
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

A Survey of Program Slicing Techniques

F. Tip

Computer Science/Department of Software Technology

CS-R9438 1994

A Survey of Program Slicing Techniques

Frank Tip

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

tip@cwi.nl

Abstract

A program slice consists of the parts of a program that (potentially) a�ect the

values computed at some point of interest, referred to as a slicing criterion. The task

of computing program slices is called program slicing. The original de�nition of a

program slice was presented by Weiser in 1979. Since then, various slightly di�erent

notions of program slices have been proposed, as well as a number of methods to

compute them. An important distinction is that between a static and a dynamic slice.

The former notion is computed without making assumptions regarding a program's

input, whereas the latter relies on some speci�c test case.

Procedures, arbitrary control ow, composite datatypes and pointers, and inter-

process communication each require a speci�c solution. We classify static and dynamic

slicing methods for each of these features, and compare their accuracy and e�ciency.

Moreover, the possibilities for combining solutions for di�erent features are investi-

gated. We discuss how compiler-optimization techniques can be used to obtain more

accurate slices. The paper is concluded with an overview of the applications of pro-

gram slicing, which include debugging, program integration, dataow testing, and

software maintenance.

1991 Mathematics Subject Classi�cation: 68Q55 [Theory of computing]: Seman-

tics, 68Q60 [Theory of computing]: Speci�cation and veri�cation of programs.

1991 CR Categories: D.2.2 [Software engineering]: Tools and Techniques, D.2.5

[Software engineering]: Testing and debugging, D.2.6 [Software engineering]:

Programming environments, D.2.7 [Software engineering]: Distribution and Main-

tenance.

Key Words & Phrases: Program slicing, static slicing, dynamic slicing, program anal-

ysis, debugging, data dependence, control dependence, program dependence graph.

1 slice n0sl��sn n 1 : a thin at piece cut from something 2 : a wedge-shaped blade

(as for serving �sh) 3 : a ight of a ball (as in golf) that curves in the direction of

the dominant hand of the player propelling it
2 slice vb sliced; slic-ing 1 : to cut a slice from; also to cut into slices 2 : to hit (a

ball) so that a slice results

The Merriam-Webster Dictionary

1

1 Overview

We present a survey of algorithms for program slicing that can be found in the present

literature. A program slice consists of the parts of a program that (potentially) a�ect the

values computed at some point of interest, referred to as a slicing criterion. Typically, a

slicing criterion consists of a pair (line-number; variable). The parts of a program which

have a direct or indirect e�ect on the values computed at a slicing criterion C are called

the program slice with respect to criterion C. The task of computing program slices is

called program slicing.

The original concept of a program slice was introduced by Weiser [82, 83, 85]. Weiser

claims that a slice corresponds to the mental abstractions that people make when they

are debugging a program, and suggests the integration of program slicers in debugging

environments. Various slightly di�erent notions of program slices have been proposed,

as well as a number of methods to compute slices. The main reason for this diversity is

the fact that di�erent applications require di�erent properties of slices. Weiser de�ned a

program slice S as a reduced, executable program obtained from a program P by removing

statements, such that S replicates part of the behavior of P . Another common de�nition of

a slice is a subset of the statements and control predicates of the program which directly

or indirectly a�ect the values computed at the criterion, but which do not necessarily

constitute an executable program. An important distinction is that between a static and

a dynamic slice. The former notion is computed without making assumptions regarding a

program's input, whereas the latter relies on some speci�c test case. Below, in Sections 1.1

and 1.2, we consider these notions in some detail.

Features of programming languages such as procedures, arbitrary control ow, com-

posite datatypes and pointers, and interprocess communication each require a speci�c

solution. Static and dynamic slicing methods for each of these features are classi�ed and

compared in terms of accuracy and e�ciency. In addition, we investigate the possibilities

for integrating solutions for di�erent language features. Throughout this paper, slicing

algorithms are compared by applying them to similar examples.

1.1 Static Slicing

Figure 1 (a) shows an example program which asks for a number n, and computes the sum

and the product of the �rst n positive numbers. Figure 1 (b) shows a slice of this program

with respect to criterion (10, product). As can be seen in the �gure, all computations

involving variable sum have been `sliced away'.

In Weiser's approach, slices are computed by computing consecutive sets of indirectly

relevant statements, according to data ow and control ow dependences. Only statically

available information is used for computing slices; hence, this type of slice is referred

to as a static slice. An alternative method for computing static slices was suggested

by Ottenstein and Ottenstein [69], who restate the problem of static slicing in terms

of a reachability problem in a program dependence graph (PDG) [27, 58]. A PDG is a

directed graph with vertices corresponding to statements and control predicates, and edges

corresponding to data and control dependences. The slicing criterion is identi�ed with a

vertex in the PDG, and a slice corresponds to all PDG vertices from which the vertex under

consideration can be reached. Various program slicing approaches we discuss later utilize

modi�ed and extended versions of PDGs as their underlying program representation. Yet

2

(1) read(n);

(2) i := 1;

(3) sum := 0;

(4) product := 1;

(5) while i <= n do

begin

(6) sum := sum + i;

(7) product := product * i;

(8) i := i + 1

end;

(9) write(sum);

(10) write(product)

(1) read(n);

(2) i := 1;

(3)

(4) product := 1;

(5) while i <= n do

begin

(6)

(7) product := product * i;

(8) i := i + 1

end;

(9)

(10) write(product)

(a) (b)

Figure 1: (a) An example program. (b) A slice of the program w.r.t. criterion (10, product).

another approach was proposed by Bergeretti and Carr�e [16], who de�ne slices in terms of

information-ow relations which are derived from a program in a syntax-directed fashion.

The slices mentioned so far are computed by gathering statements and control pred-

icates by way of a backward traversal of the program, starting at the slicing criterion.

Therefore, these slices are referred to as backward (static) slices. Bergeretti & Carr�e were

the �rst to de�ne a notion of a forward static slice in [16], although Reps and Bricker were

the �rst to use this terminology [73]. Informally, a forward slice consists of all statements

and control predicates dependent on the slicing criterion, a statement being `dependent'

on the slicing criterion if the values computed at that statement depend on the values

computed at the slicing criterion, or if the values computed at the slicing criterion de-

termine the fact if the statement under consideration is executed or not. Backward and

forward slices
1
are computed in a similar way; the latter requires tracing dependences in

the forward direction.

1.2 Dynamic Slicing

Although the exact terminology `dynamic program slicing' was �rst introduced by Korel

and Laski in [56], dynamic slicing may very well be regarded as a non-interactive variation

of Balzer's notion of owback analysis [10]. In owback analysis, one is interested how

information ows through a program to obtain a particular value: the user interactively

traverses a graph that represents the data and control dependences between statements

in the program. For example, if the value computed at statement s depends on the values

computed at statement t, the user may trace back from the vertex corresponding to state-

ment s to the vertex for statement t. Recently, owback analysis has been implemented

e�ciently for parallel programs [22, 67].

In the case of dynamic program slicing, only the dependences that occur in a speci�c

execution of the program are taken into account. A dynamic slicing criterion speci�es

the input, and distinguishes between di�erent occurrences of a statement in the execution

history; typically, it consists of triple (input; occurrence of a statement; variable). An al-

ternate view of the di�erence between static and dynamic slicing is that dynamic slicing

1Unless stated otherwise, \slice" will denote \backward slice" in the sequel.

3

(1) read(n);

(2) i := 1;

(3) while (i <= n) do

begin

(4) if (i mod 2 = 0) then

(5) x := 17

else

(6) x := 18;

(7) i := i + 1

end;

(8) write(x)

(1) read(n);

(2) i := 1;

(3) while (i <= n) do

begin

(4) if (i mod 2 = 0) then

(5) x := 17

else

(6) ;

(7) i := i + 1

end;

(8) write(x)

(a) (b)

Figure 2: (a) Another example program. (b) Dynamic slice w.r.t. criterion (n = 2, 81, x).

assumes a �xed input for a program, whereas static slicing does not make assumptions

regarding the input. Hybrid approaches, where a combination of static and dynamic

information is used to compute slices, are described in [22, 26, 49, 79].

Figure 2 shows an example program and its dynamic slice w.r.t. the criterion (n = 2,

8
1
, x), where 81 denotes the �rst occurrence of statement 8 in the execution history of the

program. Note that for input n = 2, the loop is executed twice, and that the assignments

x := 17 and x = 18 are each executed once. In this example, the else branch of the if

statement may be omitted from the dynamic slice since the assignment of 18 to variable

x in the �rst iteration of the loop is `killed' by the assignment of 17 to x in the second

iteration
2
. By contrast, the static slice of the program in Figure 2 (a) w.r.t. criterion (8,

x) consists of the entire program.

1.3 Earlier Work

There are a number of earlier frameworks for comparing slicing methods, as well as some

earlier surveys of slicing methods.

In [79], Venkatesh presents formal de�nitions of several types of slices in terms of

denotational semantics. He distinguishes three independent dimensions according to which

slices can be categorized: static vs. dynamic, backward vs. forward, and closure vs.

executable. Some of the slicing methods in the literature are classi�ed according to these

criteria [5, 41, 44, 57, 69, 85]. Moreover, Venkatesh introduces the concept of a quasi-static

slice. This corresponds to situations where some of the inputs of a program are �xed, and

some are unknown. No constructive algorithms for computing slices are presented in [79].

In [59], Lakhotia restates a number of static slicing methods [41, 69, 85] as well as

the program integration algorithm of [41] in terms of operations on directed graphs. He

presents a uniform framework of graph slicing, and distinguishes between syntactic proper-

ties of slices which can be obtained solely through graph-theoretic reasoning, and semantic

properties which involve interpretation of the graph representation of a slice. Although the

paper only addresses static slicing methods, it is stated that the dynamic slicing methods

of [5, 57] may be modeled in a similar way.

2In fact, one might argue that the while construct may be replaced by the if statement in its body.

This type of slice will be discussed in Section 5.

4

Gupta and So�a present a generic algorithm for static slicing and the solution of related

dataow problems (such as determining reaching de�nitions) that is based on performing

a traversal of the control ow graph (CFG) [35]. The algorithm is parameterized with: (i)

the direction in which the CFG should be traversed (backward or forward), (ii) the type

of dependences under consideration (data and/or control dependence), (iii) the extent of

the search (i.e., should only immediate dependences be taken into account, or transitive

dependences as well), and (iv) whether only the dependences that occur along all CFG-

paths paths, or dependences which occur along some CFG-path should be taken into

account. A slicing criterion is either a set of variables at a certain program point or a

set of statements. For slices that take data dependences into account, one may choose

between the values of variables before or after a statement.

In [43], Horwitz and Reps present a survey of the work that has been done at the Uni-

versity of Wisconsin-Madison on slicing, di�erencing and integration of single-procedure

and multi-procedure programs, as operations on program dependence graphs. In ad-

dition to discussing the motivation for this work in considerable detail, the most sig-

ni�cant de�nitions, algorithms, theorems, and complexity results that can be found in

[37, 39, 41, 42, 44, 76] are presented.

An earlier classi�cation of static and dynamic slicingmethods was presented by Kamkar

in [48, 49]. The di�erences between Kamkar's work and ours may be summarized as follows.

First, our paper is more up-to-date and more complete; for instance, Kamkar does not

address any of the papers that discuss slicing in the presence of arbitrary control ow

[2, 8, 9, 21] or methods for computing slices that are based on information-ow relations

[16, 33]. Second, the papers are organized in a di�erent way. Whereas Kamkar discusses

each slicing method and its applications separately, this paper is organized in terms of a

number of `orthogonal' problems, such as the problems posed by procedures, or composite

variables, aliasing, and pointers. This approach enables us to address the possibilities for

combining solutions to di�erent `orthogonal' problems. Third, unlike Kamkar's work we

compare the accuracy and e�ciency of slicing methods, and we attempt to determine the

fundamental strengths and weaknesses of each slicing method, irrespective of its original

presentation. Finally, we suggest a number of directions for improving the accuracy of

slicing algorithms.

1.4 Organization of the Paper

The remainder of this paper is organized as follows. In Section 2, we will introduce the

cornerstones of most slicing algorithms: the notions of data dependence and control de-

pendence. Readers familiar with these concepts may skip this section and consult it on

demand. Section 3 contains an overview of static slicing methods. First, the simple case

of slicing structured programs with scalar variables only is studied. Then, we address

algorithms for slicing in the presence of procedures, arbitrary control ow, composite vari-

ables and pointers, and interprocess communication. Section 3.6 compares and classi�es

methods for static slicing. Section 4 addresses dynamic slicing methods, and is organized

in a similar way as Section 3. Section 5 suggests how compiler-optimization techniques

may be used to obtain more accurate slices. Applications of program slicing are discussed

in Section 6. Finally, Section 7 summarizes the main conclusions of this survey.

5

(1)

i := i + 1

(2) (3) (4) (5)

(10) (9)

(6)

(7)

(8)

Start read(n) i := 1 sum := 0 product := 1 i <= n

Stop write(product) write(sum)

sum+i
sum :=

product :=
product*i

Figure 3: CFG of the example program of Figure 1 (a).

2 Data Dependence and Control Dependence

Data dependence and control dependence are de�ned in terms of the CFG of a program.

A CFG contains a node for each statement and control predicate in the program; an edge

from node i to node j indicates the possible ow of control from the former to the latter.

CFGs contain special nodes labeled Start and Stop corresponding to the beginning and

the end of the program, respectively.

The sets Def(i) and Ref(i) denote the sets of variables de�ned and referenced at

CFG node i, respectively. Several types of data dependences can be distinguished, such

as ow dependence, output dependence and anti dependence [27]. Flow dependences can

be further classi�ed as being loop-carried or loop-independent, depending whether or not

they arise as a result of loop iteration. For the purposes of slicing, only ow dependence is

relevant, and the distinction between loop-carried and loop-independent ow dependences

can be ignored. Node j is ow dependent on node i if there exists a variable x such that:

� x 2 Def(i),

� x 2 Ref(j), and

� there exists a path from i to j without intervening de�nitions of x.

Alternatively stated, the de�nition of x at node i is a reaching de�nition for node j.

Control dependence is usually de�ned in terms of post-dominance. A node i in the

CFG is post-dominated by a node by j if all paths from i to Stop pass through j. A node

j is control dependent on a node i if:

� there exists a path P from i to j such that any u 6= i; j in P is post-dominated by

j, and

� i is not post-dominated by j.

Determining the control dependences in programs with arbitrary control ow is studied in

[27]. For programs with structured control ow, control dependences can be determined

in a simple syntax-directed manner [40]: the statements in the branches of an if or while

are control dependent on the control predicate.

As an example, Figure 3 shows the CFG for the example program of Figure 1 (a).

Node 7 is ow dependent on node 4 because: (i) node 4 de�nes variable product, (ii)

node 7 references variable product, and (iii) there exists a path 4 ! 5 ! 6 ! 7 without

intervening de�nitions of product. Node 7 is control dependent on node 5 because there

exists a path 5! 6! 7 such that: (i) node 6 is post-dominated by node 7, and (ii) node

5 is not post-dominated by node 7.

6

3 Methods for Static Slicing

3.1 Basic Algorithms for Static Slicing

In this section, we study basic algorithms for static slicing of structured programs without

nonscalar variables, procedures, and interprocess communication.

3.1.1 Dataow Equations

The original de�nition of program slicing that was introduced by Weiser in [85] is based on

iterative solution of dataow equations
3
. Weiser de�nes a slice as an executable program

that is obtained from the original program by deleting zero or more statements. A slicing

criterion consists of a pair (n; V) where n is a node in the CFG of the program, and

V a subset of the program's variables. In order to be a slice with respect to criterion

(n; V), a subset S of the statements of program P must satisfy the following property:

whenever P halts for a given input, S also halts for that input, computing the same values

for the variables in V whenever the statement corresponding to node n is executed. At

least one slice exists for any criterion: the program itself. A slice is statement-minimal

if no other slice for the same criterion contains fewer statements. Weiser argues that

statement-minimal slices are not necessarily unique, and that the problem of determining

statement-minimal slices is undecidable.

Approximations of statement-minimal slices are computed in an iterative process, by

computing consecutive sets of relevant variables for each node in the CFG. First, the

directly relevant variables are determined, by only taking data dependences into account.

Below, the notation i!CFG j indicates the existence of an edge in the CFG from node i

to node j. For a slicing criterion C � (n; V), the set of directly relevant variables at node

i of the CFG, R0
C(i) is de�ned as follows:

� R0
C(i) = V when i = n.

� For every i !CFG j, R0
C(i) contains all variables v such that either (i) v 2 R0

C(j)

and v 62 Def(i), or (ii) v 2 Ref(i), and Def(i) \R0
C(j) 6= ;.

From this, a set of directly relevant statements, S0
C , is derived. S

0
C is de�ned as the set of

all nodes i which de�ne a variable v that is a relevant at a successor of i in the CFG:

S0
C � fi j Def(i) \R0

C(j) 6= ;; i!CFG jg

Variables referenced in the control predicate of an if or while statement are indirectly

relevant, if (at least) one of the statements in its body is relevant. The range of inuence

Infl(b) of a branch statement b is de�ned as the set of statements that are control depen-

dent on b. The branch statements Bk
C which are relevant due to the inuence they have

on nodes i in SkC are:

Bk
C � fb j i 2 SkC ; i 2 Infl(b)g

3Weiser's de�nition of branch statements with indirect relevance to a slice contains an error [86]. We

follow the modi�ed de�nition proposed in [63]. However, we do not agree with the statement in [63] that

\It is not clear how Weiser's algorithm deals with loops".

7

Node # Def Ref Infl R0
C R1

C

1 f n g ; ; ; ;
2 f i g ; ; ; f n g
3 f sum g ; ; f i g f i, n g
4 f product g ; ; f i g f i, n g
5 ; f i, n g f 6, 7, 8 g f product, i g f product, i, n g
6 f sum g f sum, i g ; f product, i g f product, i, n g
7 f product g f product, i g ; f product, i g f product, i, n g
8 f i g f i g ; f product, i g f product, i, n g
9 ; f sum g ; f product g f product g
10 ; f product g ; f product g f product g

Table 1: Results of Weiser's algorithm for the example program of Figure 1 (a) and slicing

criterion (10; product).

The sets of indirectly relevant variables Rk+1
C are determined by considering the variables

in the predicates of the branch statements Bk
C to be relevant.

Rk+1
C (i) � Rk

C(i) [
[

b2Bk
C

R0

(b;Ref(b))
(i)

The sets of indirectly relevant statements Sk+1
C consist of the nodes in Bk

C together with

the nodes i which de�ne a variable that is relevant to a CFG successor j:

Sk+1
C � Bk

C [fi j Def(i) \Rk+1
C (j) 6= ;; i!CFG jg

The sets Rk+1
C and Sk+1

C are nondecreasing subsets of the program's variables and

statements, respectively; the �xpoint of the computation of the Sk+1
C sets constitutes the

desired program slice.

As an example, we consider the program of Figure 1 (a) and criterion (10; product).

