
Interprocedural Control Dependence

Saurabh Sinha

and

Mary Jean Harrold

Georgia Institute of Technology

and

Gregg Rothermel

Oregon State University

Program-dependence information is useful for a variety of applications, such as software testing
and maintenance tasks and code optimization. Properly defined, control and data dependences can
be used to identify semantic dependences. To function effectively on whole programs, tools that
utilize dependence information require information about interprocedural dependences: depen-
dences that are identified by analyzing the interactions among procedures. Many techniques for

computing interprocedural data dependences exist; however, virtually no attention has been paid
to interprocedural control dependence. Analysis techniques that fail to account for interprocedural
control dependences can suffer unnecessary imprecision and loss of safety. This paper presents a
definition of interprocedural control dependence that supports the relationship of control and data
dependence to semantic dependence. The paper presents two approaches for computing interpro-
cedural control dependences, and empirical results pertaining to the use of those approaches.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids, testing tools; D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Restructuring, reverse engineering, and reengineering; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—control structures; D.3.4 [Programming Lan-
guages]: Processors—compilers and optimization; I.1.2 [Symbolic and Algebraic Manipula-
tion]: Algorithms—analysis of algorithms

General Terms: Algorithms, Languages, Theory

This article is a revised and expanded version of a paper presented at the 1998 ACM SIGSOFT
International Symposium on Software Testing and Analysis [Harrold et al. 1998].
Name: Saurabh Sinha
Name: Mary Jean Harrold
Affiliation: Georgia Institute of Technology
Address: College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, email:
{sinha,harrold}@cc.gatech.edu
Name: Gregg Rothermel
Affiliation: Oregon State University
Address: Computer Science Department, Oregon State University, Corvallis, OR 97331, email:
grother@cs.orst.edu

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 · S. Sinha et al.

Additional Key Words and Phrases: Interprocedural control dependence, interprocedural analysis,

semantic dependence, program slicing, software maintenance

1. INTRODUCTION

Program-dependence information is useful for a variety of applications, such as
software testing and maintenance tasks and code optimization. Such information
can be used, for example, to locate the cause of a software failure, to evaluate
the impact of a modification, to determine the parts of a program that should be
re-tested in response to a modification, or to identify parts of the code to which op-
timizing transformations can be applied. For such purposes, program dependences
provide approximate but useful information [Podgurski and Clarke 1990]. Control-
dependence information captures the effects of predicate statements on program
behavior. Data-dependence information captures the effects of data interactions on
program behavior. Tools such as program slicers use control- and data-dependence
information for tasks such as debugging, impact analysis, and regression testing.

Much research (e.g., [Bilardi and Pingali 1996; Cytron et al. 1991; Ferrante et al.
1987; Pingali and Bilardi 1997; Pollock and Soffa 1989; Ryder and Paull 1988]) has
addressed the problems of computing and utilizing intraprocedural dependences:
dependences within procedures that can be computed by analyzing procedures in-
dependently. That research has considered both control and data dependence.

To function effectively on whole programs, however, techniques that require de-
pendence information must account for interprocedural dependences : dependences
that can be computed only by analyzing the interactions among procedures. Var-
ious definitions of, and methods for computing and utilizing, interprocedural data
dependences have been presented, and the necessity of considering these depen-
dences in interprocedural analyses is well understood (e.g. [Cooper and Kennedy
1988; Harrold and Soffa 1994; Landi and Ryder 1992; Pande et al. 1994; Reps et al.
1995; Sharir and Pnueli 1981]). In contrast, virtually no attention has been paid to
the definition or computation of interprocedural control dependence. Our search
of the research literature reveals only one attempt to define and compute inter-
procedural control dependence [Loyall and Mathisen 1993]; however, as we show
in Section 6, that definition and approach can omit dependences. Furthermore,
we have found no interprocedural analysis techniques that explicitly consider the
effects of interprocedural control dependences.

Our empirical studies indicate that the failure to account for interprocedural con-
trol dependences may significantly affect analysis results. When analysis techniques
that utilize dependence information are applied to programs without accounting for
interprocedural control dependences, the techniques can identify dependences that
do not exist, which can lead to excessively large solutions to analysis problems;
the techniques can also ignore dependences that do exist, which can lead to errors
of omission in solutions to analysis problems. For some analyses, such as slicing
for reverse engineering, errors of omission may be acceptable [Murphy and Notkin
1996]; for other analyses, such as slicing for program integration, errors of omission
are not allowable [Horwitz et al. 1989].

This paper addresses the issues surrounding interprocedural control dependences

Interprocedural Control Dependence · 3

and their potential effects on interprocedural analysis techniques. The main con-
tributions of the paper are:

—A description of several ways in which control dependences computed intraproce-
durally inaccurately model the control dependences that exist in whole programs.

—A precise definition of interprocedural control dependence. Unlike the previously
presented definition [Loyall and Mathisen 1993], this definition supports the re-
lationship between syntactic and semantic dependence [Podgurski and Clarke
1990] that must hold if analyses based on dependence information are to model
conservatively the semantic dependences in programs.

—Two approaches for computing interprocedural control dependences: one ap-
proach computes precise interprocedural control dependences but may be inor-
dinately expensive; the other approach summarizes control dependences, and
efficiently obtains a conservative (safe) estimate of those dependences at the cost
of some precision. The paper provides empirical results pertaining to the effec-
tiveness and efficiency of these approaches.

