well. Of course this tech-
nique suffers a large performance penalty. In the case
of actual execution this is not an issue, since values are
known at runtime.

Not only the indexing problem has to be regarded,
but also the shape problem has to be addressed. The
shape problem is closely related to the loop problem in
section 4.3. Think of a program that takes a complex
dynamic data type such as a heap as input and per-
forms some action upon it. In order to generate this
structure as input, the generator must not only figure
out internal shape of the structure (e.g. how heap nodes
are connected), but also how large structure to gener-
ate (e.g. the number of nodes in the heap). Up to now
only one attempt in solving the problem of generating
dynamic data structures has been encountered [8]. The
method was based on actual execution. How well this
solution works is not clear.

4.2. Objects

Generating objects is by definition at least as hard as
the pointer problem, since they often are dynamically
allocated. To this the concepts of abstract classes, in-
heritance and polymorphism are added and thus makes
it impossible at compile time to determine what code
that is to be called. This means that any solutions to
this problem have to be dynamic. Up to my knowledge
there are no papers concerning this problem.

4.3. Loops

Loops depending on input variables, i.e. not hav-
ing a constant number of iterations, becomes a trouble
zone. Actually, as long as the given path to generate is
specific loops in themselves cause no problem, since the
exact amount of iterations then can be derived from the
path. The problem is merely reduced to the problem
of tuning the loop variables. But if the loop happens

to lie in the unspecific part of a path it turns out to be
a lot more difficult.

In the case of symbolic evaluation a closed form of
the loop must be derived. This is generally not a simple
task. Instead, Ramamoorthy et al. [13] suggest that
the loop is executed K times, where K is chosen by
the user or by the test data generator. The same is
valid for actual execution.

4.4. Modules

Generally a program is divided into functions and
modules. Considering symbolic execution, in the case
of generating test data for a function containing other
(non-recursive) function calls, Ramamoorthy et al. [13]
have proposed two solutions: either the brute force so-
lution by inlining the called functions into the target,
or by analyzing the called functions first and generate
path predicates for those functions.

But often source code of a function or a module is
not accessible, e.g. precompiled libraries, and therefore
a complete static analysis of the called functions is not
possible. In actual execution, however, source code is
not needed in the same extent.

4.5. Infeasible Paths

Generating test data in order to traverse a path in-
volves solving a system of equations. If the system
has no solution we can conclude that the path given
is indeed infeasible. The problem is that solving an
arbitrary system of equations is undecidable. If the
system is linear we can by Gaussian elimination con-
clude whether that path is feasible [7]. For non-linear
systems it becomes more inconvenient. All methods
studied have set a highest number of iterations to do
before abandoning the path as infeasible in order not
to end up in an infinite loop.

4.6. Constraint Satisfaction

All encountered methods (except for random test-
ing) have to satisfy some constraint, i.e. solve a path
predicate or branch predicate. Most of the encountered
methods use poor constraint satisfaction techniques,
due to the fact that this is a difficult problem. Be-
cause of function calls all constraints cannot be solved
in symbolic execution. The dynamic approaches do not
suffer from function calls to the same extent, but there
will still be constraints to satisfy.

Encountered search methods for solving constraints
are among others alternating variable, simulated an-
nealing, genetic algorithms, iterative relaxation and
different heuristics [5, 14, 10, 7, 3].

7

4.7. Oracle

One way to drastically reduce the effort of testing
is to have an oracle that would check if the test case
failed or not. Having an oracle is especially impor-
tant in automatic generation, since many inconceivable
tests can be produced. Unfortunately, the only way of
achieving an oracle is to supply extra information with
the source code, e.g. a (requirement or design) speci-
fication, adding assertions or some other form of logic
description of the program.

5. Conclusions

There have been several attempts in automation of
test data generation. Attempts to simplify the pro-
cess of constraint satisfaction have been made through
introducing rule-based test data generation [3], and
through the removal of path constraints in favor of
goals [5].

The most promising search methods seems to be
simulated annealing and genetic algorithms for their
data type independence and iterative relaxation for its
predictability. This is an area where there is much more
to investigate, particularly in the object-oriented field.

A typical characteristic of the generators are that
they handle only booleans, integers, reals and arrays
(to some extent). However, there has been one attempt
by Korel [8] in using pointers. The AI algorithms (e.g.
genetic algorithms) tend to be better in dealing with
more complex structures.

The answer whether to use symbolic execution or
actual execution is to combine both of them. For in-
stance, my intuitive opinion is that the shape problem
is best solved using both static and dynamic analysis,
and maybe some extensions to the data structure dec-
laration, like introducing assertions. In this way an
analyzer gets help in deriving a shape of the dynamic
structure.

I have identified the following topics as interesting
and challenging for further research:

• Constraint-satisfaction techniques

• Object-oriented programs

• Pointers and shapes

• Assertions

• Modules

• Path selection

• Data and control dependency

• Oracle problem

References

[1] B. Beizer. Software Testing Techniques. Van Nostrand
Reinhold, 2nd edition, 1990.

[2] K. Chang, W. Carlisle, J. Cross II, and D. Brown. A
heuristic approach for test case generation. In Proceed-
ings of the 1991 ACM Computer Science Conference,
pages 174–180. ACM, 1991.

[3] W. H. Deason, D. Brown, K. Chang, and J. H.
Cross II. A rule-based software test data generator.
IEEE Transactions on Knowledge and Data Engineer-
ing, 3(1):108–117, March 1991.

[4] R. A. DeMillo and A. J. Offutt. Constraint-based au-
tomatic test data generation. IEEE Transactions on
Software Engineering, 17(9):900–910, September 1991.

[5] R. Ferguson and B. Korel. The chaining approach for
software test data generation. IEEE Transactions on
Software Engineering, 5(1):63–86, January 1996.

[6] R. Ferguson and B. Korel. Generating test data for dis-
tributed software using the chaining approach. Infor-
mation and Software Technology, 38(1):343–353, Jan-
uary 1996.

[7] N. Gupta, A. P. Mathur, and M. L. Soffa. Auto-
mated test data generation using an iterative relax-
ation method. In Proceedings of the ACM SIGSOFT
sixth international symposium on Foundations of soft-
ware engineering, pages 231–244, November 1998.

[8] B. Korel. Automated software test data genera-
tion. IEEE Transactions on Software Engineering,
16(8):870–879, August 1990.

[9] B. Korel and A. M. Al-Yami. Assertion-oriented au-
tomated test data generation. In Proceedings of the
18th International Conferance on Software Engineer-
ing (ICSE), pages 71–80. IEEE, 1996.

[10] C. Michael and G. McGraw. Automated software test
data generation for complex programs. In 13th IEEE
International Conferance on Automated Software En-
gineering, pages 136–146, October 1998.

[11] J. Offutt and J. Hayes. A semantic model of program
faults. In International Symposium on Software Test-
ing and Analysis (ISSTA 96), pages 195–200. ACM
Press, 1996.

[12] R. E. Prather and J. P. Myers, Jr. The path prefix
software testing strategy. IEEE Transactions on Soft-
ware Engineering, SE-13(7):761–765, July 1987.

[13] C. V. Ramamoorthy, S. F. Ho, and W. T. Chen. On
the automated generation of program test data. IEEE
Transactions on Software Engineering, SE-2(4):293–
300, December 1976.

[14] N. Tracey, J. Clark, and K. Mander. Automated pro-
gram flaw finding using simulated annealing. In Pro-
ceedings of ACM SIGSOFT international symposium
on Software testing and analysis, volume 23, pages 73–
81, March 1998.

8