Table 1 summarizes the Def, Ref, Infl sets, and the sets of relevant variables computed

by Weiser's algorithm. The CFG of the program was shown earlier in Figure 3. From

the information in the table, and the de�nition of a slice, we obtain S0
C = f2; 4; 7; 8g,

B0
C = f5g, and S1

C = f1; 2; 4; 5; 7; 8g. For our example, the �xpoint of the sets of

indirectly relevant variables is reached at set S1
C . The corresponding slice w.r.t. criterion

C � (10; product) as computed by Weiser's algorithm is identical to the program shown

in Figure 1 (b) apart from the fact that the output statement write(product) is not

contained in the slice.

In fact, an output statement will never be part of a slice because: (i) its Def set

is empty so that no other statement can either be data dependent on it, and (ii) no

statement can be control dependent on an output statement. In [43], Horwitz and Reps

suggest a way for making an output value dependent on all previous output values by

treating a statement write(v) as an assignment output := output || v, where output

is a string-valued variable containing all output of the program, and `||' denotes string

concatenation. Output statements can be included in the slice by including output in the

set of variables speci�ed in the criterion.

In [64], Lyle presents a modi�ed version of Weiser's algorithm for computing slices.

Apart from some minor changes in terminology, this algorithm is essentially the same as

that in [85].

8

�� = ;
�� = ;
�� = Id

�v:=e = Vars(e)� f e g
�v:=e = f (e; v) g
�v:=e = (Vars(e)� f v g) [(Id� (v; v))

�S1;S2 = �S1 [(�S1 � �S2)
�S1;S2 = (�S1 � �S2) [�S2
�S1;S2 = �S1 � �S2

�if e then S
= (Vars(e)� f e g) [�S

�if e then S
= (f e g �Defs(S)) [�S

�
if e then S

= (Vars(e)�Defs(S)) [�S [Id

�if e then S1 else S2
= (Vars(e)� f e g) [�S1 [�S2

�if e then S1 else S2
= (f e g � (Defs(S1) [Defs(S2))) [�S1 [�S2

�
if e then S1 else S2

= (Vars(e)� (Defs(S1) [Defs(S2))) [�S1 [�S2 [Id

�
while e do S

= �?S � ((Vars(e)� f e g) [�S)

�while edo S
= (f e g �Defs(S)) [�S � �?S � ((Vars(e)�Defs(S)) [Id)

�while edo S
= �?S � ((Vars(e)�Defs(S)) [Id)

Figure 4: De�nition of information-ow relations.

Hausler restates Weiser's algorithm in the style of denotational semantics [36]. In deno-

tational semantics, the behavior of a statement or sequence of statements is characterized

by de�ning how it transforms the state. In denotational slicing, a function � characterizes

a language construct by de�ning how it a�ects the set of relevant variables (see [85]).

Another function, �, uses � to express how slices can be constructed.

3.1.2 Information-ow Relations

In [16], Bergeretti and Carr�e de�ne a number of information-ow relations for programs

which can be used to compute slices. For a statement (or sequence of statements) S, a

variable v, and an expression (i.e., a control predicate or the right-hand side of an assign-

ment) e that occurs in S, the relations �S , �S, and �S are de�ned. These information-ow

relations possess the following properties: (v; e) 2 �S i� the value of v on entry to S poten-

tially a�ects the value computed for e, (e; v) 2 �S i� the value computed for e potentially

a�ects the value of v on exit from S, and (v; v0) 2 �S i� the value of v on entry to S may

a�ect the value of v0 on exit from S. The set Ev
S of all expressions e for which (e; v) 2 �S

can be used to construct partial statements. A partial statement of statement S associated

with variable v is obtained by replacing all statements in S that do not contain expressions

in Ev
S by empty statements.

Information-ow relations are computed in a syntax-directed, bottom-up manner. For

an empty statement, the relations �S and �S are empty, and �S is the identity. For an as-

signment v := e, �S contains (v
0; e) for all variables v0 which occur in e, �S consists of (e; v),

and �S contains (v0; v) for all variables which occur in e as well as (v00; v00) for all variables

9

Expression #a Potentially Affected Variables

1 f n; sum; product; i g

2 f sum; product; i g

3 f sum g

4 f product g

5 f sum; product; i g

6 f sum g

7 f product g

8 f sum; product; i g

9 ;

10 ;

aExpression numbers correspond to line numbers in Figure 1 (a).

Figure 5: Information-ow relation � for the example program of Figure 1 (a).

v00 6= v. Figure 4 shows how information-ow relations for sequences of statements, condi-

tional statements and loop statements are constructed from the information-ow relations

of their constituents. In the �gure, � denotes an empty statement, \�" relational join, Id

the identity relation, Vars(e) the set of variables occurring in expression e, and Defs(S)

the set of variables that may be de�ned in statement S. The convoluted de�nition for

while constructs is obtained by e�ectively transforming it into an in�nite sequence of

nested one-branch if statements. The relation �? used in this de�nition is the transitive

and reexive closure of �.

A slice w.r.t. the value of a variable v at an arbitrary location can be computed by

inserting a dummy assignment v0 := v at the appropriate place, where v0 is a variable

that did not previously occur in S. The slice w.r.t. the �nal value of v0 in the modi�ed

program is equivalent to a slice w.r.t. v at the selected location in the original program.

Static forward slices can be derived from relation �S in a way that is similar to the

method for computing static backward slices from the �S relation.

Figure 5 shows the information-ow relation � for the (entire) program of Figure 1

(a)4. From this relation it follows that the set of expressions which potentially a�ect the

value of product at the end of the program are f1; 2; 4; 5; 7; 8g. The corresponding partial

statement is obtained by omitting all statements from the program which do not contain

expressions in this set, i.e., both assignments to sum and both write statements. The result

is exactly the same as the slice computed by Weiser's algorithm (see Section 3.1.1).

3.1.3 Dependence Graph Based Approaches

Ottenstein and Ottenstein were the �rst of many to de�ne slicing as a reachability prob-

lem in a dependence graph representation of a program [69]. They use the Program

Dependence Graph (PDG) [27, 58] for static slicing of single-procedure programs. The

statements and expressions of a program constitute the vertices of a PDG, and edges cor-

respond to data dependences and control dependences between statements (see Section 2).

The key issue is that the partial ordering of the vertices induced by the dependence edges

4Bergeretti and Carr�e do not de�ne information-ow relations for I/O statements. For the purposes of

this example, it is assumed that the statement read(n) can be treated as an assignment n := SomeCon-

stant, and that the statements write(sum) and write(product) should be treated as empty statements.

10

while (i <= n)read(n) i := 1 sum := 0 product := 1

Entry

write(sum) write(product)

sum := sum+i product :=
product*i

i := i + 1

Figure 6: PDG of the program in Figure 1 (a).

must be obeyed so as to preserve the semantics of the program.

In the PDGs of Horwitz et al., a distinction is made between loop-carried and loop-

independent ow dependences, and there is an additional type of data dependence edges

named def-order dependence edges [40, 41, 42, 44]. Horwitz et al. argue that their PDG

variant is adequate: if two programs have isomorphic PDGS, they are strongly equivalent.

This means that, when started with the same input state, they either compute the same

values for all variables, or they both diverge. It is argued that the PDG variant of [40]

is minimal in the sense that removing any of the dependence edges, or disregarding the

distinction between loop-carried and loop-independent ow edges would result in inequiv-

alent programs having isomorphic PDGs. Nevertheless, for the computation of program

slices, only ow dependences and control dependences are necessary. We will therefore

only consider these dependences in the sequel.

In all dependence graph based approaches, the slicing criterion is identi�ed with a

vertex v in the PDG. In Weiser's terminology, this corresponds to a criterion (n; V) where

n is the CFG node corresponding to v, and V the set of all variables de�ned or used

at v. Consequently, slicing criteria of PDG-based slicing methods are less general than

those of methods based on dataow equations or information-ow relations. However,

in Section 3.6.2, we will discuss how more precise slicing criteria can be `simulated' by

PDG-based slicing methods. For single-procedure programs, the slice w.r.t. v consists of

all vertices from which v is reachable. The related parts of the source text of the program

can be found by maintaining a mapping between vertices of the PDG and the source text

during the construction of the PDG.

The PDG variant of [69] shows considerably more detail than that of [44]. In particular,

there is a vertex for each (sub)expression in the program, and �le descriptors appear

explicitly as well. As a result, read statements involving irrelevant variables are not

`sliced away', and slices will execute correctly with the full input of the original program.

As an example, Figure 6 shows the PDG of the program of Figure 1 (a). In this

�gure, the PDG variant of [44] is used. Thick edges represent control dependences
5
and

5We omit the usual labeling of control dependence edges, as this is irrelevant for the present discussion.

Furthermore, we will omit loop-carried ow dependence edges from a vertex to itself, as such edges are

irrelevant for the computation of slices.

11

program Example;

begin

a := 17;

b := 18;

P(a, b, c, d);

write(d)

end

procedure P(v, w, x, y);

x := v;

y := w

end

program Example;

begin

a := 17;

b := 18;

P(a, b, c, d);

end

procedure P(v, w, x, y);

;

y := w

end

program Example;

begin

;

b := 18;

P(a, b, c, d);

write(d)

end

procedure P(v, w, x, y);

;

y := w

end

(a) (b) (c)

Figure 7: (a) Example program. (b) Weiser's slice. (a) HRB slice.

thin edges represent ow dependences. Shading is used to indicate the vertices in the slice

w.r.t. write(product).

3.2 Interprocedural Static Slicing

3.2.1 Dataow Equations

Weiser describes a two-step approach for computing interprocedural static slices in

[85, 86]. First, a slice is computed for the procedure P which contains the original slicing

criterion. The e�ect of a procedure call on the set of relevant variables is approximated

using interprocedural summary information [13]. For a procedure P , this information

consists of a set Mod(P) of variables that may be modi�ed by P , and a set Use(P) of

variables that may be used by P , taking into account any procedures called by P . A

call to P is treated as though it de�nes all variables in Mod(P) and uses all variables in

Use(P), where actual parameters are substituted for formal parameters [86]. The fact that

Weiser's algorithm does not take into account which output parameters are dependent on

which input parameters is a cause of imprecision. Figure 7 (a) shows an example program

that manifests this problem. The interprocedural slicing algorithm of [85] will compute

the slice shown in Figure 7 (b). This slice contains the statement a := 17 due to the

spurious dependence between variable a before the call, and variable d after the call. The

Horwitz-Reps-Binkley algorithm that will be discussed in Section 3.2.3 will compute the

more accurate slice shown in Figure 7 (c).

In the second step of Weiser's algorithm for interprocedural slicing, new criteria are

generated for (i) procedures Q called by P , and (ii) procedures R that call P . The two

steps are repeated until no new criteria occur. The new criteria of (i) consist of all pairs

(nQ; VQ) where nQ is the last statement of Q and VQ is the set of relevant variables in P

which is in the scope of Q (formals are substituted for actuals). The new criteria of (ii)

consist of all pairs (NR; VR) such that NR is a call to P in R, and VR is the set of relevant

variables at the �rst statement of P which is in the scope of R (actuals are substituted

for formals). The generation of new criteria is formalized by way of functions Up(S) and

Down(S) which map a set S of slicing criteria in a procedure P to a set of criteria in

procedures that call P , and a set of criteria in procedures called by P , respectively. The

closure (Up[Down)�(fC g) contains all criteria necessary to compute an interprocedural

slice, given an initial criterion C. Worst-case assumptions have to be made when a program

12

program Example;

begin

(1) read(n);

(2) i := 1;

(3) sum := 0;

(4) product := 1;

(5) while i <= n do

begin

(6) Add(sum, i);

(7) Multiply(product, i);

(8) Add(i, 1)

end;

(9) write(sum);

(10) write(product)

end

procedure Add(a; b);

begin

(11) a := a + b

end

procedure Multiply(c; d);

begin

(12) j := 1;

(13) k := 0;

(14) while j <= d do

begin

(15) Add(k, c);

(16) Add(j, 1);

end;

(17) c := k

end

Figure 8: Example of a multi-procedure program.

calls external procedures, and the source-code is unavailable.

For example, assume that a slice is to be computed w.r.t. the �nal value of product

in the program of Figure 8. Slicing will begin with the initial criterion (10; product).

The �rst step of Weiser's algorithm will include all lines of the main program except

line 3 and 6. In particular, the procedure calls Multiply(product, i) and Add(i, 1)

are included in the slice, because: (i) the variables product and i are deemed relevant at

those points, and (ii) using interprocedural data ow analysis it can be determined that

Mod(Add) = f a g, Use(Add) = f a; b g, Mod(Multiply) = f c g, and Use(Multiply) =

f c; dg. As the initial criterion is in the main program, we have Up(f (10; product)g) = ;;

Down(f (10; product) g) contains the criteria (11; f a g) and (17; f c; d g). The result

of slicing procedure Add with criterion (11; f a g) and procedure Multiply with criterion

(17; f c; d g) will be the inclusion of these procedures in their entirety. Note that the calls

to Add at lines 15 and 16 causes the generation of a new criterion (11; f a; b g) and thus

re-slicing of procedure Add.

Horwitz, Reps, and Binkley report in [44] that Weiser's algorithm for interprocedural

slicing is unnecessarily inaccurate, because of what they refer to as the `calling context'

problem. In a nutshell, the problem is that when the computation `descends' into a

procedure Q that is called from a procedure P , it will `ascend' to all procedures that

call Q, not only P . This corresponds to execution paths which enter Q from P and exit

Q to a di�erent procedure P 0
. These execution paths are infeasible; taking them into

consideration results in inaccurate slices. The example of Figure 8 exhibits the `calling

context' problem. Since line (11) is in the slice, new criteria are generated for all calls to

Add. These calls include the (already included) calls at lines 8, 15, and 16, but also the

call Add(sum, i) at line 6. The new criterion (6; f sum; i g) that is generated will cause

the inclusion of lines 6 and 3 in the slice. Consequently, the slice consists of the entire

program.

We conjecture that the calling context problem of Weiser's algorithm can be �xed

by observing that the criteria in the Up sets are only needed to include procedures that

13

program Main;

� � �
while (� � �) do
P(x1, x2, � � �, xn);
z := x1;

x2 := x1;

x3 := x2;

� � �
xn := x(n�1)

end;

write(z)

end

procedure P(y1, y2, � � �, yn);

begin

write(y1);

write(y2);

� � �
write(yn)

end

Figure 9: Example program where procedure P is sliced n times by Weiser's algorithm.

(transitively) call the procedure containing the initial criterion
6
. Once this is done, only

Down sets need to be computed. Reps suggested that this essentially corresponds to the

two passes of the Horwitz-Reps-Binkley algorithm (see Section 3.2.3) if all Up sets are

computed before determining any Down sets.

The computation of the Up and Down sets requires that the sets of relevant variables

are known at all call sites. In other words, the computation of these sets involves slicing of

procedures. In the course of doing this, new variables may become relevant at previously

encountered call sites, and new call sites may be encountered. This is illustrated by the

program shown in Figure 9. In the subsequent discussion, L denotes the line-number

of statement write(z) and M the line-number of the last statement in procedure P.

Computing the slice w.r.t. criterion (L; f z g) requires n iterations of the body of the

while loop. During the ith iteration, variables x1; � � � ; xi will be relevant at the call site,

causing the inclusion of criterion (M; f y1; � � � ; yi g) in Down(Main). If no precaution is

taken to combine the criteria in Down(Main), procedure P will be sliced n times.

Hwang, Du, and Chou propose an iterative solution for interprocedural static slicing

based on replacing recursive calls by instances of the procedure body in [45]. The slice is

recomputed in each iteration until a �xed point is found, i.e., no new statements are added

to a slice. This approach does not su�er from the calling context problem because expan-

sion of recursive calls does not lead to considering infeasible execution paths. However,

Reps has shown recently that for a certain family P k
of recursive programs, this algorithm

takes time O(2k), i.e., exponential in the length of the program [72, 74]. An example of

such a program is shown in Figure 10 (a). Figure 10 (b) shows the exponentially long

path that is e�ectively traversed by the Hwang-Du-Chou algorithm.

3.2.2 Information-ow Relations

In [16], Bergeretti and Carr�e explain how the e�ect of procedure calls can be approximated.

Exact dependences between input and output parameters are determined by slicing the

called procedure with respect to each output parameter (i.e., computation of the � relation

for the procedure). Then, each procedure call is replaced by a set of assignments, where

each output parameter is assigned a �ctitious expression that contains the input parame-

6A similar observation was made by Jiang et al. in [47]. However, they do not explain that this approach

only works when a call to procedure p is treated as a multiple assignment Mod(p) := Use(p).

14

program P 3(x1; x2; x3);

begin

t := 0;

P 3(x2; x3; t);

P 3(x2; x3; t);

x1 := x1 + 1

end;

P

P

P P

P
0

P P

P
0

0

P

P P

P
0

P P

P
0

0

(a) (b)

Figure 10: (a) Example program. (b) Exponentially long path traversed by the Hwang-Du-Chou

algorithm for interprocedural static slicing.

ters it depends upon. As only feasible execution paths are considered, this approach does

not su�er from the calling context problem. A call to a side-e�ect free function can be

modeled by replacing it with a �ctitious expression containing all actual parameters. Note

that the computed slices are not truly interprocedural since no attempt is done to slice

procedures other than the main program.

For the example program of Figure 8, the slice w.r.t. the �nal value of product would

include all statements except sum := 0, Add(sum,i), and write(sum).

3.2.3 Dependence Graphs

Horwitz, Reps, and Binkley introduce the notion of a System Dependence Graph (SDG)

for slicing of multi-procedure programs [44]. Parameter passing by value-result is modeled

as follows: (i) the calling procedure copies its actual parameters to temporary variables

before the call, (ii) the formal parameters of the called procedure are initialized using

the corresponding temporary variables, (iii) before returning, the called procedure copies

the �nal values of the formal parameters to the temporary variables, and (iv) after re-

turning, the calling procedure updates the actual parameters by copying the values of the

corresponding temporary variables.

An SDG contains a program dependence graph for the main program, and a proce-

dure dependence graph for each procedure. There are several types of vertices and edges

in SDGs which do not occur in PDGs. For each call statement, there is a call-site vertex

in the SDG as well as actual-in and actual-out vertices which model the copying of ac-

tual parameters to/from temporary variables. Each procedure dependence graph has an

entry vertex, and formal-in and formal-out vertices to model copying of formal parame-

ters to/from temporary variables. Actual-in and actual-out vertices are control dependent

on the call-site vertex; formal-in and formal-out vertices are control dependent on the

procedure's entry vertex. In addition to these intraprocedural dependence edges, an SDG

contains the following interprocedural dependence edges: (i) a control dependence edge be-

tween a call-site vertex and the entry vertex of the corresponding procedure dependence

graph, (ii) a parameter-in edge between corresponding actual-in and formal-in vertices,

(iii) a parameter-out edge between corresponding formal-out and actual-out vertices, and

(iv) edges which represent transitive interprocedural data dependences. These transitive

dependences are computed by constructing an attribute grammar based on the call graph

of the system, and serve to circumvent the calling context problem. This is accomplished

15

while (j <= d)

Enter Example

read(n) i := 1 sum := 0 product := 1 write(sum) write(product)

Add(sum,i)

a_in := sum b_in := i sum := a_out

Multiply(product,i)

c_in := product d_in := i product := c_out

Add(i,1)

a_in := i b_in := 1 i:= a_out

Enter Multiply

c_out := c

c := kk := 0j := 1

d := d_inc := c_in

j := a_outb_in := 1

Add(j, 1)

a_in := j

Add(k, c)

k := a_outb_in := ca_in := k

Enter Add

a_out := a

a := a + b

b := b_ina := a_in

while (i <= n)

Figure 11: SDG of the program in Figure 8.

by traversing the graph in two phases. Suppose that slicing starts at vertex s. The �rst

phase determines all vertices from which s can be reached without descending into proce-

dure calls. The transitive interprocedural dependence edges guarantee that calls can be

side-stepped, without descending into them. In the second phase, the algorithm descends

into all previously side-stepped calls and determines the remaining vertices in the slice.