The remainder of this paper is organized as follows. The next section provides
background information necessary to support our definition of interprocedural con-
trol dependence. Section 3 demonstrates several effects related to interprocedural
control dependence, and then provides our definition of interprocedural control de-
pendence. Section 4 presents our algorithms for calculating interprocedural control
dependence, and Section 5 presents empirical results obtained in the use of the
second algorithm. Section 6 reviews related work, and illustrates the drawbacks
of the existing definition of interprocedural control dependence. Finally, Section 7
presents conclusions and outlines possible future work.

2. BACKGROUND

To demonstrate the semantic basis for uses of program dependences, and to evaluate
some of those uses, Podgurski and Clarke [Podgurski and Clarke 1990] present a for-
mal model of program dependences. They distinguish several types of control and
data dependences, and describe conditions under which identification of such (syn-
tactic) dependences may or may not imply identification of semantic dependences
(cases where the behavior of a statement can indeed affect the execution behavior
of another statement). Their results show that a maintenance tool, such as a slicer,
that uses control and data dependences to identify a superset of the statements
that could semantically affect another statement, can omit semantic dependences if
it utilizes inappropriate definitions or computations of data- or control-dependence
information.

Our definition of interprocedural control dependence builds on this previous work.
This section presents definitions drawn directly from, or based on, those given in
Reference [Podgurski and Clarke 1990] that are prerequisite to that definition.

Control dependences are typically defined in terms of control-flow graphs, paths
in those graphs, and the postdominance relation.

Definition 1. A control-flow graph (CFG) G = (N,E) for procedure P is a di-
rected graph in which N contains one node for each statement in P , and E contains
edges that represent possible flow of control between statements in P . N contains

4 · S. Sinha et al.

two distinguished nodes, ne and nx, representing entry to and exit from P , re-
spectively, where ne has no predecessors, and nx has no successors. If P contains
multiple exit points, E contains an edge from each node that represents an exit
point to nx. Each call site in P is represented by a call node and a return node
in G, and there is an edge from each call node to its associated return node. Each
node in N is reachable from ne, and nx is reachable from each node in N . Each
node in N that represents a predicate statement is called a predicate node and has
exactly two successors; all other nodes in N except nx have exactly one successor.

Definition 2. An n1–nk path in a CFG G = (N,E) is a sequence of nodes W =
n1, n2, . . . , nk such that k ≥ 0, and such that, if k ≥ 2, then for i = 1, 2, . . . , k − 1,
(ni, ni+1) ∈ E.1

Definition 3. Let G = (N,E) be a CFG. A node u ∈ N postdominates a node
v ∈ N if and only if every v–nx path in G contains u.

Several forms of control dependence have been identified in the research literature.
We restrict our attention to the form of control dependence found most commonly
in the literature, described as “control dependence” [Ferrante et al. 1987], as “direct,
strong control dependence” [Podgurski and Clarke 1990], and as “classical control
dependence” [Bilardi and Pingali 1996].

Definition 4. Let G = (N,E) be a CFG, and let u, v ∈ N . Node u is control
dependent on node v if and only if v has successors v′ and v′′ such that u postdom-
inates v′ but u does not postdominate v′′.

For control-dependence computation, a CFG G is augmented with a unique pred-
icate node ns, and edges (ns,ne), labeled ‘true’, and (ns,nx), labeled ‘false’ [Ferrante
et al. 1987]. By this mechanism, nodes in G that are not control dependent on any
predicate nodes are control dependent on entry to the procedure.

The following definitions extend the CFG to model data elements, and use this
extension to define data dependence.

Definition 5. A def/use graph is a quadruple Gdu = (G,Σ, D, U), where G =
(N,E) is a CFG, Σ is a finite set of symbols called variables, and D : N → P(Σ),
U : N → P(Σ) are functions.

Definition 6. LetGdu = (G,Σ, D, U) be a def/use graph withG = (N,E), and let
u, v ∈ N . Node u is data dependent on node v if and only if there exists a path vWu
in Gdu such that (D(v)∩U(u))−D(W) 6= φ, where D(W) = ∪ni∈W (ni /∈{u,v})D(ni).

The next definition captures the notion that two nodes in a def/use graph may
be connected by a chain of data and control dependences, resulting in a syntactic
dependence.

Definition 7. Let Gdu = (G,Σ, D, U) be a def/use graph with G = (N,E) , and
let u, v ∈ N . Node u is syntactically dependent on node v if and only if there
is a sequence n1, n2, . . . , nk of nodes, k ≥ 2, such that v = n1, u = nk, and for

1Podgurski and Clarke [Podgurski and Clarke 1990] use the term “walk” to refer to a sequence of
adjacent nodes in a graph. We use the term “path” to refer to such a sequence because it is more
standard in the literature.

Interprocedural Control Dependence · 5

i = 1, 2, . . . , k− 1 either ni+1 is control dependent on ni or ni+1 is data dependent
on ni.2

Podgurski and Clarke [Podgurski and Clarke 1990] define semantic dependence,
and relate it to syntactic dependence. Informally, when the semantics of statement s
may affect the execution of statement s′, s′ is semantically dependent on s. A more
formal definition is based on notions of interpretations, computation sequences, and
execution histories, defined as follows [Podgurski and Clarke 1990].

Definition 8. Let Gdu = (G,Σ, D, U) be a def/use graph with G = (N,E). An
interpretation of Gdu is an assignment of partial computable functions to the ver-
tices of Gdu. The function assigned to a vertex v ∈ N is the function computed by
the program statement that v represents; it maps values for the variables in U(v)
to values for the variables in D(v) or, if v is a decision vertex, to a successor of v.

Definition 9. A computation sequence of a program is the sequence of states
(pairs consisting of a statement and a function assigning values to all the variables
in the program) induced by executing the program with a particular input.

Definition 10. Let Gdu = (G,Σ, D, U) be a def/use graph with G = (N,E).
An execution history of a vertex v ∈ N is the sequence whose ith element is the
assignment of values held by the variables of U(v) just before the ith time v is
visited during a computation.

Given these definitions, Podgurski and Clarke [Podgurski and Clarke 1990] define
semantic dependence as follows:

Definition 11. A node u in a def/use graph Gdu is semantically dependent on a
node v in Gdu if there are interpretations I1 and I2 of Gdu that differ only in the
function assigned to v, such that for some input, the execution history of u induced
by I1 differs from that induced by I2.

Semantic dependence of u on v can be demonstrated in either of two ways: (1)
if for some pair of interpretations, the execution histories of u differ in some pair
of corresponding entries, or (2) if for some pair of interpretations, the execution
histories of u have different lengths. When case (1) holds, or when case (2) holds
with respect to finite portions of computations, the semantic dependence is said to
be finitely demonstrated : this necessarily occurs when programs halt, but can also
occur for non-halting programs.

There is no algorithm to determine, for arbitrary statements s and s′, whether
s′ is semantically dependent on s; however, Podgurski and Clarke [Podgurski and
Clarke 1990] demonstrate that given appropriate definitions of control and data
dependence, there exist useful relationships between syntactic and semantic depen-
dence. In this paper, we restrict our attention to the relationship stated in the
following theorem:3

2Podgurski and Clarke [Podgurski and Clarke 1990] define two types of syntactic dependence:
weak and strong. We restrict our attention to the latter, and refer to it simply as syntactic
dependence.
3Podgurski and Clarke present additional definitions of control and syntactic dependence that
provide a necessary condition for semantic dependence for programs that do not halt.

6 · S. Sinha et al.

alternative version of 6:

6’ no−op

 read i,j

 call B

 endwhile

 print sum

end M

begin M

procedure M

1

2

3

4

5

6

7

8

procedure B

begin B

 call C

 if j >= 0 then

 sum = sum + j

 read j

 sum = 0

 while i < 10 do

 endif

 call B

9

10

11

12

14 i = i + 1

13

15 end B

begin C16

17

18

19

procedure C

 if sum > 100 then

 endif

 halt

end C

alternative version of 18:

18’ print("error")

Fig. 1. Program Sum with alternative versions of two of its statements.

Theorem 1. Let Gdu = (G,Σ, D, U) be a def/use graph with G = (N,E), and
let u, v ∈ N . If u is semantically dependent on v and this semantic dependence is
finitely demonstrated, then u is syntactically dependent on v.4

Theorem 1 is significant because it shows that, given appropriate definitions of
control and data dependence, syntactic dependence is a necessary condition for
(finitely demonstrated) semantic dependence. Thus, the theorem provides justifi-
cation for algorithms that use syntactic dependence to approximate semantic de-
pendence. We refer to this desirable relationship between syntactic and semantic
dependence as the syntactic–semantic relationship.5

3. INTERPROCEDURAL CONTROL DEPENDENCE

In this section, we illustrate three effects that impact interprocedural control de-
pendences. We then define interprocedural control dependence.

3.1 Effects that impact interprocedural control dependences

Fig. 1 presents a program Sum that consists of three procedures: M (the entry
procedure), B, and C. The two insets in the figure provide alternative versions of
two lines of the program; we use these alternatives to illustrate specific points.
Intraprocedural control-dependence analysis operates independently on individual
procedures, ignoring both the context in which each procedure is invoked, and the
side-effects on control dependence that may be caused by a called procedure. Table
1 illustrates the intraprocedural control dependences for Sum.

Considering Sum as a whole, however, we can observe three ways in which control
dependences that are computed intraprocedurally inaccurately model the semantic
dependences that exist between statements in the program.

4A proof of this theorem is given in Reference [Podgurski 1989], and sketched in Reference
[Podgurski and Clarke 1990].
5Of course, there is a trivial way to construct an algorithm that preserves the syntactic-semantic
relationship: the algorithm simply makes every statement syntactically (control or data) depen-
dent on every other statement. Clearly, this approach is unsatisfactory. The goal of an algorithm
for approximating semantic dependencies, therefore, is to compute sufficiently tight approxima-
tions.

Interprocedural Control Dependence · 7

Table 1. Intraprocedural control dependences for Sum.
Control Control

Statements Dependent On Statements Dependent On

2, 3, 4, 6, 7 entry M 4, 5 4
10, 11, 14 entry B 12, 13 11

17 entry C 18 17

First, consider the version of Sum created by substituting the alternative versions
of lines 6 and 18: this version of Sum contains only one call to B, and halts (assuming
normal termination) only on reaching the implicit halt in statement 8. In this
version, statement 4 immediately determines whether statement 5 (the call to B)
executes, and in so doing, immediately determines whether statements 10, 11, and
14 in B and statement 17 in C execute. It is easy to show that in terms of Definition
11, statements 10, 11, 14, and 17 are semantically dependent on statement 4, even in
the absence of data dependences. To preserve the syntactic–semantic relationship,
interprocedural control-dependence analysis must identify statements 10, 11, 14,
and 17 as control dependent on statement 4; intraprocedural analysis alone does
not do this. We call this the entry-dependence effect.