Using interprocedural data ow analysis [11], the sets of variables which can be ref-

erenced or modi�ed by a procedure can be determined. This information can be used to

eliminate actual-out and formal-out vertices for parameters that will never be modi�ed,

resulting in more precise slices. The algorithm of [44] also works for call-by-reference

parameter passing
7
provided that aliases are resolved. Two approaches are proposed:

transformation of the original program into an equivalent alias-free program, or the use

of a generalized ow dependence notion (as will be discussed in Section 3.4). The �rst

approach yields more precise slices, whereas the second is more e�cient.

Figure 11 shows the SDG for the program of Figure 8 where interprocedural dataow

analysis is used to eliminate the vertices for the second parameters of the procedures Add

and Multiply. In the �gure, thin solid arrows represent ow dependences, thick solid ar-

7For a discussion of parameter passing mechanisms the reader is referred to [6], Section 7.5.

16

rows correspond to control dependences, thin dashed arrows are used for call, parameter-in,

and parameter-out dependences, and thick dashed arrows represent transitive interproce-

dural ow dependences. The vertices in the slice w.r.t. statement write(product) are

shown shaded; light shading indicates the vertices identi�ed in the �rst phase of the algo-

rithm, and dark shading indicates the vertices identi�ed in the second phase. Clearly, the

statements sum := 0, Add(sum, i), and write(sum) are not in the slice.

Slices computed by the algorithm of [44] are not necessarily executable programs.

Cases where only a subset of the vertices for actual and formal parameters are in the slice,

correspond to procedures where some of the arguments are `sliced away'; for di�erent

calls to the procedure, di�erent arguments may be omitted. Horwitz et al. propose two

methods for transforming such a non-executable slice into an executable program. The

�rst method consists of creating di�erent variants of a procedure in the slice, and has the

disadvantage that the slice is no longer a restriction of the original program. The second

solution consists of extending the slice with all parameters that are present at some call

to all calls which occur in the slice. In addition, all vertices on which the added vertices

are dependent must be added to the slice as well. Clearly, this second approach has the

disadvantage of yielding larger slices.

Finally, it is outlined how interprocedural slices can be computed from partial SDGs

(corresponding to programs under development, or programs containing library calls) and

how, using the SDG, interprocedural forward slices can be computed in a way that is very

similar to the previously described method for interprocedural (backward) slicing.

Recently, Reps et al. proposed a new algorithm for computing the summary edges of

an SDG [74, 75], which is asymptotically more e�cient than the Horwitz-Reps-Binkley al-

gorithm [44] (the time requirements of these algorithms will be discussed in Section 3.6.3).

Input to the algorithm is an SDG where no summary edges have been added yet, i.e., a

collection of procedure dependence graphs connected by call, parameter-in, and parameter-

out edges. The algorithm uses a worklist to determine same-level realizable paths. Intu-

itively, a same-level realizable path obeys the call-return structure of procedure calls, and

it starts and ends at the same level (i.e., in the same procedure). Same-level realizable

paths between formal-in and formal-out vertices of a procedure P induce summary edges

between the corresponding actual-in and actual-out vertices for any call to P . The algo-

rithm starts by asserting that a same-level realizable path of length zero exists from any

formal-out vertex to itself. A worklist is used to select a path, and extend it by adding

an edge to its beginning. In [75], a demand-version of the algorithm is presented, which

incrementally determines the summary edges of an SDG.

In [60], Lakhotia presents an algorithm for computing interprocedural slices that is also

based on SDGs. This algorithm computes slices that are identical to the slices computed

by the algorithm in [44]. Associated with every SDG vertex v is a three-valued tag; possible

values for this tag are: \?" indicating that v has not been visited, \>" indicating that v

has been visited, and all vertices from which v can be reached should be visited, and \�"

indicating that v has been visited, and some of the vertices from which v can be reached

should be visited. More precisely, an edge from an entry vertex to a call vertex should

only be traversed if the call vertex is labeled >. A worklist algorithm is used to visit all

vertices labeled > before visiting any vertex labeled �. When this process ends, vertices

labeled either > or � are in the slice. Lakhotia's algorithm traverses performs a single pass

through the SDG. However, unlike the algorithm of [44], the value of a tag may change

twice. Therefore it is unclear if Lakhotia's algorithm is really an improvement over the

17

Horwitz-Reps-Binkley two-pass traversal algorithm.

3.3 Static Slicing in the Presence of Unstructured Control Flow

3.3.1 Dataow Equations

Lyle reports in [64] that (his version of) Weiser's algorithm for static slicing yields in-

correct slices in the presence of unstructured control ow: the behavior of the slice is

not necessarily a projection of the behavior of the program. He presents a conservative

solution for dealing with goto statements consisting of including any goto which has a

non-empty set of active variables associated with it.

Gallagher [31] and Gallagher and Lyle [32] also use a variation of Weiser's method. A

goto statement is included in the slice if it jumps to a label of an included statement
8
.

Agrawal shows in [2] that this algorithm does not produce correct slices in all cases.

Jiang et al. extend Weiser's slicing method to C programs with arbitrary control ow

[47]. They introduce a number of additional rules to `collect' the unstructured control ow

statements such as goto, break, and continue which are part of the slice. Unfortunately,

no formal justi�cation is given for the treatment of unstructured control ow constructs

in [47]. Agrawal shows in [2] that this algorithm may also produce incorrect slices.

3.3.2 Dependence Graphs

Ball and Horwitz [8, 9] and Choi and Ferrante [21] discovered independently that con-

ventional PDG-based slicing algorithms produce incorrect results in the presence of un-

structured control ow: slices may compute values at the criterion that di�er from what

the original program does. These problems are due to the fact that the algorithms do

not determine correctly when unconditional jumps such as break, goto, and continue

statements are required in a slice.

As an example, Figure 12 (a) shows a variant of our example program which uses

a goto statement. Figure 12 (b) shows the PDG for this program. The vertices which

have a transitive dependence on statement write(product) are highlighted. Figure 12

(c) shows a textual representation of the program thus obtained. Clearly, this `slice' is

incorrect because it does not contain the goto statement, causing non-termination. In

fact, the previously described PDG-based algorithms will only include a goto if it is the

slicing criterion itself, because no statement is either data or control dependent on a goto.

The solution of [8, 9] and the �rst solution presented in [21] are remarkably similar:

unconditional jumps are regarded as pseudo-predicate vertices where the `true' branch

consists of the statement that is being jumped to, and the `false' branch of the textually

next statement. Correspondingly, there are two outgoing edges in the augmented control

ow graph (ACFG). Only one of these edges can actually be traversed during execution; the

other outgoing edge is `non-executable'. The notion of (data) ow dependence is altered

in order to ignore dependences caused by non-executable edges. Augmented PDGs are

constructed using the ACFG instead of the CFG, and slicing is de�ned in the usual way

8Actually, this is a slight simpli�cation. Each basic block is partitioned into labeled blocks; a labeled

block is a subsequence of the statements in a basic block starting with a labeled statement, and containing

no other labeled statements. A goto is included in the slice if it jumps to a label for which there is some

included statement in its block.

18

read(n);

i := 1;

sum := 0;

product := 1;

while true do

begin

if (i > n) then

goto L;

sum := sum + i;

product := product * i;

i := i + 1

end;

L: write(sum);

write(product)

read(n);

i := 1;

product := 1;

while true do

begin

if (i > n) then

;

product := product * i;

i := i + 1

end;

write(product)

read(n);

i := 1;

product := 1;

while true do

begin

if (i > n) then

goto L;

product := product * i;

i := i + 1

end;

L:

write(product)

(a) (c) (e)

read(n) i := 1

Entry

sum := 0 product := 1 while(true) write(product)write(sum)

i := i +1product:=
product*isum+i

sum :=if (i > n)

goto L

(b)

goto L

Entry

write(product)write(sum)while(true)product := 1sum := 0i := 1read(n)

if (i > n)
sum+i

sum := product:=
product*i

i := i +1

(d)

Figure 12: (a) Program with unstructured control ow, (b) PDG for program of (a), (c)

incorrect slice, (d) Augmented PDG for program of (a), (e) correct slice.

19

as a graph reachability problem. Labels pertaining to statements excluded from the slice

are moved to the closest post-dominating statement that occurs in the slice.

The main di�erence between the approach by Ball and Horwitz and the �rst approach

of Choi and Ferrante is that the latter use a slightly more limited example language: con-

ditional and unconditional goto's are present, but no structured control ow constructs.

Although Choi and Ferrante argue that these constructs can be transformed into condi-

tional and unconditional goto's, Ball and Horwitz show that, for certain cases, this results

in overly large slices. Both groups present a formal proof that their algorithms compute

correct slices.

Figure 12 (d) shows the augmented PDG for the program of Figure 12 (a); vertices

from which the vertex labeled write(product) can be reached are indicated by shading.

The (correct) slice corresponding to these vertices is shown in Figure 12 (e).

Choi and Ferrante distinguish two disadvantages of the slicing approach based on

augmented PDGs. First, APDGs require more space than conventional PDGs, and their

construction takes more time. Second, non-executable control dependence edges give rise

to spurious dependences in some cases. In their second approach, Choi and Ferrante utilize

the `classical' PDG. As a �rst approximation, the standard algorithm for computing slices

is used, which by itself produces incorrect results in the presence of unstructured control

ow. The basic idea is that for each statement that is not in the slice, a new goto to

its immediate post-dominator is added. In a separate phase, redundant cascaded goto

statements are removed. The second approach has the advantage of computing smaller

slices than the �rst. A disadvantage, however, is that slices may include goto statements

which do not occur in the original program.

Yet another PDG-based method for slicing programs with unstructured control ow

was recently proposed by Agrawal in [2]. Unlike the methods in [8, 9, 21], Agrawal uses

the standard PDG. He observes that a conditional jump statement of the form if P then

goto Lmust be included in the slice if predicate P is in the slice because another statement

in the slice is control dependent on it. The terminology `conventional slicing algorithm' is

adopted to refer to the standard PDG-based slicing method, with the above extension to

conditional jump statements.

The main observation in [2] is that an unconditional jump statement J should be in-

cluded in the slice if and only if the immediate postdominator of J in the slice di�ers

from the immediate lexical successor of J in the slice. Here, a statement S0
is a lexical

successor of a statement S if S textually precedes S0
in the program

9
. The statements

on which the newly added statement is transitively dependent must also be added to the

slice. The motivation for this approach can be understood by considering a sequence of

statements S1;S2;S3 where S1 and S3 are in the slice, and where S2 contains an uncon-

ditional jump statement to a statement that does not have S3 as its lexical successor.

Suppose that S2 were not included in the slice. Then the ow of control in the slice would

pass unconditionally from S1 to S3, though in the original program this need not always

be the case, because the jump might transfer the control elsewhere. Therefore S2 must

be included, together with all statements it depends upon. Agrawal's algorithm traverses

the postdominator tree of a program in pre-order, and considers jump statements for in-

clusion in this order. The algorithm iterates until no jump statements can be added; this

9As Agrawal observes, this notion is equivalent to the non-executable edges in the augmented control

ow graphs used in [8, 9, 21].

20

is necessary because adding a jump (and the statements it depend upon) may change the

lexical successors and postdominators in the slice of other jump statements, which may

therefore need to be included as well. Although no proof is stated, Agrawal claims that his

algorithm computes correct slices, and that it computes slices that are identical to those

computed by the algorithm in [8, 9].

The algorithm in [2] may be simpli�ed signi�cantly if the only type of jump that occurs

in a program is a structured jump, i.e., a jump to a lexical successor. C break, continue,

and return statements are all structured jumps. First, only a single traversal of the post-

dominator tree is required. Second, jump statements have to be added only if they are

control dependent on a predicate that is in the slice. In this case, the statements they are

dependent upon are already included in the slice. For programs with structured jumps,

the algorithm can be further simpli�ed to a conservative algorithm by including in the

slice all jump statements that are control dependent on a predicate that is in the slice.

Agrawal's algorithm will include the goto statement of the example program of Fig-

ure 12 (a) because it is control dependent on the (included) predicate of the if statement.

3.4 Static Slicing in the Presence of Composite Datatypes/Pointers

Lyle proposes a conservative solution to the problem of static slicing in the presence of

arrays [64]. Essentially, any update to an element of an array is regarded as an update

and a reference of the entire array.

The PDG variant of Ottenstein and Ottenstein [69] contains a vertex for each sub-

expression; special select and update operators serve to access elements of an array.

In the presence of pointers (and procedures), situations may occur where two or more

variables refer to the same memory location; this phenomenon is commonly called aliasing.

Algorithms for determining potential aliases can be found in [20, 61]. Slicing in the

presence of aliasing requires a generalization of the notion of data dependence to take

potential aliases into account. This can be done roughly as follows: a statement s is

potentially data dependent on a statement s0 if: (i) s de�nes a variable X 0
, (ii) s0 uses a

variable X, (iii) X and X 0
are potential aliases, and (iv) there exists a path from s to

s0 in the CFG where X is not necessarily de�ned. Such paths may contain de�nitions to

potential aliases of X. This altered notion of data dependence can in principle be used in

any static slicing algorithm.

A slightly di�erent approach is pursued by Horwitz, Pfei�er, and Reps in [38]. Instead

of de�ning data dependence in terms of potential de�nitions and uses of variables, they

de�ned this notion in terms of potential de�nitions and uses of abstract memory locations.

The PDG-based static slicing algorithm proposed by Agrawal, DeMillo and Spa�ord [3]

implements a similar idea to deal with both composite variables and pointers.

Reaching de�nitions for a scalar variable v at node n in the owgraph are determined

by �nding all paths from nodes corresponding to a de�nition of v to n which do not contain

other de�nitions of v. When composite datatypes and pointers are considered, de�nitions

involve l-valued expressions rather than variables. An l-valued expression is any expression

which may occur as the left-hand side of an assignment. For composite datatypes and

pointers, a new de�nition of reaching de�nitions is presented which is based on the layout

of memory locations occupied by l-valued expressions rather than on names of variables.

Memory locations are regarded as abstract quantities (e.g., the array a corresponds to

`locations' a[1], a[2],� � �). Whereas a de�nition for a scalar variable either does or does not

21

(1) p = &x;

(2) *p = 2;

(3) q = p;

(4) write(*q)

Node # Def Ref R0
(4;f q; (1)q g)

1 f p g f (�1)x g ;

2 f (1)p g f p g f p; (1)q g

3 f q g f p g f p; (1)q g

4 ; f q; (1)q g f q; (1)q g

(1) p = &x;

(2) ;

(3) q = p;

(4)

(a) (b) (c)

Figure 13: (a) Example program. (b) De�ned variables, used variables, and relevant variables

for this program. (c) Incorrect slice.

reach a use, the situation becomes more complex when composite datatypes and pointers

are allowed. For a def-expression e1 and a use-expression e2, the following situations may

occur:

� Complete Intersection

The memory locations corresponding to e1 are a superset of the memory locations

corresponding to e2. An example is the case where e1 de�nes the whole of record b,

and e2 is a use of b:f .

� Maybe Intersection

It cannot be determined statically whether or not the memory locations of a e1
coincide with those of e2. This situation occurs when e1 is an assignment to array

element a[i] and e2 is a use of array element a[j]. Pointer dereferencing may also

give rise to Maybe intersections.

� Partial Intersection

The memory locations of e1 are a subset of the memory locations of e2. This occurs

for example when array a record is used at e2, and array element a[5] is de�ned at

e1.

Given these concepts, an extended reaching de�nition function is de�ned which traverses

the owgraph until it �nds Complete Intersections, makes worst-case assumptions in the

case of Maybe Intersections, and continues the search for the array or record parts which

have not been de�ned yet in the case of Partial Intersections.

Jiang, Zhou and Robson present an algorithm in [47] for slicing C programs with

pointers and arrays. Weihl's notion of dummy variables is used for addresses that may

be pointed to [81]; Unfortunately, the approach by Jiang et al. appears to be awed.

Figure 13 (a) shows an example program, Figure 13 (b) the Def, Ref, and R0
C sets for

each statement, and Figure 13 (c) the incorrect slice computed by the algorithm of [47]

for criterion C = (4; f q; (1)q g). In Figure 13 (b), the dummy variables (1)p and (1)q

denote the values pointed to by p and q, respectively, and (�1)x denotes the address of x.

The second statement is incorrectly omitted because it does not de�ne any variable that

is relevant at statement 3.

3.5 Static Slicing of Distributed Programs

In [19], Cheng considers static slicing of concurrent programs using dependence graphs.

He generalizes the notions of a CFG and a PDG to a nondeterministic parallel control ow

22

net , and a program dependence net (PDN), respectively. In addition to edges for data de-

pendence and control dependence, PDNs may also contain edges for selection dependences,

synchronization dependences, and communication dependences. Selection dependence is

similar to control dependence but involves nondeterministic selection statements, such as

the ALT statement of Occam-2. Synchronization dependence reects the fact that the

start or termination of the execution of a statement depends on the start or termination

of the execution of another statement. Communication dependence corresponds to situa-

tions where a value computed at one point in the program inuences the value computed

at another point through interprocess communication. Static slices are computed by solv-

ing a reachability problem in a PDN. Unfortunately, Cheng does not clearly state the

semantics of synchronization and communication dependence, nor does he state or prove

any property of the slices computed by his algorithm.

An interesting point is that Cheng uses a notion of weak control dependence [70] for the

construction of PDNs. This notion subsumes the standard notion of control dependence;

the di�erence is that weak control dependences exist between the control predicate of a

loop, and the statements that follows it. For example, the statements on lines 9 and 10

of the program of Figure 1 (a) are weakly control dependent (but not strongly control

dependent) on the control predicate of the while statement on line 5.

3.6 Comparison of Methods for Static Slicing

3.6.1 Overview

In this section, we compare and classify the static slicing methods that were presented

earlier. The section is organized as follows: Section 3.6.1 summarizes the problems that are

addressed in the literature. Sections 3.6.2 and 3.6.3 compare the accuracy and e�ciency

of slicing methods that address the same problem, respectively. Finally, in Section 3.6.4

we discuss the possibilities for combining algorithms that deal with di�erent problems.

Table 2 provides an overview of the most signi�cant slicing algorithms that can be

found in the literature. For each paper, the table lists the computation method used and

indicates: (i) whether or not interprocedural slices can be computed, (ii) the control ow

constructs under consideration, (iii) the datatypes under consideration, and (iv) whether

or not interprocess communication is considered. It is important to realize that the entries

of Table 2 only indicate the problems that have been addressed; the table does not indicate

the `quality' of the solutions (with the exception that incorrect solutions are indicated by

footnotes). Moreover, the table also does not indicate which algorithms may be combined.

For example, the interprocedural slicing algorithm of [44] could in principle be combined

with any of the dependence graph based slicing methods for dealing with arbitrary control

ow [2, 9, 21]. Possibilities for such combinations are investigated in Section 3.6.4.

In [48], Kamkar distinguishes between methods for computing slices that are executable

programs, and those for computing slices that consist of a set of `relevant' statements and

control predicates. We agree with the observation by Horwitz et al. in [44], that for

static slicing of single-procedure programs this is merely a matter of presentation. As we

remarked in Section 3.2.3, for static slicing of multi-procedure programs, the distinction

between executable and non-executable slices is relevant. However, since these problems

are strongly related (the solution to the former problem can be used to obtain a solution

to the latter problem), we believe the distinction between executable and non-executable

23

Computation Interprocedural Control Data Interprocess

Methoda Solution Flowb Typesc Communication

Weiser [63, 85] D yes S S no

Lyle [64] D no A S, A no

Gallagher, Lyle [31, 32] D no Ad S no

Jiang et al. [47] D yes Ad S, A, Pe no

Hausler [36] F no S S no

Bergeretti, Carr�e [16] I yesf S S no

Ottenstein [69] G no S S, A no

Horwitz et al. [41, 42, 76] G no S S no

Horwitz et al. [44] G yes S S no

Reps et al. [75] G yes S S no

Lakhotia [60] G yes S S no

Agrawal et al. [3] G no S S, A, P no

Ball, Horwitz [8, 9] G no A S no

Choi, Ferrante [21] G no A S no

Agrawal [2] G no A S no

Cheng [19] G no S S yes

aD = dataow equations, F = functional/denotational semantics, I = information-ow relations, G =

reachability in a dependence graph.
bS = structured, A = arbitrary.
cS = scalar variables, A = arrays/records, P = pointers.
dSolution incorrect (see [2]).
eSolution incorrect (see Section 3.4).
fNon-recursive procedures only.

Table 2: Overview of static slicing methods.

static slices can be dismissed.

3.6.2 Accuracy

The following issues complicate the comparison of the static slicing methods:

� In its original formulation, Weiser's slicing algorithm [85] considers each line of source

code as a unit; this may result in imprecise slices if a line contains more than one

statement. Algorithms based on information-ow relations [16] and PDGs [69] do

not su�er from this problem because each statement is a distinct unit.

In subsequent discussions, we will feel free to ignore this fact because one can easily

imagine a reformulation of Weiser's algorithm that is based on labeled expressions

(as in [16]) instead of line-numbers.

� For slicing methods based on dataow equations and information-ow relations, a

slicing criterion consists of a pair (s; V), where s is a statement and V an arbitrary

set of variables. In contrast, for PDG-based slicing methods a criterion e�ectively

corresponds to a pair (s;Vars(s)), where s is a statement and Vars(s) the set of

all variables de�ned or used at s.

However, a PDG-based slicing method can compute a slice with respect to a criterion

(s; V) for arbitrary V by performing the following three steps. First, the CFG node

n corresponding to PDG vertex s is determined. Second, the set of CFG nodes N

24

corresponding to all reaching de�nitions for variables in V at node n are determined.

Third, the set of PDG vertices S corresponding to the set of CFG nodes N is

determined; the desired slice consists of all vertices from which a vertex in S can be

reached.

Having dealt with these issues, we can state our conclusions concerning the accuracy of

static slicing methods:

basic algorithms

For intraprocedural static slicing, the accuracy of methods based on dataow equa-

tions [85] (see Section 3.1.1) information-ow relations [16] (see Section 3.1.2), and

PDGs [69] (see Section 3.1.3) is essentially the same, although the presentation of

the computed slices di�ers: Weiser de�nes his slice to be an executable program,

whereas in the other two methods, slices are de�ned as a subset of statements of the

original program.

procedures

Weiser's interprocedural static slicing algorithm [85] is inaccurate for two reasons,

which can be summarized as follows. First, the interprocedural summary informa-

tion used to approximate the e�ect of a procedure call establishes relations between

the set of all input parameters, and the set of all output parameters; by contrast, the

approaches of [16, 44, 45, 74] determine for each output parameter the input param-

eters it depends upon. Second, the algorithm fails to take the call-return structure

of interprocedural execution paths into account. These problems are addressed in

detail in Section 3.2.1.

The algorithm by Bergeretti and Carr�e [16] does not compute truly interprocedural

slices because only the main program is being sliced. Moreover, the it is not capable

of handling recursive programs. Bergeretti-Carr�e slices are accurate in the sense

that: (i) exact dependences between input and output parameters are used, and (ii)

the calling-context problem does not occur.

The solutions of [16, 45, 44, 74] compute accurate interprocedural static slices, and

are capable of handling recursive programs (see Sections 3.2.2 and 3.2.3).

arbitrary control ow

Lyle's method for computing static slices in the presence of arbitrary control ow is

very conservative (see Section 3.3.1). Agrawal has shown in [2] that the solutions

proposed by Gallagher and Lyle [31, 32] and by Jiang et al. are incorrect. Precise

solutions for static slicing in the presence of arbitrary control ow have been proposed

by Ball and Horwitz [8, 9], Choi and Ferrante [21], and Agrawal [2] (see Section 3.3.2).

We conjecture that these three approaches are equally accurate.

composite variables and pointers

Lyle has presented a very conservative algorithm for static slicing in the presence of

arrays (see Section 3.4). As we discussed in Section 3.4, the approach by Jiang et al.

is incorrect. Agrawal et al. propose an algorithm for static slicing in the presence of

arrays and pointers (see Section 3.4) that is more accurate than Lyle's algorithm.

25

interprocess communication

The only approach for static slicing of concurrent programs was proposed by Cheng

(see Section 3.5).

3.6.3 E�ciency

Below, we will examine the e�ciency of the static slicing methods that were studied earlier:

basic algorithmsWeiser's algorithm for intraprocedural static slicing based on dataow

equations [85] can determine a slice in O(v � n� e) time
10
, where v is the number

of variables in the program, n the number of vertices in the CFG, and e the number

of edges in the CFG.

Bergeretti and Carr�e report in [16] that the �S relation for a statement S can be

computed in O(v2 � n). From this relation, the slices for all variables at a given

statement can be obtained.

Construction of a PDG essentially involves computing all data dependences and

control dependences in a program. For structured programs, control dependences

can be determined in a syntax-directed fashion, in O(n). In the presence of arbitrary

control ow, the control dependences of a single-procedure program can be computed

in O(e � n) time [24, 27]. Computing data dependences essentially corresponds to

determining the reaching de�nitions for each use. For scalar variables, this can be

accomplished in O(e� d), where d is the number of de�nitions in the program (see,

e.g., [75]). From d � n it follows that a PDG can be constructed in O(e� n) time.

One of the self-evident advantages of PDG-based slicing methods is that, once the

PDG has been computed, slices can be extracted in linear time, O(V +E), where V

andE are the number of vertices and edges in the slice, respectively. This is especially

useful if several slices of the same program are required. In the worst case, when the

slice consists of the entire program, V and E are equal to the number of vertices and

edges of the PDG, respectively. In certain cases, there can be a quadratic blowup in

the number of ow dependence edges of a PDG, e.g., E = O(V 2
). We are not aware

of any slicing algorithms that use more e�cient program representations such as the

SSA form [7].

procedures In the discussion below, Visible denotes the maximal number of parameters

and variables that are visible in the scope of any procedure, and Params denotes the

maximum number of formal-in vertices in any procedure dependence graph of the

SDG. Moreover, TotalSites is the total number of call sites in the program; Np and

Ep denote the number of vertices and edges in the CFG of procedure p, and Sitesp
the number of call sites in procedure p.

10In [85], Weiser states a bound of O(n � e � log(e)). However, this is a bound on the number of

\bit-vector" steps performed, where the length of each bit-vector is O(v). We have multiplied the cost

by O(v) to account for the cost of such bit-vector operations. The problem of determining relevant

variables is similar to that of determining possibly-uninitialized variables. The transformation technique

of [75] can be employed to do this in O(v � e) time. At most n iterations have to be performed due to

branch statements with indirect relevance. Hence, an improved bound for Weiser's intraprocedural slicing

algorithm is O(v � n� e).

26

Weiser does not state an estimate of the complexity of his interprocedural slicing

algorithm in [85]. However, one can observe that for an initial criterion C, the

set of criteria in (Up [Down)*(C) contains at most O(Visible) criteria in each

procedure p. An intraprocedural slice of procedure p takes time O(Visible�Np�Ep).

Furthermore, computation of interprocedural summary information can be done in

O(Globals�TotalSites) time [23]. Therefore, the following expression constitutes an

upper bound for the time required to slice the entire program:

O(Globals � TotalSites +Visible2 ��p(Sitesp �Np �Ep))

The complexity of the approach by Bergeretti and Carr�e requires that each procedure

be sliced once. Each call site is replaced by at most Visible assignments. Therefore,

the cost of slicing procedure p is O(Visible2 � (n+ Visible� Sitesp)), and the total

cost of computing an interprocedural slice is:

O(Visible2 � �p(n+Visible� Sitesp))

As was discussed in Section 3.2.1, the approach by Hwang, Du, and Chou may

require time exponential in the size of the program.

Construction of the individual procedure dependence graphs of an SDG takes time

O(�p(Ep�Np)). The Horwitz-Reps-Binkley algorithm for computing summary edges

takes time:

O(TotalSites �EPDG � Params + TotalSites � Sites2 � Params4)

where Sites is the maximum number of call sites in any procedure, and EPDG
is

the maximum number of control and data dependence edges in any procedure de-

pendence graph. (for details, the reader is referred to [44, 74]). The Reps-Horwitz-

Sagiv-Rosay approach for computing summary edges requires

O(P �EPDG � Params + TotalSites � Params3)

time [74]. Here, P denotes the number of procedures in the program. Assuming

that the number of procedures P is usually much less than the number of procedure

calls TotalSites, both terms of the complexity measure of the Reps-Horwitz-Sagiv-

Rosay approach are asymptotically smaller than those of the Horwitz-Reps-Binkley

algorithm.

Once an SDG has been constructed, a slice can be extracted from it (in two passes)

in O(V + E), where V and E are the number of vertices and edges in the slice,

respectively. In the worst case, V = V SDG
and E = ESDG

, where V SDG
and ESDG

are the number of vertices and edges in the SDG, respectively.

arbitrary control ow Lyle's conservative algorithm for dealing with unstructured

control ow is essentially the same as Weiser's algorithm [85]: a goto statement

is included if it has a non-empty set of relevant variables. Therefore, the time

requirements of Lyle's algorithm are the same as those of Weiser's: O(v � n � e)

time.

27

Interprocedural Arbitrary Non-scalar Interprocess

Slicing Control Flow Variables Communication

D.-F. Eqs. Weiser [85, 63] Lyle [64] Lyle [64]

I.-F. Rels. Bergeretti, Carr�e [16] { {

PDG-based Horwitz et al. [44] Ball, Horwitz [8, 9] Agrawal et al.[3]a Cheng [19]

Lakhotia [59] Choi, Ferrante [21]

Reps et al. [75] Agrawal [2]

aAlgorithms for computing potential data dependences in the presence of non-scalar variables and

aliasing can be used. See Section 3.4.

Table 3: Orthogonal problems of static slicing.

No complexity estimates are stated in [2, 9, 21]. However, the di�erence between

these algorithms and the `standard' PDG-based slicing algorithm is very minor: in

[9, 21] a slightly di�erent control dependence subgraph is used in conjunction with

the data dependence subgraph, and in [2] the standard PDG is used in conjunction

with a lexical successor tree that can be constructed in linear time, O(n). Therefore

it is to be expected that the e�ciency of these algorithms is roughly equivalent to

that of the standard, PDG-based algorithm we discussed above.

composite variables and pointers Lyle's approach for slicing in the presence of ar-

rays [64] has the same complexity bound as Weiser's algorithm for slicing in the

presence of scalar variables, because the worst-case length of reaching de�nitions

paths remains the same.

The cost of constructing PDGs of programs with composite variables and pointers

according to the algorithm proposed by Agrawal et al. in [3] is the same as that of

constructing PDGs of programs with scalar variables only. This is the case because

the worst-case length of (potential) reaching de�nitions paths remains the same, and

determining maybe intersections and partial intersections (see Section 3.4) can be

done in constant time.

interprocess communication Cheng doesn't state any complexity estimate for deter-

mining selection, synchronization, and communication dependence in [19]. The time

required for extracting slices is O(V + E), where V and E denote the number of

vertices and edges in the PDN, respectively.

It should be remarked here that more accurate static slices can be determined in the

presence of non-scalar variables if more advanced (but computationally expensive) data

dependence analysis were performed (see, e.g., [66, 87]).

3.6.4 Combining Static Slicing Algorithms

Table 3 highlights `orthogonal' problems of static slicing: dealing with procedures, un-

structured control ow, non-scalar variables, and interprocess communication. For each

computation method, the table shows which papers present a solution for these problems.

In principle, solutions to di�erent problems could be combined if they appear in the same

row of Table 3 (i.e., if they apply to the same computation method).

28

11 read(n)

22 i := 1

33 i <= n /* (1 <= 2) /*

44 (i mod 2 = 0) /* (1 mod 2 = 0) /*

65 x := 18

76 i := i + 1

37 i <= n /* (2 <= 2) /*

48 (i mod 2 = 0) /* (2 mod 2 = 0) /*

59 x := 17

710 i := i + 1

311 i <= n /* (3 <= 2) /*

812 write(x)

DU = f (11; 33); (11; 37); (11; 311);

(22; 33); (22; 44); (22; 76);

(76; 37); (76; 48); (76; 710);

(59; 812); (710; 311) g

TC = f (33; 44); (33; 65); (33; 76);

(44; 65); (37; 48); (37; 59);

(37; 710); (48; 59) g

IR = f (33; 37); (33; 311); (37; 33);

(37; 311); (311; 33); (311; 37);

(44; 48); (48; 44); (76; 710);

(710; 76) g

(a) (b)

Figure 14: (a) Trajectory for the example program of Figure 2 (a). (b) Dynamic Flow Concepts

for this trajectory.

4 Methods for Dynamic Slicing

4.1 Basic Algorithms for Dynamic Slicing

In this section, we study basic algorithms for dynamic slicing of structured programs

without nonscalar variables, procedures, and interprocess communication.

4.1.1 Dynamic Flow Concepts

Korel and Laski describe how dynamic slices can be computed in [56, 57]. They formalize

the execution history of a program as a trajectory consisting of a sequence of `occurrences'

of statements and control predicates. Labels serve to distinguish between di�erent oc-

currences of a statement in the execution history. As an example, Figure 14 shows the

trajectory for the program of Figure 2 (a) for input n = 2.

A dynamic slicing criterion is speci�ed as a triple (x; Iq; V) where x denotes the input

of the program, statement occurrence Iq is the qth element of the trajectory, and V is

a subset of the variables of the program
11
. A dynamic slice is de�ned as an executable

program that is obtained from the original program by deleting zero or more statements.

For input x, the same values for variables in V are computed at `corresponding' points in

the trajectories of the program and its slice. Two further requirements are imposed on

dynamic slices: (i) the statement corresponding to criterion Iq occurs in the slice, and (ii)

if a loop occurs in the slice, it is traversed the same number of times as in the original

program.

In order to compute dynamic slices, Korel and Laski introduce three dynamic ow con-

cepts which formalize the dependences between occurrences of statements in a trajectory.

The De�nition-Use (DU) relation associates a use of a variable with its last de�nition.

11Korel and Laski's de�nition of a dynamic slicing criterion is somewhat inconsistent. It assumes that a

trajectory is available although the input x uniquely de�nes this. A self-contained and minimal de�nition

of a dynamic slicing criterion would consist of a triple (x; q; V) where q is the number of a statement

occurrence in the trajectory induced by input x.

29

11 read(n)

22 i := 1

33 i <= n

44 (i mod 2 = 0)

65 x := 18

76 i := i + 1

37 i <= n

88 write(x)

DU = f (11; 33); (11; 37);

(22; 33); (22; 44);

(22; 76); (65; 88);

(76; 37) g

TC = f (33; 44); (33; 65);

(33; 76); (44; 65) g

IR = f (33; 37); (37; 33) g

(a) (b)

read(n);

i := 1;

while (i <= n) do

begin

if (i mod 2 = 0) then

x := 17

else

;

i := i + 1

end;

write(x)

read(n);

i := 1;

while (i <= n) do

begin

if (i mod 2 = 0) then

x := 17

else

;

end;

write(x)

(c) (d)

Figure 15: (a) Trajectory of the example program of Figure 2 (a). for input n = 1. (b)

Dynamic ow concepts for this trajectory. (c) Dynamic slice for criterion (n = 1; 88; x). (d)

Non-terminating slice obtained by ignoring the e�ect of the IR relation.

Note that in a trajectory, this de�nition is uniquely de�ned. The Test-Control (TC)

relation associates the most recent occurrence of a control predicate with the statement

occurrences in the trajectory that are control dependent upon it. This relation is de�ned

in a syntax-directed manner, for structured program constructs only. Occurrences of the

same statement are related by the symmetric Identity (IR) relation. Figure 14 (b) shows

the dynamic ow concepts for the trajectory of Figure 14 (a).

Dynamic slices are computed in an iterative way, by determining successive sets Si of

directly and indirectly relevant statements. For a slicing criterion (x; Iq; V) The initial

approximation S0
contains the last de�nitions of the variables in V in the trajectory, as

well as the test actions in the trajectory on which Iq is control dependent. Approximation

Si+1
is de�ned as follows:

Si+1
= Si [Ai+1

where Ai+1
consists of:

Ai+1
= fXp j Xp 62 Si; (Xp; Y t

) 2 (DU [TC [IR) for some Y t 2 Si; p < q g

The dynamic slice is easily obtained from the �xpoint SC of this process (as q is �nite,

this always exists): any statement X for which an instance Xp
occurs in SC will be in the

slice. Furthermore, statement I corresponding to criterion Iq is added to the slice.

30

(1) read(n);

(2) i := 1;

(3) while (i <= n) do

begin

(4) if (i mod 2 = 0) then

(5) x := 17

else

(6) x := 18;

(7) z := x;

(8) i := i + 1

end;

(9) write(z)

11 read(n)

22 i := 1

33 i <= n

44 (i mod 2 = 0)

65 x := 18

76 z := x

87 i := i + 1

38 i <= n

49 (i mod 2 = 0)

510 x := 17

711 z := x

812 i := i + 1

313 i <= n

914 write(z)

(a) (b)

Figure 16: (a) Example program. (b) Trajectory for input n = 2.

As an example, we compute the dynamic slice for the trajectory of Figure 14 and the

criterion (n = 2; 812; f x g). Since the �nal statement is not control dependent on any

other statement, the initial approximation of the slice consists of the last de�nition of x:

A0
= f59 g. Subsequent iterations will produce A1

= f37; 48 g, A2
= f76; 11; 33; 311; 44 g,

and A3
= f 22; 710 g. From this, it follows that:

SC = f 11; 22; 33; 44; 76; 37; 48; 59; 710; 311; 812 g

Thus, the dynamic slice with respect to criterion (n = 2; 812; fxg) includes every statement

except statement 5, corresponding to statement 6
5
in the trajectory. This slice was shown

earlier in Figure 2 (b).