Second, consider the version of Sum created by substituting the alternative ver-
sion of line 18, but not substituting the alternative version of line 6: this version
contains both calls to B, but halts (assuming normal termination) only on reaching
statement 8. The presence of the second, unconditional call to B in statement 6
means that, assuming normal termination, statements 10, 11, 14, and 17 necessar-
ily execute at least once during any execution of Sum. Moreover, these statements
execute regardless of the evaluation of statement 4. One possible application of the
definition of postdominance (Definition 3) might seem to imply that statements 10,
11, 14 and 17 postdominate statement 4, and thus, cannot be control dependent on
statement 4. (Reference [Loyall and Mathisen 1993] draws this conclusion.) How-
ever, despite the fact that the second call to B guarantees that statements 10, 11,
14, and 17 execute at least once, statement 4 does determine the number of times
that those statements execute. Thus, statements 10, 11, 14, and 17 are semantically
dependent on statement 4, even in the absence of data dependences. It follows that
to preserve the syntactic–semantic relationship, interprocedural control-dependence
analysis must identify statements 10, 11, 14, and 17 as control dependent on state-
ment 4. We call this the multiple-context effect.

Third, consider the version of Sum presented in the figure, with neither alter-
native line substituted: in this case, the program can also halt at statement 18.
This explicit halt statement has far-reaching effects on the control dependences in
Sum—effects that combine with the first two effects to further complicate the pro-
gram’s interprocedural control dependences. For example, in this version of Sum,
statements 11 and 14 depend most immediately for their execution on statement
17, because of the explicit halt statement. It is easy to show that in terms of
Definition 11, statements 11 and 14 are semantically dependent on statement 17,
even in the absence of data dependences. As a second example, statement 4 is now
also semantically dependent on statement 17: when the predicate in statement 17
is true, statement 4 executes at least one time fewer than when the predicate in
statement 17 is false. Furthermore, statement 6 is now semantically dependent on

8 · S. Sinha et al.

Table 2. Interprocedural control dependences for Sum.
Control Control

Statements Dependent On Statements Dependent On

2, 3, 4 entry M 5, 6, 10, 17 4
4, 7, 11, 14, 18 17 12, 13 11

Table 3. Presence of Embedded Halts in C Programs.
Program Number of Number of Programs that
Group Programs Contain Embedded Halts

Aristotle 20 10
Eli 23 11
Empire 1 1
GCC 20 19
Omega 1 1
Siemens 7 3
XVCG 1 1

Total 73 46

statement 4: the presence of the halt statement that is reachable from the call to
B has the effect that now, different interpretations of the function associated with
statement 4 affect whether statement 6 is reached (and thus determine the number
of times that it executes). To preserve the syntactic–semantic relationship, inter-
procedural control-dependence analysis must identify the control dependences that
are responsible for these semantic dependences. We call this the return-dependence
effect. We call the explicit halt statements that can cause this effect embedded
halts, to distinguish them from implicit program termination points.

Table 2 illustrates the complete set of interprocedural control dependences nec-
essary to preserve the syntactic–semantic relationship for Sum. A comparison of
these dependences with those computed intraprocedurally (see Table 1) reveals ex-
tensive differences. The intraprocedural and interprocedural dependences include
seven in common, the intraprocedural dependences include seven not required in
the interprocedural context, and the interprocedural dependences include seven not
detected by the intraprocedural analysis.

To obtain initial data about the use of embedded halts in practice in a language
that supports them, we examined a variety of non-trivial C programs. Table 3 sum-
marizes the programs we examined. We examined 20 programs from the Aristotle
analysis system [Harrold and Rothermel 1997]; 23 programs from the Eli text pro-
cessor generation system; the Empire Internet game; 20 programs from the GCC
2.3.3 compiler distribution; the Omega data-dependence analyzer;6 seven programs
that were used by researchers at Siemens for a study on data-flow testing [Hutchins
et al. 1994]; and the XVCG tool for displaying graphs.

In C, halt functionality is provided by the exit() system call. Where possible,
we used Aristotle to analyze the source code, and inspected the analysis informa-
tion to determine if an exit() in some function other than main could be reached
(statically) from the beginning of the program. (By ignoring exit() statements

6See http://www.cs.umd.edu/projects/omega/omega.html for information about the Omega
project.

Interprocedural Control Dependence · 9

in main we were able to exclude “non-embedded” exit() statements, used uncon-
ditionally at the ends of the programs, that cannot affect control dependences.)
For programs that Aristotle could not completely analyze, we determined this
information by manual inspection of the source code. As Table 3 illustrates, over
63% of the programs we examined, and at least 42% of the programs in each group
of programs, contained exit() statements. Although further study is necessary
to determine the extent to which these results generalize, the results do support
hypotheses that (1) in C programs, embedded halts are used frequently, and (2)
this frequent use is consistent over a range of programs.

Embedded halts are not the only cause of return-dependence effects. Other
language constructs, such as setjump–longjump statements in C, and exception-
handling constructs in Java and C++, also cause these effects. In this paper, we
restrict our attention to embedded halts.

3.2 Definition of interprocedural control dependence

The entry-dependence, multiple-context, and return-dependence effects constitute
three ways in which intraprocedural control dependence computation fails to pre-
serve the syntactic–semantic relationship with respect to control dependences for
whole programs. Other effects may also exist. To preserve the syntactic–semantic
relationship, a definition of interprocedural control dependence must account for
all such effects; this section provides such a definition.

Our definition relies on an interprocedural inlined flow graph (IIFG). An IIFG is
the graph, possibly infinite, that results when we inline all procedures at their call
sites and construct a control flow graph from the resulting program; as such, an IIFG
represents the control flow in a program that has been rolled out [Binkley 1992].
Like the invocation graph [Emami et al. 1994] and the context graph [Atkinson
and Griswold 1996], the IIFG is fully context-sensitive: it accounts for the calling
sequence that leads to each call. However, unlike the invocation and context graphs,
the IIFG is also flow-sensitive: it accounts for the control flow of the individual
procedures. We define the IIFG more formally as follows:

Definition 12. Let P be a program, and let Γ be a collection of CFGs, Gk, k > 0,
that contains, for each procedure Pi, i > 0, in P , one copy of the CFG for each
call site in P that calls Pi. Furthermore, let E be the set of edges and N be
the set of nodes in the Gk, k > 0. An interprocedural inlined flow graph (IIFG)
GI = (N I , EI) for P is a directed graph: N I = N ∪ {nstop}, EI = (E − CR −
HX) ∪ CE ∪ XR ∪ HS; nstop is a unique node that represents exit from P ;
CR is the set of edges from call nodes to the corresponding return nodes; HX is
the set of edges from nodes that represent embedded halts to the exit nodes of the
respective CFGs; CE is the set of edges from call nodes to the entry nodes of the
Gk; XR is the set of edges from the exit nodes of the Gk to the return nodes; and
HS is the set of edges from nodes that represent embedded halts to nstop.

Note that a given statement in P corresponds to a set of IIFG nodes—one for each
calling context in which the statement can be executed. We denote the set of nodes
in GI to which a given statement s in P corresponds by NodeSet(s).

Fig. 2 depicts the IIFG for program Sum. Each call site is represented by call
and return nodes; the CFG for the called procedure is inlined at each call node.

10 · S. Sinha et al.

17. if sum > 100 then

16. enter C

F
18. halt

T

18. halt

19. exit C

17. if sum > 100 then

16. enter C

T
F

19. exit C

T

4. while i < 10 do

3. sum = 0

2. read i,j

1. enter M

5a. call B

5b. return B

F

6b. return B

6a. call B

7. print sum

8. exit M

exit

10b. return C

11. if j >= 0 then

13. read j

14. i = i + 1

F

9. enter B

10a. call C

15. exit B

12. sum = sum + j

T

10b. return C

11. if j >= 0 then

13. read j

14. i = i + 1

F

9. enter B

10a. call C

15. exit B

12. sum = sum + j

T

Fig. 2. Interprocedural inlined flow graph for program Sum.

The CFGs are connected by (call node, entry node) and (exit node, return node)
edges, shown as dashed lines. The IIFG in Fig. 2 contains two copies of the CFG
for procedure B, corresponding to call nodes 5a and 6a; each inlined CFG for B
contains a call to C, and therefore the IIFG contains two copies of the CFG for
C as well. Nodes from which control can exit the program (nodes 8 and 18) are
connected to a unique exit node.

The definitions of paths, postdominance, control dependence, def/use graphs,
data dependence, syntactic dependence, and semantic dependence presented in Sec-
tion 2 apply to IIFGs as follows:

Definition 13. A path in an IIFG GI = (N I , EI) is a sequence of nodes W =
n1, n2, . . . , nk, such that k ≥ 0, and such that, if k ≥ 2, then for i = 1, 2, . . . , k − 1,
(ni, ni+1) ∈ EI .

Definition 14. Let GI = (N I , EI) be an IIFG. A node u ∈ N I postdominates a
node v ∈ N I if and only if every v–nstop path in GI contains u.

Definition 15. Let GI = (N I , EI) be an IIFG, and let u, v ∈ N I . Node u is
control dependent on node v if and only if v has successors v′ and v′′ such that u
postdominates v′ but u does not postdominate v′′.

Definition 16. A def/use IIFG is a quadruple GI−du = (GI ,Σ, D, U), where GI =
(N I , EI) is an IIFG, Σ is a finite set of symbols called variables, and D : N I →
P(Σ), U : N I → P(Σ) are functions.

Definition 17. Let GI−du = (GI ,Σ, D, U) be a def/use IIFG with GI = (N I , EI),
and let u, v ∈ N I . Node u is data dependent on node v if and only if there exists

Interprocedural Control Dependence · 11

a path vWu in GI−du such that (D(v) ∩ U(u)) − D(W) 6= φ, where D(W) =
∪ni∈W (ni /∈{u,v})D(ni).

Definition 18. Let GI−du = (GI ,Σ, D, U) be a def/use IIFG with GI = (N I , EI),
and let u, v ∈ N I . Node u is syntactically dependent on node v if and only if there
is a sequence n1, n2, . . . , nk of nodes, k ≥ 2, such that v = n1, u = nk, and for
i = 1, 2, . . . , k− 1 either ni+1 is control dependent on ni or ni+1 is data dependent
on ni.