The role of the IR relation calls for some clari�cation. To this end, we consider the

trajectory of the example program of Figure 2 (a) for input n = 1, which is shown in

Figure 15 (a). The dynamic ow concepts for this trajectory, and the slice with respect

to criterion (n = 1; 88; f x g) are shown in Figure 15 (b) and (c), respectively. Note that

the slice thus obtained is a terminating program. However, if we would compute the slice

without taking the IR relation into account, the non-terminating program of Figure 15

(d) would be obtained. The reason for this phenomenon (and thus for introducing the IR

relation) is that the DU and TC relations only traverse the trajectory in the backward di-

rection. The purpose of the IR relation is to traverse the trajectory in both directions, and

to include all statements and control predicates that are necessary to ensure termination

of loops in the slice. Unfortunately, no proof is provided that this is always su�cient.

Unfortunately, traversing the IR relation in the `backward' direction causes inclusion

of statements that are not necessary to preserve termination. For example, Figure 16

(a) shows a slightly modi�ed version of the program of Figure 2 (a). Figure 16 (b)

shows the trajectory for this program. From this trajectory, it follows that (7
6; 711) 2 IR,

(6
5; 76) 2 DU, and (5

10; 711) 2 DU. Therefore, both statements (5) and (6) will be

included in the slice, although statement (6) is neither needed to compute the �nal value

of z nor to preserve termination.

It would be interesting to investigate if using a dynamic variation of Podgurski and

Clarke's notion of weak control dependence [70] instead of the IR relation would lead to

more accurate slices.

31

�� = ;
�� = ;
�� = Id

�v:=e = Vars(e)� f e g
�v:=e = f (e; v) g
�v:=e = (Vars(e)� f v g) [(Id� (v; v))

�S1;S2 = �S1 [�S1 � �S2
�S1;S2 = �S1 � �S2 [�S2
�S1;S2 = �S1 � �S2

�if e then S
=

�
(Vars(e)� f e g) [�S
;

if e evaluates to true

if e evaluates to false

�if e then S
=

�
(f e g �Defs(S)) [�S
;

if e evaluates to true

if e evaluates to false

�if e then S
=

�
(Vars(e)�Defs(S)) [�S
Id

if e evaluates to true

if e evaluates to false

�if e then S1 else S2
=

�
(Vars(e)� f e g) [�S1
(Vars(e)� f e g) [�S2

if e evaluates to true

if e evaluates to false

�if e then S1 else S2
=

�
(f e g �Defs(S1)) [�S1
(f e g �Defs(S2)) [�S2

if e evaluates to true

if e evaluates to false

�if e then S1 else S2
=

�
(Vars(e)�Defs(S1)) [�S1
(Vars(e)�Defs(S2)) [�S2

if e evaluates to true

if e evaluates to false

Figure 17: De�nition of dynamic dependence relations.

4.1.2 Dynamic Dependence Relations

Gopal describes an approach were dynamic dependence relations are used to compute dy-

namic slices in [33]. He introduces dynamic versions of Bergeretti and Carr�e's information-

ow relations
12 �S , �S, and �S (see Section 3.1.2). The �S relation contains all pairs (v; e)

such that statement e depends on the input value of v when program S is executed. Rela-

tion �S contains all pairs (e; v) such that the output value of v depends on the execution

of statement e. A pair (v; v0) is in relation �S if the output value of v0 depends on the

input value of v. In these de�nitions, it is presumed that S is executed for some �xed

input.

For empty statements, assignments, and statement sequences Gopal's dependence re-

lations are exactly the same as for the static case. The (static) information-ow relations

for a conditional statement are derived from the statement itself, and from the statements

that constitute its branches. For dynamic dependence relations, however, only the depen-

dences that arise in the branch that is actually executed are taken into account. As in

[16], the dependence relation for a while statement (omitted here) is expressed in terms of

dependence relations for nested conditionals with equivalent behavior. However, whereas

12Gopal uses the notation sSv , v
S
v , and vSs . In order to avoid confusion and to make the relation with

Bergeretti and Carr�e's work explicit (see Section 3.1.2), we will use �S , �S , and �S instead.

32

Expression #a Affected Variables

1 f i; n; x g

2 f i; x g

3 f i; x g

4 f i; x g

5 f x g

6 ;

7 f i; x g

8 ;

aExpressions are indicated by the line numbers in Figure 2.

Figure 18: The � relation for the example program of Figure 2 (a) and input n = 2.

in the static case loops are e�ectively replaced by their in�nite unwindings, the dynamic

case only requires that a loop be unwound k times, where k is the number of times the loop

executes. The resulting de�nitions are very convoluted because the dependence relations

for the body of the loop may di�er in each iteration. Hence, a simple transitive closure

operation, as was used in the static case, is insu�cient.

Figure 17 summarizes Gopal's dynamic dependence relations. Here, Defs(S) denotes

the set of variables that is modi�ed by executing statement S. Using these relations, a

dynamic slice w.r.t. the �nal value of a variable v is de�ned as:

�Pv � fe j (e; v) 2 �P g

Figure 18 (a) shows the information-ow relation � for the (entire) program of Figure 2

(a)13. From this relation it follows that the set of expressions which for input n = 2 a�ect

the value of x at the end of the program are f1; 2; 3; 4; 5; 7g. The corresponding dynamic

slice is nearly identical to the slice shown in Figure 1 (b), the only di�erence being the

fact that Gopal's algorithm also excludes the �nal statement write(x) on line 8.

For the previous example, Gopal's dependence relations computed a similar slice to

that computed in Section 4.1.1; the only di�erence being the fact that the former omitted

the write(x) statement. However, for certain cases, Gopal's algorithm may compute a

non-terminating slice of a terminating program. Figure 19 (a) shows the slice for the

program of Figure 2 and input n = 1 as computed according to Gopal's algorithm.

An advantage of using dependence relations is that, for certain cases, smaller slices are

computed than by Korel and Laski's algorithm. For example, Figure 19 (b) shows the

slice with respect to the �nal value of z for the example program of Figure 16 (a), for

input n = 2. Observe that the assignment x := 18, which occurs in the slice computed

by the algorithm of Section 4.1.1, is not included in the slice here.

4.1.3 Dependence Graphs

Miller and Choi were the �rst to introduce a dynamic variation of the PDG, called the dy-

namic program dependence graph in [67]. These graphs are used by their parallel program

debugger to perform owback analysis [10] and constructed incrementally, on demand.

13Gopal does not de�ne information-ow relations for I/O statements. For the purposes of this example,

it is assumed that the statement read(n) can be treated as an assignment n := SomeConstant, and that

the statements write(sum) and write(product) should be treated as empty statements.

33

read(n);

i := 1;

while (i <= n) do

begin

if (i mod 2 = 0) then

else

x := 18;

end;

read(n);

i := 1;

while (i <= n) do

begin

if (i mod 2 = 0) then

x := 17

else

;

z := x;

i := i + 1

end;

(a) (b)

Figure 19: (a) Non-terminating slice computed for example program of Figure 2 (a) with

respect to the �nal value of x, for input n = 1. (b) Slice for the example program of Figure 16

(a) with respect to the �nal value of x, for input n = 2.

Prior to execution, a (variation of a) static PDG is constructed, and the object code of

the program is augmented with code which generates a log �le. In addition, an emulation

package is generated. Programs are partitioned into so-called emulation blocks (typically,

a subroutine). During debugging, the debugger uses the log �le, the static PDG, and the

emulation package to re-execute an emulation block, and obtain the information necessary

to construct the part of the dynamic PDG corresponding to that block. In case the user

wants to perform owback analysis to parts of the graph that have not been constructed

yet, more emulation blocks are re-executed.

In [5], Agrawal and Horgan develop an approach for using dependence graphs to com-

pute dynamic slices. Their �rst two algorithms for computing dynamic slices are inac-

curate, but useful for understanding their �nal approach. The initial approach uses the

PDG as it was discussed in Section 3.1.3
14
, and marks the vertices that are executed for

a given test set. A dynamic slice is computed by computing a static slice in the subgraph

of the PDG that is induced by the marked vertices. By construction, this slice only con-

tains vertices that were executed. This solution is imprecise because it does not detect

situations where there exists a ow edge in the PDG between a marked vertex v1 and a

marked vertex v2, but where the de�nitions of v1 are not actually used at v2.

For example, Figure 21 (a) shows the PDG of the example program of Figure 2 (a).

Suppose we want to compute the slice w.r.t. the �nal value of x for input n = 2. All

vertices of the PDG are executed, causing all PDG vertices to be marked. The static

slicing algorithm of Section 3.1.3 will therefore produce the entire program as the slice,

even though the assignment x := 18 is irrelevant. This assignment is included in the slice

because there exists a dependence edge from vertex x := 18 to vertex write(x) even

though this edge does not represent a dependence that occurs during the second iteration

of the loop. More precisely, this dependence only occurs in iterations of the loop where

the control variable i has an odd value.

The second approach consists of marking PDG edges as the corresponding dependences

14The dependence graphs of [5] do not have an entry vertex. The absence of an entry vertex does not

result in a di�erent slice. For reasons of uniformity, all dependence graphs shown in the present paper

have an entry vertex.

34

arise during execution. Again, the slice is obtained by traversing the PDG, but this time

only along marked edges. Unfortunately, this approach still produces imprecise slices in

the presence of loops because an edge that is marked in some loop iteration will be present

in all subsequent iterations, even when the same dependence does not recur. Figure 21 (b)

shows the PDG of the example program of Figure 16 (a). For input n = 2, all dependence

edges will be marked, causing the slice to consist of the entire program. It is shown in

[5] that a potential re�nement of the second approach consisting of unmarking edges of

previous iterations is incorrect.

Agrawal and Horgan point out the interesting fact that their second approach for

computing dynamic slices produces identical results as the algorithm proposed by Korel

and Laski (see Section 4.1.1). However, the PDG of a program (with optionally marked

edges) requires only O(n2) space (n denotes the number of statements in the program),

whereas Korel and Laski's trajectories are in principle unbounded in size.

Agrawal and Horgan's second approach computes imprecise slices because it does not

account for the fact that di�erent occurrences of a statement in the execution history

may be (transitively) dependent on di�erent statements. This observation motivates their

third solution: create a distinct vertex in the dependence graph for each occurrence of

a statement in the execution history. This kind of graph is referred to as a Dynamic

Dependence Graph (DDG). A dynamic slicing criterion is identi�ed with a vertex in the

DDG, and a dynamic slice is computed by determining all DDG vertices from which the

criterion can be reached. A statement or control predicate is included in the slice if the

criterion can be reached from at least one of the vertices for its occurrences.

Figure 21 shows the DDG for the example program of Figure 2 (a). The slicing

criterion corresponds to the vertex labeled write(z), and all vertices from which this

vertex can be reached are indicated by shading. Observe that the criterion cannot be

reached from the vertex labeled x := 18. Therefore the corresponding assignment is not

in the slice.

The disadvantage of using DDGs is that the number of vertices in a DDG is equal to

the number of executed statements, which is unbounded. The number of dynamic slices,

however, is in the worst case O(2n), where n is the number of statements in the program

being sliced. Figure 20 shows a program Qn
that has O(2n) dynamic slices. The program

reads a number of values in variables xi (1 � i � n), and allows one to compute the sumP
x2S x, for any number of subsets S � f x1; � � � ; xn g. The crucial observation here is

that, in each iteration of the outer loop, the slice with respect to statement write(y) will

contain exactly the statements read(xi) for xi 2 S. Since a set with n elements has 2
n

subsets, program Qn
has O(2n) di�erent dynamic slices.

Agrawal and Horgan propose to reduce the number of vertices in the DDG by merging

vertices for which the transitive dependences map to the same set of statements. In other

words, a new vertex is only introduced if it can create a new dynamic slice. Obviously, this

check involves some run-time overhead. The resulting graph is referred to as the Reduced

Dynamic Dependence Graph (RDDG) of a program. Slices computed using RDDGs have

the same precision as those computed using DDGs.

In the DDG of Figure 21 (c), the vertices labeled i := i + 1 and the rightmost

two vertices labeled i <= n have the same transitive dependences; these vertices depend

on statements 1, 2 ,3, and 8 of the program of Figure 16 (a). Hence, the RDDG for this

program, and input n = 2 is obtained by merging these four DDG vertices into one vertex.

In [5], an algorithm is presented for the construction of an RDDG without having to

35

program Qn
;

read(x1);

� � �
read(xn);

MoreSubsets := true;

while MoreSubsets do

begin

Finished := false;

y := 0;

while not(Finished) do

begin

read(i);

case (i) of

1: y := y + xi;

� � �
n: y := y + xn;

end;

read(Finished);

end;

write(y);

read(MoreSubsets);

end

end.

Figure 20: Program Qn with O(2n) di�erent dynamic slices.

x := 18

read(n) i := 1 while (i <= n) write(x)

Entry

if (i mod 2 = 0) i := i + 1

x := 17 x := 17

Entry

read(n) i := 1 while (i <= n) write(z)

if (i mod 2 = 0) z := x i := i + 1

x := 18

(a) (b)

x := 18

Entry

read(n) i := 1 while (i <= n) while (i <= n) while (i <= n) write(z)

i := i + 1if (i mod 2 = 0)

z := x

x := 17

i := i + 1if (i mod 2 = 0)

z := x

(c)

Figure 21: (a) PDG of the program of Figure 2 (a). (b) PDG of the program of Figure 16

(a). (c) DDG of the program of Figure 16 (a).

36

keep track of the entire execution history. The information that needs to be maintained is:

(i) for each variable, the vertex corresponding to its last de�nition, (ii) for each predicate,

the vertex corresponding to its last execution, and (iii) for each vertex in the RDDG, the

dynamic slice w.r.t. that vertex.

4.2 Interprocedural Dynamic Slicing

In [3], Agrawal, DeMillo and Spa�ord consider dynamic slicing of procedures with various

parameter-passing mechanisms. In the discussion below, it is assumed that a procedure

P with formal parameters f1; � � � ; fn is called with actual parameters a1; � � � ; an. It

is important to realize that in the approach of [3], dynamic data dependences based on

de�nitions and uses of memory locations are used. This way, two potential problems are

avoided. First, the use of global variables inside procedures does not pose any problems.

Second, no alias analysis is required.

Call-by-value parameter-passing is modeled by a sequence of assignments f1:=a1; � � �;

fn:=an which is executed before the procedure is entered. In order to determine the

memory cells for the correct activation record, the Use sets for the actual parameters ai
are determined before the procedure is entered, and the Def sets for the formal parameters

fi after the procedure is entered. For Call-by-value-result parameter-passing, additional

assignments of formal parameters to actual parameters have to be performed upon exit

from the procedure. Call-by-reference parameter-passing does not require any actions

speci�c to dynamic slicing, as the same memory cell is associated with corresponding

actual and formal parameters ai and fi.

An alternative approach for interprocedural dynamic slicing was presented by Kamkar,

Shahmehri, and Fritzson in [52, 51]. This work distinguishes itself from the solution by

Agrawal et al. by the fact that the authors are primarily concerned with procedure-level

slices. That is, they study the problem of determining the set of call sites in a program

that a�ect the value of a variable at a particular call site.

During execution, a (dynamic dependence) summary graph is constructed. The ver-

tices of this graph, referred to as procedure instances, correspond to procedure activations

annotated with their parameters
15
. The edges of the summary graph are either activation

edges corresponding to procedure calls, or summary dependence edges. The latter type

reects transitive data and control dependences between input and output parameters of

procedure instances.

A slicing criterion is de�ned as a pair consisting of a procedure instance, and an input

or output parameter of the associated procedure. After constructing the summary graph,

a slice with respect to a slicing criterion is determined in two steps. First, the parts of

the summary graph from which the criterion can be reached is determined; this subgraph

is referred to as an execution slice. Vertices of an execution slice are partial procedure

instances, because some parameters may be `sliced away'. An interprocedural program

slice consists of all call sites in the program for which a partial instance occurs in the

execution slice.

Three approaches for constructing summary graphs are considered. In the �rst ap-

proach, intraprocedural data dependences are determined statically which may result in

15More precisely, Kamkar refers to the incoming and outgoing variables of a procedure. This notion also

applies to global variables which are referenced or modi�ed in a procedure.

37

inaccurate slices in the presence of conditionals. In the second approach, all dependences

are determined at run-time. While this results in accurate dynamic slices, the depen-

dences for a procedure P have to be re-computed every time P is called. The third

approach attempts to combine the e�ciency of the `static' approach with the accuracy

of the `dynamic' approach by computing the dependences inside basic blocks statically,

and the inter-block dependences dynamically. In all approaches control dependences
16
are

determined statically. It is unclear how useful this third approach is in the presence of

composite variables and pointers, where the run-time intra-block dependences cannot be

determined statically: additional alias analysis would have to be performed at run-time.

In [49], Kamkar adapts the interprocedural slicing method of [51, 52] to compute

statement-level interprocedural slices (i.e., slices consisting of a set of statements instead

of a set of call sites). In essence, this is accomplished by introducing a vertex for each

statement instance (instead of each procedure instance) in the summary graph. The same

three approaches (static, dynamic, combined static/dynamic) for constructing summary

graphs can be used.

Choi, Miller and Netzer discuss an approach for interprocedural owback analysis

in [22]. Initially, it is assumed that a procedure call may modify every global variable;

to this end, the static PDG is augmented with linking edges indicating potential data

dependences. In a second phase, interprocedural summary information is used to either

replace linking edges by data dependence edges, or delete them from the graph. Some

linking edges may remain; these have to be resolved at run-time.

4.3 Dynamic Slicing in the Presence of Composite Datatypes/Pointers

4.3.1 Dynamic Flow Concepts

In [57], Korel and Laski consider slicing in the presence of composite variables by regarding

each element of an array, or �eld of a record as a distinct variable. Dynamic data structures

are treated as two distinct entities, namely the pointer itself and the object being pointed

to. For dynamically allocated objects, they propose a solution where a unique name is

assigned to each object.

4.3.2 Dependence Graphs

Agrawal, DeMillo, and Spa�ord present a dependence graph based algorithm for dynamic

slicing in the presence of composite datatypes and pointers in [3]. Their solution consist

of expressing Def and Use sets in terms of actual memory locations provided by the

compiler. The algorithm of [3] is similar to that for static slicing in the presence of

composite datatypes and pointers by the same authors (see Section 3.4). However, during

the computation of dynamic reaching de�nitions, no Maybe intersections can occur|only

Complete and Partial intersections.

Choi, Miller, Netzer extend the owback analysis method of [67] (see Section 4.1.3) in

order to deal with arrays and pointers. For arrays, linking edges are added to their static

PDGs; these edges express potential data dependences which are either deleted or changed

16Kamkar et al. use a notion of termination-preserving control dependence that is similar to Podgurski

and Clarke's weak control dependence [70].

38

into genuine data dependences at run-time. Pointer accesses are resolved at run-time, by

recording all uses of pointers in the log �le.

4.4 Dynamic Slicing of Distributed Programs

4.4.1 Dynamic Flow Concepts

Korel and Ferguson extend the dynamic slicing method of [56, 57] to distributed programs

with Ada-type rendezvous communication (see, e.g., [12]). For a distributed program, the

execution history is formalized as a distributed program path which, for each task, comprises

of: (i) the sequence of statements (trajectory) executed by it, and (ii) a sequence of triples

(A;C;B) identifying each rendezvous the task is involved in. Here, A identi�es the accept

statement in the task, B identi�es the other task that participated in the communication,

and C denotes the entry call statement in the task that was involved in the rendezvous.

A dynamic slicing criterion of a distributed program speci�es: (i) the input of each

task, (ii) a distributed program path P , (iii) a task w, (iv) a statement occurrence q in

the trajectory of w, and (v) a variable v. A dynamic slice with respect to such a criterion

is an executable projection of the program that is obtained by deleting statements from

it. However, the program is only guaranteed to preserve the behavior of the program if

the rendezvous in the slice occur in the same relative order as in the program. (Note that

not all rendezvous of the program need to be in the slice.)

The method for computing slices of distributed programs of [55] is basically a general-

ization of the method of [56, 57], though stated in a slightly di�erent manner. In addition

to the previously discussed dynamic ow concepts (see Section 4.1.1), a notion of com-

munication inuence is introduced, to capture the interdependences between tasks. The

authors also present a distributed version of their algorithm which uses a separate process

for slicing each task.

4.4.2 Dependence Graphs

Duesterwald, Gupta, and So�a present a dependence graph based algorithm for computing

dynamic slices of distributed programs [25]. They introduce a Distributed Dependence

Graph (DDG)
17

for representing distributed programs.

A distributed program P consists of a set of processes P1; � � � ; Pn. Communica-

tion between processes is assumed to be synchroneous and nondeterministic and is ex-

pressed by way of send and receive statements. A distributed dynamic slicing criterion

(I1;X1); � � � ; (In;Xn) speci�es for each process Pi its input Ii, and a set of statements

Xi. A distributed dynamic slice S is an executable set of processes P 0

1; � � � ; P
0

n such that

the statements of P 0

i are a subset of those of Pi. Slice S computes the same values at

statements in each Xi as program P does, when executed with the same input. This is

accomplished by: (i) including all input statements in the slice, and (ii) replacing non-

deterministic communication statements in the program by deterministic communication

statements in the slice.

A DDG contains a single vertex for each statement and control predicate in the pro-

gram. Control dependences between statements are determined statically, prior to execu-

tion. Edges for data and communication dependences are added to the graph at run-time.

17This abbreviation \DDG" used in Section 4.4.2 should not be confused with the notion of a Dynamic

Dependence Graph that was discussed earlier in Section 4.1.

39

Slices are computed in the usual way by determining the set of DDG vertices from which

the vertices speci�ed in the criterion can be reached. Both the construction of the DDG

and the computation of slices is performed in a distributed manner; a separate DDG con-

struction process and slicing process is assigned to each process Pi in the program; these

processes communicate when a send or receive statement is encountered.

Due to the fact that a single vertex is used for all occurrences of a statement in

the execution history, inaccurate slices may be computed in the presence of loops (see

Section 4.1.1). For example, the slice with respect to the �nal value of z for the program

of Figure 16 with input n = 2 will be the entire program.

Cheng presents an alternative dependence graph based algorithm for computing dy-

namic slices of distributed and concurrent programs in [19]. The PDN representation of

a concurrent program (see Section 3.5) is used for computing dynamic slices. Cheng's

algorithm is basically a generalization of the initial approach proposed by Agrawal and

Horgan in [5]: the PDN vertices corresponding to executed statements are marked, and

the static slicing algorithm of Section 3.5 is applied to the PDN subgraph induced by the

marked vertices. As was discussed in Section 4.1.3, this yields inaccurate slices.

In [22, 67], Choi et al. describe how their approach for owback analysis can be

extended to parallel programs. Shared variables with semaphores, message-passing com-

munication, and Ada-type rendezvous mechanisms are considered. To this end, a parallel

dynamic graph is introduced which contains synchronization vertices for synchronization

operations (such as P and V on a semaphore) and synchronization edges which represent

dependences between concurrent processes. Choi et al. explain how, by analysis of the

parallel dynamic graph, read/write and write/write conicts between concurrent processes

can be found.

4.5 Comparing Methods for Dynamic Slicing

In this section, we compare and classify the dynamic slicing methods that were presented

earlier. The section is organized as follows: Section 4.5.1 summarizes the problems that are

addressed in the literature. Sections 4.5.2 and 4.5.3 compare the accuracy and e�ciency

of slicing methods that address the same problem, respectively. Finally, Section 4.5.4

investigates the possibilities for `combining' algorithms that deal with di�erent problems.

4.5.1 Overview

Table 4 lists the dynamic slicing algorithms that we discussed earlier, and summarizes

the issues studied in each paper. For each paper, the table shows: (i) the computation

method, (ii) whether or not the computed slices are executable programs, (iii) whether

or not an interprocedural solution is supplied, (iv) the data types under consideration,

and (v) whether or not interprocess communication is considered. Similar to Table 2, the

table only shows problems that have been addressed. It does not indicate how various

algorithms may be combined, and it also does not give an indication of the quality of the

work.

Unlike in the static case, there exists a signi�cant di�erence between methods which

compute executable slices [25, 55, 56, 57], and approaches which compute slices that are

merely sets of statements [3, 5, 33]. The latter type of slice may not be executable due

40

Computation Executable Interprocedural Data Interprocess

Methoda Solution Typesb Communication

Korel, Laski [56, 57] D yes no S, A, P no

Korel, Ferguson [55] D yes no S, A yes

Gopal [33] I no no S no

Agrawal, Horgan [5] G no no S no

Agrawal et al. [1, 3] G no yes S, A, P no

Kamkar et al. [51, 52] G no yes S no

Duesterwald et al. [25] G yes no S, A, P yes

Cheng [19] G no no S yes

Choi et al. [22, 67] G no yes S, A, P yes

aD = dynamic ow concepts, I = dynamic dependence relations, G = reachability in a dependence

graph.
bS = scalar variables, A = arrays/records, P = pointers.

Table 4: Overview of dynamic slicing methods.

to the absence of assignments for incrementing loop counters
18
. For convenience, we will

henceforth refer to such slices as `non-executable' slices. As we discussed in Section 4.1.1,

the algorithms that compute executable dynamic slices may produce inaccurate results in

the presence of loops.

Apart from the work by Venkatesh [79], there is very little semantic justi�cation for

any of the methods for computing `non-executable' slices. The algorithms of [5, 19, 51,

52, 67] are graph-reachability algorithms that compute a set of statements that directly or

indirectly `a�ect' the values computed at the criterion. Besides the algorithms themselves,

little or no attention is paid to formal characterization of such slices.

4.5.2 Accuracy

basic algorithms The slices computed by Korel and Laski's algorithm [56, 57] (see Sec-

tion 4.1.1) are less accurate than those computed by the algorithms by Agrawal and

Horgan [5] (see Section 4.1.3) and Gopal [33] (see Section 4.1.2). This is due to Korel

and Laski's constraint that their slices should be executable. Slices of terminating

programs, as computed by Agrawal and Horgan and Gopal, may consist of diverging

programs.

procedures Dependence graph based algorithms for interprocedural dynamic slicing were

proposed by Agrawal, DeMillo, and Spa�ord [3], and by Kamkar et al. [51, 52] (see

Section 4.2). It is unclear if one of these algorithms procedures more accurate slices

than the other.

composite variables and pointers Korel and Laski [57] (see Section 4.1.1), and Agrawal,

DeMillo, and Spa�ord (see Section 4.1.3) proposed methods for dynamic slicing in

the presence of composite variables and pointers. We are unaware of any di�erence

in accuracy.

interprocess communication Korel and Ferguson [55] (see Section 4.4.1) and Duester-

wald, Gupta, and So�a [25] (see Section 4.4.2) compute executable slices, but deal

18Of course, such a slice may be executed anyway; however, it may not terminate.

41

with nondeterminism in a di�erent way: the former approach requires a mechanism

for replaying rendezvous in the slice in the same relative order as they appeared in

the original program, whereas the latter approach replaces nondeterministic com-

munication statements in the program by deterministic communication statements

in the slice. Cheng [19] and Choi et al. [22, 67] (see Section 4.4.2) do not address

this problem because the slices they compute are not necessarily executable. The

methods by Cheng and Duesterwald et al. are inaccurate because static dependence

graphs are used for computing dynamic slices (see the discussion in Section 4.1.3).

4.5.3 E�ciency

Since dynamic slicing involves run-time information, it is not surprising that all dynamic

slicing methods discussed in this section have time requirements that depend on the num-

ber of executed statements (or procedure calls in the case of [51, 52]) N . All algorithms

spend at least O(N) time during execution in order to store the execution history of the

program, or to update dependence graphs. Certain algorithms (e.g., [55, 56, 57]) traverse

the execution history in order to extract the slice and thus require again at least O(N) time

for each slice, whereas other algorithms require less (sometime even constant) time. When

we discuss time requirements in the discussion below, we will ignore the time spent during

execution that is needed to construct histories or dependence graphs. Space requirements

will always be discussed in detail.

basic algorithms Korel and Laski's solution [56, 57] (see Section 4.1.1) requires O(N)

space to store the trajectory, and O(N2
) space to store the dynamic ow concepts.

Construction of the ow concepts requires O(N � (v + n)) time, where v and n are

the number of variables and statements in the program, respectively. Extracting a

single slice from the computed ow concepts can be done in O(N) time.

The algorithm by Gopal [33] (see Section 4.1.2) requires O(N) space to store the

execution history and O(n � v) space to store the �S relation. The time required

to compute the �S relation for a program S is bounded by O(N2 � v2). From this

relation, slices can be extracted in O(v) time.

As we discussed in Section 4.1.3, the slicing method proposed by Agrawal and Horgan

requires at most O(2n) space, where n is the number of statements in the program.

Since vertices in an RDDG are annotated with their slice during execution, slices

can be extracted from it in O(1).

procedures The interprocedural dynamic slicing method proposed by Kamkar et al. [51,

52] (see Section 4.2) requires O(P 2
) space to store the summary graph, where P

is the number of executed procedure calls. A traversal of this graph is needed to

extract a slice; this takes O(P 2
) time.

The time and space requirements of the method by Agrawal, DeMillo, and Spa�ord

[3] are essentially the same as those of the Agrawal-Horgan basic slicing method we

discussed above.

composite variables and pointers The algorithms by Korel and Laski [57] (see Sec-

tion 4.3.1) and Agrawal, DeMillo, and Spa�ord [3] (see Section 4.3.2) for slicing in

42

Interprocedural Composite Vars/ Interprocess

Slicing Pointers Communication

Dyn. Flow Concepts - Korel, Laski [56, 57] Korel, Ferguson [55]

Dyn. Dep. Relations Gopal [33] - -

Dependence Graphs Agrawal et al. [3] Agrawal et al. [3] Duesterwald et al. [25]

Kamkar et al. [51, 52] Cheng [19]

Choi et al. [22, 67]

Table 5: Orthogonal problems of dynamic slicing.

the presence of composite variables and pointers are adaptations of the basic slic-

ing algorithms by Korel and Laski and Agrawal and Horgan, respectively (see the

discussion above). These adaptations, which essentially consist of a change in the

reaching de�nitions functions that is used to determine data dependences, does not

a�ect the worst-case behavior of the algorithms. Therefore, we expect the time and

space requirements to be the same as in the scalar variable case.

interprocess communication The algorithms by Cheng [19] and Duesterwald et al.

[25] are based on static PDGs. Therefore, only O(n2) space is required to store the

dependence graph, and slices can be extracted in O(n2) time. The distributed slicing

algorithm in [25] uses a separate slicing process for each process in the program; the

slicing process for process Pi requires time O(ei), where ei is the number of edges in

the PDG for process Pi. The communication overhead between the slicing processes

requires at most O(e) time, where e is the number of edges in the entire graph.

4.5.4 Combining Dynamic Slicing Algorithms

Table 5 displays solutions to `orthogonal' problems of dynamic slicing: dealing with pro-

cedures, composite variables and pointers, and communication between processes. The

algorithms based on dynamic ow concepts for dealing with composite variables/pointers

[57], and interprocess communication [55] may be integrated with little problems. For

dependence graphs, however, the situation is slightly more complicated because:

� Di�erent graph representations are used. Agrawal et al. [3], Kamkar et al. [51, 52]

and Choi et al. [22, 67] use dynamic dependence graphs with distinct vertices for

di�erent occurrence of statements in the execution history. In contrast, Duesterwald

et al. [25] and Cheng [19] use variations of static PDGs.

� The dynamic slicing by Agrawal et al. [3] is based on de�nition and use of memory

locations. All other dependence graph based slicing methods are based on de�nitions

and uses of variable names.

Furthermore, it is unclear if the combined static/dynamic interprocedural slicing approach

by Kamkar et al. [51, 52] is practical in the presence of composite variables and pointers,

because the intra-block dependences cannot be determined statically in this case, and

additional alias analysis would be required at run-time.

43

read(n);

i := 1;

if (i > 0) then

n := n + 1

else

n := n * 2;

write(n)

read(n);

i := 1;

if (i > 0) then

n := n + 1

else

;

write(n)

read(n);

n := n + 1

;

write(n)

(a) (b) (c)

Figure 22: (a) Example program. (b) Accurate slice obtained by performing constant propa-

gation. (c) Minimal slice.

5 More Accurate Slicing

5.1 Language-speci�c and Syntactic Issues

Althoughmost slicing algorithms are stated in a language-independent way, some language-

speci�c and syntactic issues cannot be avoided in practice [46]. In [82], Weiser states that

\good source language slicing requires transformations beyond statement deletion". This

is for example the case when a language does not allow if statements with empty branches,

and where a slicing algorithm would exclude all statements in one of its branches. In fact,

two characteristics of all slicing methods discussed so far are:

� Slices are obtained by deleting statements from a program.

� Slices are computed by tracing data and control dependences backwards from the

slicing criterion.

However, if the singular objective is to obtain slices that are as small as possible, both of

these constraints need to be dismissed.

Consider for example the program of Figure 22 (a). When asked for the slice with

respect to statement write(n), traditional slicing algorithms will produce the entire pro-

gram. However, by using constant propagation techniques [80], one can determine that

the value of i is constant, causing the else branch of the conditional never to be selected.

Therefore, the accurate slice of Figure 22 (b) can be computed in principle. Moreover, if

replacement of an entire if statement by one of the statements in its branches is allowed,

one might even compute the minimal slice of Figure 22 (c). Other compiler optimization

techniques such as loop invariant motion and loop unrolling (see e.g. [87] for a compre-

hensive overview) may also be employed to obtain more precise slices.

Figure 23 (a) shows another example program, which is to be sliced with respect to its

�nal statement write(y). Once again, traditional slicing algorithms will fail to omit any

statements. A more accurate slice for this example can be acquired by `merging' the two if

statements. The e�ect of this semantics-preserving transformation is shown in Figure 23

(b). Clearly, a slicing algorithm which could conceptually perform this transformation

would be able to determine the more accurate slice shown in Figure 23 (c).

Field and Tip are currently working on a reduction-theoretical framework for comput-

ing accurate slices. Instead of performing semantics-preserving transformations on source

programs, programs are �rst compiled into an intermediate graph representation named

Pim [28]. This representation was carefully designed to accommodate transformations and

44

read(p);

read(q);

if (p = q) then

x := 18

else

x := 17;

if (p <> q) then

y := x;

else

y := 2;

write(y)

read(p);

read(q);

if (p = q) then

begin

x := 18;

y := 2

end

else

begin

x := 17;

y := x

end

write(y)

read(p);

read(q);

if (p = q) then

;

else

x := 17;

if (p <> q) then

y := x;

else

y := 2;

write(y)

(a) (b) (c)

Figure 23: (a) Example program. (b) Transformed program. (c) More accurate slice obtained

by slicing in the transformed program.

simpli�cations such as those shown in Figures 22 and 23. The transformation of source

programs to Pim graphs, as well as subsequent optimizations and transformations on this

representation are expressed by way of an algebraic speci�cation [17]. Orienting the equa-

tions of this speci�cation from left to right yields a term rewriting system [54]. In [29], a

dynamic dependence relation for term rewriting systems is developed which can be used

to keep track of `corresponding' parts of a source program, the intermediate representa-

tion it compiles to, and the optimized version of that Pim-graph. Roughly speaking, a

Pim graph contains a subgraph for each statement that represents its store expression.

Slices are computed in this framework by selecting a store expression in the optimized

Pim graph, and tracing the dependence relations back to the source program.

Both Pim and dynamic dependence relations have been implemented using the

ASF+SDF programming environment generator [53] developed at CWI. Recent experi-

ments have produced promising results. In particular, the (accurate) slices of Figures 22

(b) and 23 (c) have been computed.

6 Applications of Program Slicing

6.1 Debugging and Program Analysis

Debugging can be a di�cult task when one is confronted with a large program, and little

clues regarding the location of a bug. Program slicing is useful for debugging, because it

potentially allows one to ignore many statements in the process of localizing a bug [64].

If a program computes an erroneous value for a variable x, only the statements in the

slice w.r.t. x have (possibly) contributed to the computation of that value; all statements

which are not in the slice can safely be ignored.

Forward slices are also useful for debugging. Suppose that, in the course of debugging,

statement s is found to be incorrect. Before making a change to s, one could examine

the forward slice w.r.t. s, indicating the program parts a�ected by s. This may produce

useful insights how the error may be corrected.

Lyle and Weiser [65] introduce program dicing, a method for combining the information

45

of di�erent slices. The basic idea is that, when a program computes a correct value for

variable x and an incorrect value for variable y, the bug is likely to be found in statements

which are in the slice w.r.t. y but not in the slice w.r.t. x. This approach is not fail-

safe in the presence of multiple bugs, and when computations that use incorrect values

produce correct values (referred to as coincidental correctness in [1]). The authors claim

that program dicing still produces useful results when these assumptions are relaxed.

Static slicing methods can detect `dead' code, i.e., statements which cannot a�ect any

output of the program [16]. Often, such statements are not executable because of the

presence of a bug. Static slicing can also be used to determine uninitialized variables

which are used in expressions, another symptom of an error in the program [16].

In debugging, one is often interested in a speci�c execution of a program that exhibits

anomalous behavior. Dynamic slices are particularly useful here, because they only reect

the actual dependences of that execution, resulting in smaller slices than static ones.

Agrawal's thesis [1] contains a detailed discussion how static and dynamic [3, 5] slicing

can be utilized for semi-automated debugging of programs. He proposes an approach

where the user gradually `zooms out' from the location where the bug manifested itself

by repeatedly considering larger data and control slices. A data slice is obtained by only

taking (static or dynamic) data dependences into account; a control slice consists of the

set of control predicates surrounding a language construct. The closure of all data and

control slices w.r.t. an expression is the (static or dynamic) slice w.r.t. the set of variables

used in the expression. The information of several dynamic slices can be combined to gain

some insight into the location of a bug. In [1], several operations on slices are proposed to

this end, such as union, intersection, and di�erence. The di�erence operation is a dynamic

version of the program `dicing' notion of [65]. Obviously, these operations for combining

slices may produce misleading information in the presence of multiple bugs or coincidental

correctness. In [4], implementation of a debugging tool based on the ideas in [1, 3, 5] is

discussed.