Definition 19. Let GI−du = (GI ,Σ, D, U) be a def/use IIFG with GI = (N I , EI).
An interpretation of GI−du is an assignment of partial computable functions to the
vertices of GI−du. The function assigned to a vertex v ∈ N I is the function com-
puted by the program statement that v represents; it maps values for the variables
in U(v) to values for the variables in D(v) or, if v is a decision vertex, to a successor
of v.

Definition 20. Let GI−du = (GI ,Σ, D, U) be a def/use IIFG with GI = (N I , EI).
An execution history of a vertex v ∈ N I is the sequence whose ith element is the
assignment of values held by the variables of U(v) just before the ith time v is
visited during a computation.

Definition 21. A node u in a def/use IIFG GI−du is semantically dependent on
a node v in GI−du if there are interpretations I1 and I2 of GI−du that differ only
in the function assigned to v, such that for some input, the execution history of u
induced by I1 differs from that induced by I2.

Given these definitions, the following theorem holds:

Theorem 2. Let GI−du = (GI ,Σ, D, U) be a def/use IIFG with GI = (N I , EI),
and let u, v ∈ N I . If u is semantically dependent on v and this semantic dependence
is finitely demonstrated, then u is syntactically dependent on v.

The proof of the theorem follows from Podgurski and Clarke’s proof of Theorem
1, and the relationship between the graphs used by Podgurski and Clarke in that
proof and the IIFG. See Appendix A for further discussion.

Given this theorem, the syntactic–semantic relationship holds for the IIFG-based
definition of control dependence (Definition 15). The theorem is significant for
reasons similar to those that render Theorem 1 significant: it asserts that given
appropriate definitions of control and data dependence, syntactic dependence is
a necessary condition for (finitely demonstrated) semantic dependence. However,
Theorem 2 applies in the interprocedural context, and thus, provides justification
for (and a measure of success of) interprocedural algorithms that use syntactic
dependence to approximate semantic dependence.

4. COMPUTING INTERPROCEDURAL CONTROL DEPENDENCES

In this section, we present two approaches to computing interprocedural control
dependences. The first approach computes precise interprocedural control depen-
dences, but may be inordinately expensive. The second approach summarizes in-
terprocedural control dependences, and computes a conservative estimate of those
dependences more efficiently than the first approach, but at the cost of some pre-
cision.

12 · S. Sinha et al.

Table 4. Programs used for the empirical studies reported in the paper.
Subject Description LOC

armenu Aristotle analysis system [Harrold and Rothermel 1997] 5835
user interface

dejavu Interprocedural regression test selector [Rothermel and Harrold 1997] 2655

diff File-differencing tool 1447

flex Lexical analyzer generator 4357

mpegplayer MPEG player 5380

netmaze 3-D maze combat game 4688

space Parser for antenna-array description language 5889

unzip Zipfile extract utility 2370

4.1 Precise computation of interprocedural control dependences

One way to compute interprocedural control dependences for a program P is to
build the IIFG GI for P , and apply an existing algorithm, such as those described in
References [Bilardi and Pingali 1996; Cytron et al. 1991; Ferrante et al. 1987; Pingali
and Bilardi 1997], to GI . For non-recursive programs, this approach computes
precise interprocedural control dependences.

In practice, this approach may be expensive. The IIFG construction inlines a
procedure at each call site to that procedure; thus, the size of an IIFG may be
exponential in the size of the program that it represents. Moreover, for a recursive
program, the IIFG is infinite, and can be constructed only by limiting the number
of expansions of the procedures involved in recursion (which, in turn, limits the
precision of the control-dependence computation on that IIFG).

To investigate the cost of the IIFG-based approach, we examined the sizes of the
IIFGs for several programs. Table 4 describes the programs that we used in the
study, and lists the number of non-comment lines of code in the programs.7 Table
5 provides data about the sizes of the IIFGs of those programs. For programs that
contained recursion, we expanded the recursive procedures once, and determined
the increase in IIFG size that would be caused by each additional expansion.

As the data illustrates, three of the programs—armenu, flex, and mpegplayer—
exhibited between one and two orders-of-magnitude increases in their IIFG sizes
over the sizes of their respective CFGs. For the remaining four programs, including
one program that contained recursion, the IIFG sizes increased by factors of 2 to 5
over the sizes of the respective CFGs.

Fig. 3 shows the increases in IIFG sizes as a bar graph; the vertical axis shows
the factor of increase in IIFG size over the sizes of the CFGs. The factor of increase
ranges from 2 to 59; for recursive programs, this factor would increase further with
each additional expansion of the recursive procedures. Among the non-recursive

7This set of programs differs from the set we used for our study of the occurrence of embedded
halts, reported in Table 3. The objective of the embedded-halt study was to motivate our research,
and the study required only limited processing of the programs. Thus, we were able to examine a
large number of programs and conclude that embedded halts do occur often in practice. However,
the empirical studies reported in this section required extensive processing of the programs with
our prototype tools, and examination of the results for correctness. Thus, we selected a subset
of the programs for study. Future work includes more experimentation with additional subjects,
including those from Table 3.