In [22], Choi, Miller and Netzer describe the design and e�cient implementation of

a debugger for parallel programs which incorporates owback analysis, a notion intro-

duced in the seminal paper by Balzer [10]. Intuitively, owback analysis reveals how the

computation of values depends on the earlier computation of other values. The di�erence

between owback analysis and (dependence graph based) dynamic slices is that the former

notion allows one to interactively browse through a dependence graph, whereas the latter

consists of the set of all program parts corresponding to vertices of the graph from which

a designated vertex|the criterion|can be reached.

Fritzson et al. use interprocedural static [30] and dynamic [49, 52] slicing for algorith-

mic debugging [77, 78]. An algorithmic debugger partially automates the task of localizing

a bug by comparing the intended program behavior with the actual program behavior. The

intended behavior is obtained by asking the user whether or not a program unit (e.g., a

procedure) behaves correctly. Using the answers given by the user, the location of the bug

can be determined at the unit level. By applying the algorithmic debugging process to a

slice w.r.t. an incorrectly valued variable instead of the entire program, many irrelevant

questions can be skipped.

46

6.2 Program Di�erencing and Program Integration

Program di�erencing [37] is the task of analyzing an old and a new version of a program

in order to determine the set of program components of the new version that represent

syntactic and semantic changes. Such information is useful because only the program

components reecting changed behavior need to be tested. The key issue in program

di�erencing consists of partitioning the components of the old and new version in a way

that two components are in the same partition only if they have equivalent behaviors. The

program integration algorithm of [44] discussed below, compares slices in order to detect

equivalent behaviors. However, a partitioning technique presented in [37], which is not

based on comparing slices, produces more accurate results because semantics-preserving

transformations can be accommodated.

Horwitz, Prins, and Reps use the static slicing algorithm for single-procedure programs

of [44] as a basis for an algorithm that integrates changes in variants of a program [41].

The inputs of their algorithm consist of a program Base, and two variants A and B which

have been derived from Base. The algorithm consists of the following steps:

1. The PDGs GBase , GA, and GB are constructed. Correspondences between `related'

vertices of these graphs are assumed to be available.

2. Sets of a�ected points of GA and GB w.r.t. GBase are determined; these consist of

vertices in GA (GB) which have a di�erent slice in GBase
19
.

3. A merged PDG GM is constructed from GA, GB, and the sets of a�ected points

determined in (2).

4. Using GA, GB, GM , and the sets of a�ected points computed in (2), the algorithm

determines whether or not the behaviors of A and B are preserved in GM . This is

accomplished by comparing the slices w.r.t. the a�ected points of GA (GB) in GM

and GA (GB). If di�erent slices are found, the changes interfere and the integration

cannot be performed.

5. If the changes in A and B do not interfere, the algorithm tests if GM is a feasible

PDG, i.e., if it corresponds to some program. If this is the case, program M is

constructed from GM . Otherwise, the changes in A and B cannot be integrated.

A semantic justi�cation for the single-procedure slicing algorithm of [44] and the pro-

gram integration algorithm of [41] is presented in [76]. This paper formalizes the relation-

ship between the execution behaviors of programs, slices of those programs, and between

variants of a program and the corresponding integrated version. The comparison of slices

(in step 4) relies on the existence of a mapping between the di�erent components. If such

a mapping were not available, however, the techniques of [42] for comparing two slices in

linear time of the sum of their sizes could be used.

An alternative formulation of the Horwitz-Prins-Reps program integration algorithm,

based on Brouwerian algebras, is presented in [71]. The algebraic laws that hold in such

algebras are used to restate the algorithm and to prove properties such as associativity of

consecutive integrations.

19These sets of a�ected points can be computed e�ciently by way of a forward slice w.r.t. all directly

a�ected points, i.e., all vertices in GA that do not occur in GBase and all vertices in that have a di�erent

set of incoming edges in GA and in GBase [43].

47

6.3 Software Maintenance

One of the problems in software maintenance consists of determining whether a change

at some place in a program will a�ect the behavior of other parts of the program. In

[31, 32], Gallagher and Lyle use static slicing for the decomposition of a program into a

set of components (i.e., reduced programs), each of which captures part of the original

program's behavior. They present a set of guidelines for the maintainer of a component

which, if obeyed, preclude changes of the behavior of other components. Moreover, they

describe how changes in a component can be merged back into the complete program in

a semantically consistent way.

Gallagher and Lyle use the notion of a decomposition slice for the decomposition of

programs. A decomposition slice w.r.t. a variable v consists of all statements that may

a�ect the `observable' value of v at some point; it is de�ned as the union of the slices w.r.t.

v at any statement that outputs v, and the the last statement of the program. An output-

restricted decomposition slice (ORD slice) is a decomposition slice from which all output

statements are removed. Two ORD slices are independent if they have no statements in

common; an ORD slice is strongly dependent on another ORD slice if it is a subset of

the latter. An ORD slice which is not strongly dependent on any other ORD slice is

maximal. A statement which occurs in more than one ORD slice is dependent; otherwise

it is independent. A variable is dependent if it is assigned to in some dependent statement;

it is independent if it is only assigned to in independent statements. Only maximal ORD

slices contain independent statements, and the union of all maximal ORD slices is equal

to the original program (minus output statements). The complement of an ORD slice is

de�ned as the original program minus all independent statements of the ORD slice and

all output statements. Intuitively, a decomposition slice captures part of the behavior of

a program, and its complement captures the behavior of the rest of the program.

The essential observation of [32] is that independent statements in a slice do not a�ect

the data and control ow in the complement. This results in the following guidelines for

modi�cation:

� Independent statements may be deleted from a decomposition slice.

� Assignments to independent variables may be added anywhere in a decomposition

slice.

� Logical expressions and output statements may be added anywhere in a decomposi-

tion slice.

� New control statements that surround any dependent statements will a�ect the com-

plement's behavior.

New variables may be considered as independent variables, provided that there are no

name clashes with variables in the complement. If changes are required that involve a

dependent variable v, the user can either extend the slice so that v is independent (in a

way described in the paper), or introduce a new variable. Merging changes to components

into the complete program is a trivial task. Since it is guaranteed that changes to an ORD

slice do not a�ect its complement, only testing of the modi�ed slice is necessary.

48

6.4 Testing

A program satis�es a `conventional' data ow testing criterion if all def-use pairs occur in

a successful test-case. Duesterwald, Gupta, and So�a propose a more rigorous testing cri-

terion, based on program slicing in [26]: each def-use pair must be exercised in a successful

test-case; moreover it must be output-inuencing, i.e., have an inuence on at least one

output value. A def-use pair is output-inuencing if it occurs in an output slice, i.e., a slice

w.r.t. an output statement. It is up to the user, or an automatic test-case generator to

construct enough test-cases such that all def-use pairs are tested. Three slicing approaches

are utilized, based on di�erent dependence graphs. Static slices are computed using static

dependence graphs (similar to the PDGs in [44]), dynamic slices are computed using dy-

namic dependence graphs (similar to [5], but instances of the same vertex are merged,

resulting in a slight loss of precision), and hybrid slices are computed using dependence

graphs with combined static and dynamic information (similar to the quasi-static slices

in [79]). In the hybrid approach, the set of variables in the program is partitioned into

two disjoint subsets in a way that variables in one subset do not refer to variables in the

other subset. Static dependences are computed for one subset (typically scalar variables),

dynamic dependences for the other subset (typically arrays and pointers). The advantage

of this approach is that it combines reasonable e�ciency with reasonable precision.

In [50], Kamkar, Shahmehri, and Fritzson extend the work of Duesterwald, Gupta,

and So�a to multi-procedure programs. To this end, they de�ne appropriate notions of

interprocedural def-use pairs. The interprocedural dynamic slicing method of [51, 52] is

used to determine which interprocedural def-use pairs have an e�ect on a correct output

value, for a given test case. The summary graph representation of [51, 52] (see Section 4.2)

is slightly modi�ed by annotating vertices and edges with def-use information. This way,

the set of def-use pairs exercised by a slice can be determined e�ciently.

Regression testing consists of re-testing only the parts a�ected by a modi�cation of

a previously tested program, while maintaining the `coverage' of the original test suite.

Gupta, Harrold, and So�a describe an approach to regression testing where slicing tech-

niques are used [34]. Backward and forward static slices serve to determine the program

parts a�ected by the change, and only test cases which execute `a�ected' def-use pairs

need to be executed again. Conceptually, slices are computed by backward and forward

traversals of the CFG of a program, starting at the point of modi�cation. However, the al-

gorithms in [34] are designed to determine the information necessary for regression testing

only (i.e., a�ected def-use pairs).

In [14], Bates and Horwitz use a variation of the PDG notion of [41] for incremental

program testing. Testing criteria are de�ned in terms of PDG notions: i.e., the all-vertices

testing criterion is satis�ed if each vertex of the PDG is exercised by a test set (i.e., each

statement and control predicate in the program is executed). An all-ow-edges criterion is

de�ned in a similar manner. Given a tested and subsequently modi�ed program, slicing is

used to determine: (i) the statements a�ected by the modi�cation, and (ii) the test-cases

that can be reused for the modi�ed program. Roughly speaking, the former consists of

the statements which did not occur previously as well as and the statements which have

di�erent slices. The latter requires partitioning the statements of the original and the

modi�ed program into equivalence classes; statements are in the same class if they have

the same `control' slice (a slightly modi�ed version of the standard notion). Bates and

Horwitz proof that statements in the same class are exercised by the same test cases.

49

6.5 Tuning Compilers

Larus and Chandra present an approach to the tuning of compilers where dynamic slicing

is used to detect potential occurrences of redundant common subexpressions [62]. Finding

such a common subexpression is an indication of sub-optimal code being generated.

Object code is instrumented with trace-generating instructions. A trace-regenerator

reads a trace and produces a stream of events, such as the read and load of a memory loca-

tion. This stream of events is input for a compiler-auditor (e.g., a common-subexpression

elimination auditor) which constructs dynamic slices w.r.t. the current values stored in

registers. Larus and Chandra use a variant of the approach in [5]: a dynamic slice is

represented by directed acyclic graph (DAG) containing all operators and operands that

produced the current value in a register. A common subexpression occurs when isomorphic

DAGs are constructed for two registers. However, the above situation only indicates that a

common subexpression occurs in a speci�c execution. A common subexpression occurs in

all execution paths if its inputs are the same in all executions. This is veri�ed by checking

that: (i) the program counter PC1 for the �rst occurrence of the common subexpression

dominates the program counter PC2 for the second occurrence, (ii) the register containing

the �rst occurrence of the common subexpression is not modi�ed along any path between

PC1 and PC2, and (iii) neither are the inputs to the common subexpression modi�ed

along any path between PC1 and PC2. Although the third condition is impossible to

verify in general, it is feasible to do so for a number of special cases. In general, it is up

to the compiler writer to check condition (iii).

6.6 Other Applications

Weiser describes how slicing can be used to parallelize the execution of a sequential program

[84]. Several slices of a program are executed in parallel, and the outputs of the slices are

spliced together in such a way that the I/O behavior of the original program is preserved.

In principle, the splicing process may take place in parallel with the execution of the

slices. A natural requirement of Weiser's splicing algorithm is that the set of all slices

should `cover' the execution behavior of the original program. Splicing does not rely

on a particular slicing technique; any method which computes executable static slices is

adequate. Only programs with structured control ow are considered, because Weiser's

splicing algorithm depends on the fact that execution behavior can be expressed in terms

of a so-called program regular expression. The main reason for this is that reconstruction

of the original I/O behavior becomes unsolvable in the presence of irreducible control ow.

Ott and Thus view a module as a set of processing elements which act together to

compute the outputs of a module. They classify the cohesion class of a module (i.e,

the kind of relationships between the processing elements) by comparing the slices w.r.t.

di�erent output variables [68]. Low cohesion corresponds to situations where a module is

partitioned into disjoint sets of unrelated processing elements. Each set is involved in the

computation of a di�erent output value, and there is no overlap between the slices. Control

cohesion consists of two or more sets of disjoint processing elements each of which depends

on a common input value; the intersection of slices will consist of control predicates. Data

cohesion corresponds to situations where data ows from one set of processing elements to

another; slices will have non-empty intersection and non-trivial di�erences. High cohesion

situations resemble pipelines. The data from a processing element ows to its successor;

50

the slices of high cohesion modules will overlap to a very large extent. The paper does not

rely on any speci�c slicing method, and no quantitative measures are presented.

In [18], Binkley presents a graph rewriting semantics for System Dependence Graphs

which he uses to perform interprocedural constant propagation. The interprocedural slic-

ing algorithm of [44] is used to extract slices that may be executed to obtain constant

values.

In [15], Beck and Eichmann consider the case where a `standard' module for an abstract

data type module is used, and where only part of its functionality is required. Their

objective is to `slice away' all unnecessary code in the module. To this end, they generalize

the notion of static slicing to modular programs. In order to compute a reduced version

of a module, an interface dependence graph (IDG) is constructed. This graph contains

vertices for all de�nitions of types and global variables, and subprograms inside a module.

Moreover, the IDG contains edges for every def-use relation between vertices. An interface

slicing criterion consists of a module and a subset of the operations of the ADT. Computing

interface slices corresponds to solving a reachability problem in an IDG. Inter-module

slices, corresponding to situations where modules import other modules, can be computed

by deriving new criteria for the imported modules.

Ning, Engberts, and Kozaczynski discuss a set of tools for extracting components

from large Cobol systems. These tools include facilities for program segmentation, i.e.,

distinguishing pieces of functionally related code. In addition to backward and forward

static slices, condition-based slices can be determined. For a condition-based slice, the

criterion speci�es a constraint on the values of certain variables.

7 Conclusions

We have presented a survey of the static and dynamic slicing techniques that can be found

in the present literature. As a basis for classifying slicing techniques we have used the

computation method, and a variety of programming language features such as procedures,

arbitrary control ow, composite variables/pointers, and interprocess communication. Es-

sentially, the problem of slicing in the presence of one of these features is `orthogonal' to

solutions for each of the other features. For dynamic slicing methods, an additional issue is

the fact whether or not the computed slices are executable programs which capture a part

of the program's behavior. Wherever possible, we have compared di�erent solutions to the

same problem by applying each algorithm to the same example program. In addition we

have discussed the possibilities and problems associated with the integration of solutions

for `orthogonal' language features.

In Section 3.6, we have compared and classi�ed algorithms for static slicing. Besides

listing the speci�c slicing problems studied in the literature, we have compared the ac-

curacy and e�ciency of static slicing algorithms. The most signi�cant conclusions of

Section 3.6 can be summarized as follows:

basic algorithms For intraprocedural static slicing in the absence of procedures, un-

structured control ow, composite datatypes and pointers, and interprocess commu-

nication, the accuracy of methods based on dataow equations [85], information-ow

relations [16], and program dependence graphs [69] is essentially the same. PDG-

based algorithms have the advantage that dataow analysis has to be performed

51

only once; after that, slices can be extracted in linear time. This is especially useful

when several slices of the same program are required.

procedures The �rst solution for interprocedural static slicing, presented by Weiser in

[85], is inaccurate for two reasons. First, this algorithm does not use exact depen-

dence relations between input and output parameters. Second, the call-return struc-

ture of execution paths is not taken into account. We have shown in Section 3.2.1

that Weiser's algorithm may slice a procedure several times in the presence of loops.

The solution by Bergeretti and Carr�e [16] does not compute truly interprocedural

slices because no procedures other than the main program are sliced. Moreover,

the approach by Bergeretti and Carr�e is not su�ciently general to handle recursion.

Exact solutions to the interprocedural static slicing problem have been presented

by Hwang, Du, and Chou [45], Reps, Horwitz and Binkley [44], and Reps, Horwitz,

Sagiv, and Rosay [74, 75]. The Reps-Horwitz-Sagiv-Rosay algorithm for interproce-

dural static slicing is the most e�cient one.

arbitrary control ow Lyle was the �rst to present an algorithm for static slicing in the

presence of arbitrary control ow [64]. The solution he presents in very conservative:

it may include more goto statements than necessary. Agrawal has shown in [2] that

solutions proposed by Gallagher and Lyle [31, 32] and by Jiang et al. are incorrect.

Precise solutions for static slicing in the presence of arbitrary control ow have been

proposed by Ball and Horwitz [8, 9], Choi and Ferrante [21], and Agrawal [2]. It is

not clear how the e�ciency of these algorithms compares.

composite datatypes/pointers Lyle has presented a conservative algorithm for static

slicing in the presence of arrays in [64]. The algorithm proposed by Jiang et al. in

[47] is incorrect. Agrawal, DeMillo, and Spa�ord propose a PDG-based algorithm

for static slicing in the presence of composite variables and pointers.

interprocess communication The only approach for static slicing of concurrent pro-

grams was proposed by Cheng [19]. Unfortunately, Cheng has not provided a justi-

�cation of the correctness of his algorithm.

We have compared and classi�ed algorithms for dynamic slicing in Section 4.5. Due to

di�erences in computation methods and dependence graph representations, the potential

for integration of the dynamic slicing solutions for `orthogonal' problems is less clear than

in the static case. The conclusions of Section 4.5 may be summarized as follows:

basic algorithms Methods for intraprocedural dynamic slicing in the absence of pro-

cedures, composite datatypes and pointers, and interprocess communication were

proposed by Korel and Laski [56, 57], Agrawal and Horgan [5], and Gopal [33].

The slices determined by the Agrawal-Horgan algorithm and the Gopal algorithm

are more accurate than the slices computed by the Korel-Laski algorithm, because

Korel and Laski insist that their slices be executable programs. The Korel-Laski al-

gorithm and Gopal's algorithm require an unbounded amount of space because the

entire execution history of the program has to be stored. Since slices are computed

by traversing this history, the amount of time needed to compute a slice depends

on the number of executed statements. A similar statement can be made for the

owback analysis algorithm of [22, 67]. The algorithm proposed by Agrawal and

52

Horgan based on Reduced Dynamic Dependence Graphs requires at most O(2n)

space, where n is the number of statements in the program. However, the time

needed by the Agrawal-Horgan algorithm also depends on the number of executed

statements because for each executed statement, the dependence graph may have to

be updated.

procedures Two dependence graph based algorithms for interprocedural dynamic slicing

were proposed by Agrawal, DeMillo, and Spa�ord [3], and by Kamkar, Shahmehri,

and Fritzson [51, 52]. The former method relies heavily on the use of memory cells

as a basis for computing dynamic reaching de�nitions. Various procedure-passing

mechanisms can be modeled easily by assignments of actual to formal and formal to

actual parameters at the appropriate moments. The latter method is also expressed

as a reachability problem in a (summary) graph. However, there are a number of

di�erences with the approach of [3]. First, parts of the graph can be constructed

at compile-time. This is more e�cient, especially in cases where many calls to the

same procedure occur. Second, Kamkar et al. study procedure-level slices; that is,

slices consisting of a set of procedure calls rather than a set of statements. Third,

the size of a summary graph depends on the number of executed procedure calls,

whereas the graphs of [3] are more space e�cient due to `fusion' of vertices with the

same transitive dependences. It is unclear if one algorithm produces more precise

slices than the other.

arbitrary control ow As far as we know, dynamic slicing in the presence of arbitrary

control ow has not been studied yet. However, we conjecture that the solutions for

the static case [2, 8, 9, 21] may be adapted for dynamic slicing.

composite datatypes/pointers Two approaches for dynamic slicing in the presence

of composite datatypes and pointers were proposed, by Korel and Laski [57], and

Agrawal, DeMillo, and Spa�ord [3]. The algorithms di�er in their computation

method: dynamic ow concepts vs. dependence graphs, and in the way composite

datatypes and pointers are represented. Korel and Laski treat components of com-

posite datatypes as distinct variables, and invent names for dynamically allocated

objects and pointers whereas Agrawal, DeMillo, and Spa�ord base their de�nitions

on de�nitions and uses of memory cells. It is unclear how the accuracy of these algo-

rithms compares. The time and space requirements of both algorithms are essentially

the same as in the case where only scalar variables occur.

interprocess communication Several methods for dynamic slicing of distributed pro-

grams have been proposed. Korel and Ferguson [55] and Duesterwald, Gupta, and

So�a [25] compute slices that are executable programs, but have a di�erent way

of dealing with nondeterminism in distributed programs: the former approach re-

quires a mechanism for replaying the rendezvous in the slice in the same relative

order as they occurred in the original program whereas the latter approach replaces

nondeterministic communication statements in the program by deterministic com-

munication statements in the slice. Cheng [19] and Choi et al. [22, 67] do not

consider this problem because the slices they compute are not executable programs.