Interprocedural Control Dependence · 13

Table 5. IIFG sizes for programs with each recursion expanded once.
IIFG Size Increase per Recursion Expansion

Subject CFGs Nodes CFGs Nodes CFGs Nodes

armenu 93 8027 16425 474650 15444 451656

dejavu 90 3485 227 6872 – –

diff 41 1876 232 7193 – –

flex 88 3728 4435 109289 3092 85803

mpegplayer 105 4705 18528 278267 – –

netmaze 91 4585 402 15602 – –

space 136 5725 1552 30662 – –

unzip 37 2038 206 6074 10 270

un
zi
p

fl
ex

de
ja
vu

ar
me
nu

sp
ac
e

di
ff

ne
tm
az
e

mp
eg
pl
ay
er

0

10

20

30

40

50

60

0

10

20

30

40

50

60

I
I
F
G

n
o
d
e
s

/

C
F
G

n
o
d
e
s

Fig. 3. Factors of increase in IIFG sizes over the sizes of the CFGs.

programs, mpegplayer exhibits the largest increase in size—by a factor of 59—
from 4,705 nodes in the CFGs to 278,267 nodes in the IIFG.

These results suggest that using the IIFG and a traditional algorithm [Bilardi
and Pingali 1996; Cytron et al. 1991; Ferrante et al. 1987; Pingali and Bilardi
1997] to compute interprocedural dependences for whole programs may be inordi-
nately expensive. This expense must be weighed, in practice, against the precision
requirements of particular applications. Nevertheless, it seems reasonable to seek
alternative approaches to computing interprocedural control dependences, that sac-
rifice precision for efficiency, while remaining conservative in that they do not omit
interprocedural dependences that do exist in a program. We next present one such
approach.

4.2 Efficient, safe computation of interprocedural control dependences

The IIFG-based approach just presented computes interprocedural control depen-
dences between nodes in the IIFG. A program statement may correspond to several
nodes in an IIFG—one node for each calling context in which the procedure con-
taining the statement can execute. Therefore, the IIFG-based approach computes
distinct control dependences for each calling context in which a statement can ex-
ecute; we call such dependences context-based interprocedural control dependences.
An alternative approach to computing interprocedural control dependences is to

14 · S. Sinha et al.

ignore the context-based distinctions and, instead, compute those dependences by
summarizing the control dependences that exist in at least one calling context of
execution of a statement; we call such dependences statement-based interprocedural
control dependences.

A precise definition of statement-based interprocedural control dependence, in
terms of IIFG nodes and the NodeSet function, is as follows:

Definition 22. Let P be a program, let GI be the IIFG for P , and let s1 and s2

be statements in P . Statement s1 is control dependent on statement s2 if and only
if there exist nodes u, v ∈ GI such that u ∈ NodeSet(s1), v ∈ NodeSet(s2), and u is
control dependent on v.

Because statement-based control dependences summarize the control dependences
that exist in different calling contexts, they do not encode control-dependence in-
formation as precisely as do context-based control dependences. However, because
context-based control dependences, defined on the IIFG, preserve the syntactic–
semantic relationship, statement-based control dependences, which summarize those
control dependences, also preserve that relationship.

Theorem 3. Statement-based control dependences preserve the syntactic–semantic
relationship.

Proof. The proof requires a definition of what it means for a statement to be
semantically or syntactically dependent on another statement. Informally, we say
such a dependence exists if it exists in some calling context. More formally, we
say that a statement s1 ∈ P is (semantically/syntactically) dependent on another
statement s2 ∈ P if and only if there exist nodes n1, n2 ∈ GI−du, the def/use IIFG
for P , such that n1 ∈ NodeSet(s1) and n2 ∈ NodeSet(s2), and such that n1 is
(semantically/syntactically) dependent on n2. The proof then proceeds as follows.
Suppose s1 is semantically dependent on s2. Then there exist nodes n1, n2 ∈ GI−du,
the def/use IIFG for P , such that n1 ∈ NodeSet(s1) and n2 ∈ NodeSet(s2), and
such that n1 is semantically dependent on n2. But then, by Theorem 2, n1 is
syntactically dependent on n2; thus, s1 is syntactically dependent on s2.

Given Definition 22, it follows that we could compute statement-based interpro-
cedural control dependences by first computing context-based control dependences
on the IIFG, and then transforming them into statement-based control dependences
using the NodeSet associations. Such an approach, of course, would be more expen-
sive than simply computing context-based control dependences. A more efficient
algorithm exists, however, that does not require an IIFG. This algorithm uses a
representation that is linear in the size of a program to compute precisely the same
statement-based interprocedural control dependences that would be computed us-
ing the IIFG.

4.2.1 The algorithm. The algorithm proceeds in two phases: (1) Phase 1 iden-
tifies call sites to which control may not return due to the presence of embedded
halts, and uses this information to compute partial control dependences and con-
struct an augmented control-dependence graph for each procedure; (2) Phase 2
connects the augmented control-dependence graphs for the procedures to construct
an interprocedural control-dependence graph for the program, and traverses the
graph to compute interprocedural control dependences.

Interprocedural Control Dependence · 15

4. while i < 10 do

T

3. sum = 0

1. enter M

5b. return B

F

2. read i,j

6a. call B

5a. call B

6b. return B

7. print sum

8. exit M

super exit

RP6b

RP5b

F

F

4. while i < 10 do

T

T

3. sum = 0

1. enter M

5b. return B

F

2. read i,j

6a. call B

6b. return B

7. print sum

8. exit M

5a. call B

T

Fig. 4. Control-flow graph for procedure M (left), and augmented control-flow graph for M (right).