Duesterwald, Gupta, and So�a [25] and Cheng [19] use static dependence graphs for

computing dynamic slices. Although this is more space-e�cient than the other ap-

53

proaches, the computed slices will be inaccurate (see the discussion in Section 4.1.1).

The algorithms by Korel and Ferguson and by Choi et al. both require an amount of

space that depends on the number of executed statements. Korel and Ferguson re-

quire their slices to be executable; therefore these slices will contain more statements

than those computed by the algorithm of [22, 67].

In Section 5, we have argued that compiler-optimization techniques and semantics-

preserving program transformations can be used to obtain more accurate slices [29].

In Section 6, we have presented an overview how slicing techniques are applied in

the areas of debugging, program analysis, program integration, software maintenance,

dataow testing, and others.

Acknowledgements

I am grateful to John Field, Jan Heering, Susan Horwitz, Paul Klint, G. Ramalingam,

and Tom Reps for many fruitful discussions and comments on earlier drafts of this paper.

Tom Reps provided the program and picture of Figure 10. Susan Horwitz provided the

program of Figure 13. The programs shown in Figures 2 and 16 are adaptations of example

programs in [1].

References

[1] Agrawal, H. Towards automatic debugging of Computer Programs. PhD thesis, Purdue University,

1992.

[2] Agrawal, H. On slicing programs with jump statements. In Proceedings of the ACM SIGPLAN'94

Conference on Programming Language Design and Implementation (Orlando, Florida, 1994). To

appear.

[3] Agrawal, H., DeMillo, R., and Spafford, E. Dynamic slicing in the presence of unconstrained

pointers. In Proceedings of the ACM Fourth Symposium on Testing, Analysis, and Veri�cation (TAV4)

(1991), pp. 60{73. Also Purdue University technical report SERC-TR-93-P.

[4] Agrawal, H., DeMillo, R., and Spafford, E. Debugging with dynamic slicing and backtracking.

Software|Practice and Experience 23, 6 (1993), 589{616.

[5] Agrawal, H., and Horgan, J. Dynamic program slicing. In Proceedings of the ACM SIGPLAN'90

Conference on Programming Language Design and Implementation (1990), pp. 246{256. SIGPLAN

Notices 25(6).

[6] Aho, A., Sethi, R., and Ullman, J. Compilers. Principles, Techniques and Tools. Addison-Wesley,

1986.

[7] Alpern, B., Wegman, M., and Zadeck, F. Detecting equality of variables in programs. In

Conference Record of the Fifteenth ACM Symposium on Principles of Programming Languages (San

Diego, 1988), pp. 1{11.

[8] Ball, T. The Use of Control-Flow and Control Dependence in Software Tools. PhD thesis, University

of Wisconsin-Madison, 1993.

[9] Ball, T., and Horwitz, S. Slicing programs with arbitrary control-ow. In Proceedings of the First

International Workshop on Automated and Algorithmic Debugging (1993), P. Fritzson, Ed., vol. 749

of Lecture Notes in Computer Science, Springer-Verlag, pp. 206{222.

[10] Balzer, R. EXDAMS - EXtendable Debugging And Monitoring System. In Proceedings of the

AFIPS SJCC (1969), vol. 34, pp. 567{586.

[11] Banning, J. An e�cient way to �nd the side e�ects of procedure calls and the aliases of variables.

In Conference Record of the Sixth ACM Symposium on Principles of Programming Languages (1979),

pp. 29{41.

54

[12] Barnes, J. Programming in Ada, second ed. International Computer Science Series. Addison-Wesley,

1982.

[13] Barth, J. A practical interprocedural data ow analysis algorithm. Communications of the ACM

21, 9 (1978), 724{736.

[14] Bates, S., and Horwitz, S. Incremental program testing using program dependence graphs.

In Conference Record of the Twentieth ACM Symposium on Principles of Programming Languages

(Charleston, SC, 1993), pp. 384{396.

[15] Beck, J., and Eichmann, D. Program and interface slicing for reverse engineering. In Proceedings

of the 15th International Conference on Software Engineering (Baltimore, 1993).

[16] Bergeretti, J.-F., and Carr�e, B. Information-ow and data-ow analysis of while-programs.

ACM Transactions on Programming Languages and Systems 7, 1 (1985), 37{61.

[17] Bergstra, J., Heering, J., and Klint, P., Eds. Algebraic Speci�cation. ACM Press Frontier

Series. The ACM Press in co-operation with Addison-Wesley, 1989.

[18] Binkley, D. Interprocedural constant propagation using dependence graphs and a data-ow model.

In Proceedings of the 5th International Conference on Compiler Construction|CC'94 (Edinburgh,

UK, 1994), P. Fritzson, Ed., vol. 786 of LNCS, pp. 374{388.

[19] Cheng, J. Slicing concurrent programs { a graph-theoretical approach. In Proceedings of the First

International Workshop on Automated and Algorithmic Debugging (1993), P. Fritzson, Ed., vol. 749

of Lecture Notes in Computer Science, Springer-Verlag, pp. 223{240.

[20] Choi, J.-D., Burke, M., and Carini, P. E�cient ow-sensitive interprocedural computation of

pointer-induced aliases and side e�ects. In Conference Record of the Twentieth ACM Symposium on

Principles of Programming Languages (1993), ACM, pp. 232{245.

[21] Choi, J.-D., and Ferrante, J. Static slicing in the presence of GOTO statements. ACM Transac-

tions on Programming Languages and Systems (May 1994). To Appear.

[22] Choi, J.-D., Miller, B., and Netzer, R. Techniques for debugging parallel programs with owback

analysis. ACM Transactions on Programming Languages and Systems 13, 4 (1991), 491{530.

[23] Cooper, K., and Kennedy, K. Interprocedural side-e�ect analysis in linear time. In Proceedings of

the ACM SIGPLAN'88 Conference on Programming Language Design and Implementation (Atlanta,

Georgia, 1988), pp. 57{66. SIGPLAN Notices 23(7).

[24] Cytron, R., Ferrante, J., and Sarkar, V. Compact representations for control dependence. In

Proceedings of the ACM SIGPLAN'90 Conference on Programming Language Design and Implemen-

tation (White Plains, New York, 1990), pp. 337{351. SIGPLAN Notices 25(6).

[25] Duesterwald, E., Gupta, R., and Soffa, M. Distributed slicing and partial re-execution for

distributed programs. In Proceedings of the �fth workshop on Languages and Compilers for Parallel

Computing (New Haven, Connecticut, 1992), pp. 329{337.

[26] Duesterwald, E., Gupta, R., and Soffa, M. Rigorous data ow testing through output inuences.

In Proceedings of the Second Irvine Software Symposium ISS'92 (California, 1992), pp. 131{145.

[27] Ferrante, J., Ottenstein, K., and Warren, J. The program dependence graph and its use in

optimization. ACM Transactions on Programming Languages and Systems 9, 3 (1987), 319{349.

[28] Field, J. A simple rewriting semantics for realistic imperative programs and its application to pro-

gram analysis. In Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-

Based Program Manipulation (1992), pp. 98{107.

[29] Field, J., and Tip, F. Dynamic dependence in term rewriting systems and its application to

program slicing. Report CS-R94xx, Centrum voor Wiskunde en Informatica (CWI), Amsterdam,

1994. Forthcoming. Also to appear in proceedings of PLILP '94.

[30] Fritzson, P., Shahmehri, N., Kamkar, M., and Gyimothy, T. Generalized algorithmic debug-

ging and testing. ACM Letters on Programming Languages and Systems 1, 4 (1992), 303{322.

[31] Gallagher, K. Using Program Slicing in Software Maintenance. PhD thesis, University of Maryland,

1989.

[32] Gallagher, K., and Lyle, J. Using program slicing in software maintenance. IEEE Transactions

on Software Engineering 17, 8 (1991), 751{761.

55

[33] Gopal, R. Dynamic program slicing based on dependence relations. In Proceedings of the Conference

on Software Maintenance (1991), pp. 191{200.

[34] Gupta, R., Harrold, M., and Soffa, M. An approach to regression testing using slicing. In

Proceedings of the Conference on Software Maintenance (1992), pp. 299{308.

[35] Gupta, R., and Soffa, M. A framework for generalized slicing. Technical report TR-92-07, Uni-

versity of Pittsburgh, 1992.

[36] Hausler, P. Denotational program slicing. In Proceedings of the 22nd Hawaii International Confer-

ence on System Sciences (Hawaii, 1989), pp. 486{494.

[37] Horwitz, S. Identifying the semantic and textual di�erences between two versions of a program. In

Proceedings of the ACM SIGPLAN'90 Conference on Programming Language Design and Implemen-

tation (White Plains, New York, 1990), pp. 234{245. SIGPLAN Notices 25(6).

[38] Horwitz, S., Pfeiffer, P., and Reps, T. Dependence analysis for pointer variables. In Proceed-

ings of the ACM 1989 Conference on Programming Language Design and Implementation (Portland,

Oregon, 1989). SIGPLAN Notices 24(7).

[39] Horwitz, S., Prins, J., and Reps, T. Integrating non-interfering versions of programs. In Confer-

ence Record of the ACM SIGSOFT/SIGPLAN Symposium on Principles of Programming Languages

(1988), pp. 133{145.

[40] Horwitz, S., Prins, J., and Reps, T. On the adequacy of program dependence graphs for repre-

senting programs. In Conference Record of the Fifteenth Annual ACM Symposium on Principles of

Programming Languages (1988), ACM, pp. 146{157.

[41] Horwitz, S., Prins, J., and Reps, T. Integrating noninterfering versions of programs. ACM

Transactions on Programming Languages and Systems 11, 3 (1989), 345{387.

[42] Horwitz, S., and Reps, T. E�cient comparison of program slices. Acta Informatica 28 (1991),

713{732.

[43] Horwitz, S., and Reps, T. The use of program dependence graphs in software engineering. In

Proceedings of the 14th International Conference on Software Engineering (Melbourne, Australia,

1992), pp. 392{411.

[44] Horwitz, S., Reps, T., and Binkley, D. Interprocedural slicing using dependence graphs. ACM

Transactions on Programming Languages and Systems 12, 1 (1990), 26{61.

[45] Hwang, J., Du, M., and Chou, C. Finding program slices for recursive procedures. In Proceedings

of the 12th Annual International Computer Software and Applications Conference (Chicago, 1988).

[46] Hwang, J., Du, M., and Chou, C. The inuence of language semantics on program slices. In

Proceedings of the 1988 International Conference on Computer Languages (Miami Beach, 1988).

[47] Jiang, J., Zhou, X., and Robson, D. Program slicing for C - the problems in implementation. In

Proceedings of the Conference on Software Maintenance (1991), pp. 182{190.

[48] Kamkar, M. An overview and comparative classi�cation of static and dynamic program slicing.

Technical Report LiTH-IDA-R-91-19, Link�oping University, Link�oping, 1991. To appear in Journal

of Systems and Software.

[49] Kamkar, M. Interprocedural Dynamic Slicing with Applications to Debugging and Testing. PhD

thesis, Link�oping University, 1993.

[50] Kamkar, M., Fritzson, P., and Shahmehri, N. Interprocedural dynamic slicing applied to inter-

procedural data ow testing. In Proceedings of the Conference on Software Maintenance (Montreal,

Canada, 1993), pp. 386{395.

[51] Kamkar, M., Fritzson, P., and Shahmehri, N. Three approaches to interprocedural dynamic

slicing. Microprocessing and Microprogramming 38 (1993), 625{636.

[52] Kamkar, M., Shahmehri, N., and Fritzson, P. Interprocedural dynamic slicing. In Proceedings of

the 4th International Conference on Programming Language Implementation and Logic Programming

(1992), M. Bruynooghe and M. Wirsing, Eds., vol. 631 of Lecture Notes in Computer Science, Springer-

Verlag, pp. 370{384.

[53] Klint, P. A meta-environment for generating programming environments. ACM Transactions on

Software Engineering and Methodology 2, 2 (1993), 176{201.

56

[54] Klop, J. Term rewriting systems. In Handbook of Logic in Computer Science, Volume 2. Background:

Computational Structures, S. Abramsky, D. Gabbay, and T. Maibaum, Eds. Oxford University Press,

1992, pp. 1{116.

[55] Korel, B., and Ferguson, R. Dynamic slicing of distributed programs. Applied Mathematics and

Computer Science 2, 2 (1992), 199{215.

[56] Korel, B., and Laski, J. Dynamic program slicing. Information Processing Letters 29, 3 (1988),

155{163.

[57] Korel, B., and Laski, J. Dynamic slicing of computer programs. Journal of Systems and Software

13 (1990), 187{195.

[58] Kuck, D., Kuhn, R., Padua, D., Leasure, B., and Wolfe, M. Dependence graphs and compiler

optimizations. In Conference Record of the Eighth ACM Symposium on Principles of Programming

Languages (1981), pp. 207{218.

[59] Lakhotia, A. Graph theoretic foundations of program slicing and integration. Report CACS TR-

91-5-5, University of Southwestern Louisiana, 1991.

[60] Lakhotia, A. Improved interprocedural slicing algorithm. Report CACS TR-92-5-8, University of

Southwestern Louisiana, 1992.

[61] Landi, W., and Ryder, B. A safe approximate algorithm for interprocedural pointer aliasing. In

Proceedings of the 1992 ACM Conference on Programming Language Design and Implementation (San

Francisco, 1992), pp. 235{248. SIGPLAN Notices 27(7).

[62] Larus, J., and Chandra, S. Using tracing and dynamic slicing to tune compilers. Computer

sciences technical report #1174, University of Wisconsin-Madison, 1993.

[63] Leung, H., and Reghbati, H. Comments on program slicing. IEEE Transactions on Software

Engineering SE-13, 12 (1987), 1370{1371.

[64] Lyle, J. Evaluating Variations on Program Slicing for Debugging. PhD thesis, University of Maryland,

1984.

[65] Lyle, J., and Weiser, M. Automatic bug location by program slicing. In Proceedings of the Second

International Conference on Computers and Applications (Beijing (Peking), China, 1987), pp. 877{

883.

[66] Maydan, D., Hennessy, J., and Lam, M. E�cient and exact data dependence analysis. In Pro-

ceedings of the ACM SIGPLAN'91 Conference on Programming Language Design and Implementation

(1991), pp. 1{14. SIGPLAN Notices 26(6).

[67] Miller, B., and Choi, J.-D. A mechanism for e�cient debugging of parallel programs. In Proceed-

ings of the ACM SIGPLAN'88 Conference on Programming Language Design and Implementation

(Atlanta, 1988), pp. 135{144. SIGPLAN Notices 23(7).

[68] Ott, L. M., and Thuss, J. The relationship between slices and module cohesion. In Proceedings of

the 11th International Conference on Software Engineering (1989), pp. 198{204.

[69] Ottenstein, K., and Ottenstein, L. The program dependence graph in a software development

environment. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on

Practical Software Development Environments (1984), pp. 177{184. SIGPLAN Notices 19(5).

[70] Podgurski, A., and Clarke, L. A formal model of program dependences and its implications for

software testing, debugging, and maintenance. IEEE Transactions on Software Engineering 16, 9

(1990), 965{979.

[71] Reps, T. Algebraic properties of program integration. Science of Computer Programming 17 (1991),

139{215.

[72] Reps, T. On the sequential nature of interprocedural program-analysis problems. Unpublished report,

University of Copenhagen, 1994.

[73] Reps, T., and Bricker, T. Illustrating interference in interfering versions of programs. In Pro-

ceedings of the Second International Workshop on Software Con�guration Management (Princeton,

1989), pp. 46{55. ACM SIGSOFT Software Engineering Notes Vol.17 No.7.

[74] Reps, T., Horwitz, S., Sagiv, M., and Rosay, G. Speeding up slicing. Unpublished report,

Datalogisk Institut, University of Copenhagen, 1994.

57

[75] Reps, T., Sagiv, M., and Horwitz, S. Interprocedural dataow analysis via graph reachability.

Report DIKU TR 94-14, University of Copenhagen, Copenhagen, 1994.

[76] Reps, T., and Yang, W. The semantics of program slicing and program integration. In Proceedings

of the Colloquium on Current Issues in Programming Languages (1989), vol. 352 of Lecture Notes in

Computer Science, Springer Verlag, pp. 60{74.

[77] Shahmehri, N. Generalized Algorithmic Debugging. PhD thesis, Link�oping University, 1991.

[78] Shapiro, E. Algorithmic Program Debugging. MIT Press, 1982.

[79] Venkatesh, G. The semantic approach to program slicing. In Proceedings of the ACM SIGPLAN'91

Conference on Programming Language Design and Implementation (1991), pp. 107{119. SIGPLAN

Notices 26(6).

[80] Wegman, M., and Zadeck, F. Constant propagation with conditional branches. ACM Transactions

on Programming Languages and Systems 13, 2 (1991), 181{210.

[81] Weihl, W. Interprocedural data ow analysis in the presence of pointers, procedure variables, and

label variables. In Conference Record of the Seventh ACM Symposium on Principles of Programming

Languages (1980), pp. 83{94.

[82] Weiser, M. Program slices: formal, psychological, and practical investigations of an automatic

program abstraction method. PhD thesis, University of Michigan, Ann Arbor, 1979.

[83] Weiser, M. Programmers use slices when debugging. Communications of the ACM 25, 7 (1982),

446{452.

[84] Weiser, M. Reconstructing sequential behavior from parallel behavior projections. Information

Processing Letters 17, 3 (1983), 129{135.

[85] Weiser, M. Program slicing. IEEE Transactions on Software Engineering 10, 4 (1984), 352{357.

[86] Weiser, M. Private communication, 1994.

[87] Zima, H., and Chapman, B. Supercompilers for Parallel and Vector Computers. ACM Press Frontier

Series. ACM Press, New York, 1991.

58