Phase 1: Computation of partial control dependences. The computation of par-
tial control dependences, performed by the first phase of our algorithm, accounts
for the effects of embedded halts. To compute partial control dependences, we
augment the CFG with “placeholder” nodes that represent the potential effects of
external control dependences on nodes within the CFG; we call the resulting graph
an augmented control-flow graph (ACFG). We define an ACFG more formally as
follows:

Definition 23. Let G be a CFG for procedure P in P , let N be the set of nodes
in G, let E be the set of edges in G, let CN = {CN1, CN2, . . . , CNj} be nodes in
G that represent call sites where control may not return from the called procedures
due to the presence of embedded halts, and let RN be the set of return nodes
associated with the call nodes in CN . An augmented control-flow graph (ACFG)
GA = (NA, EA) is a directed graph: NA = N ∪ {nsx} ∪ RP ; EA = (E −
CR−HX) ∪ CP ∪ PE ∪ SX ; nsx is a unique super-exit node that represents
all potential exits from P ; RP is a set of return-predicate nodes, one for each call
node in CN , that represent predicates that are external to P and affect the control
dependences of statements in P ; CR is the set of edges from each call node in CN
to its corresponding return node; HX is the set of edges from nodes that represent
embedded halts to the exit node; CP is a set of edges, one from each node n ∈ CN
to the node in RP associated with n; PE is a set of edges, one labeled ‘T’ from
each node n ∈ RP to the node in RN associated with n, and one labeled ‘F’ from
each node n ∈ RP to nsx; and SX is a set of edges that connect the exit node and

16 · S. Sinha et al.

Table 6. Partial control dependences for Sum computed using the ACFGs.
Control Control

Statements Dependent On Statements Dependent On

2, 3, 4 entry M 4, 5b RP5b
5a, 6a 4 6b, 7, 8 RP6b
9, 10a entry B 10b, 11 RP10b
12, 13 11 16, 17 entry C
18, 19 17

each halt node to nsx.

To illustrate, Fig. 4 displays the CFG and the ACFG for procedure M from our
example program. The ACFG contains a super-exit node, representing all exit
points from the procedure, that is connected to the rest of the graph by edge (exit
M, super exit). The graph contains return-predicate nodes RP5b, representing the
predicates on which the return from the call at 5a depends, and RP6b, representing
the predicates on which return from the call at 6a depends. Edge (RP5b, 5b) with
label ‘T’ represents control returning from B, and edge (RP5b, super exit) with label
‘F’, represents control not returning from B. The edge (5a, RP5b) represents the
fact that following the call, predicates in the called procedures determine whether
control returns to procedure M. The graph contains similar edges for return-predicate
node RP6b.

The definitions of paths, postdominance, and control dependence apply to the
ACFG as follows:

Definition 24. A path in an ACFG GA = (NA, EA) is a sequence of nodes W =
n1, n2, . . . , nk such that k ≥ 0, and such that, if k ≥ 2, then for i = 1, 2, . . . , k − 1,
(ni, ni+1) ∈ EA.

Definition 25. Let GA = (NA, EA) be an ACFG. A node u ∈ NA postdominates
a node v ∈ NA if and only if every v–nsx path in GA contains u.

Definition 26. Let GA = (NA, EA) be an ACFG, and let u, v ∈ NA. Node u is
control dependent on node v if and only if v has successors v′ and v′′ such that u
postdominates v′ but u does not postdominate v′′.

Partial control dependences are the control dependences computed using the
ACFG. Like the intraprocedural control-dependence computation [Ferrante et al.
1987], the partial control-dependence computation, adds a dummy predicate node
ns, an edge (ns, ne) labeled ‘true’, and an edge (ns, nsx) labeled ‘false’ to the ACFG.
Table 6 shows the partial control dependences computed from the ACFGs for the
procedures in Sum.

To represent partial control dependences, Phase 1 of the algorithm constructs an
augmented control-dependence graph (ACDG); we define an ACDG more formally
as follows:

Definition 27. Let GA be an ACFG for procedure P in P , let NA be the set
of nodes in GA, and let RP = {RP1, RP2, . . . , RPj} be return-predicate nodes
in GA with the corresponding return nodes RN = {RN1, RN2, . . . , RNj}. An
augmented control-dependence graph (ACDG) GD = (ND, ED) is a directed graph:
ND = NA − RP − nsx; ED = CD ∪ E ∪ R; CD is a set of edges, and it contains

Interprocedural Control Dependence · 17

4. while i < 10 do

7. print sum

5a. call B

5b. return B 6b. return B

8. exit M

1. enter M

6a. call B

3. sum = 0

2. read i,j

T
T

T

T
T

T

T F

Fig. 5. Augmented control-dependence graph for procedure M.

an edge (n1, n2), n1, n2 ∈ ND, if the partial control dependences for n2 include
n1; E is a set of edges, and it contains an edge (ne, n), n 6= ne, labeled ‘T’ if the
partial control dependences for n include ns; R is a set of edges, and it contains
an edge (RNi, n), n 6= RNi, labeled ‘T’ if the partial control dependences for n
include RPi, where RNi is the return node associated with return-predicate node
RPi. Each node n ∈ ND−(ne∪RN) has at least one predecessor and no successors;
nodes in (ne ∪RN) have no predecessors.

Fig. 5 shows the ACDG for procedure M. The ACDG contains control-dependence
edges to represent partial control dependences. The source of each control-dependence
edge is a predicate node or a placeholder node; a placeholder node is either an entry
node or a return node for a PNRC. If a node n is control dependent on the dummy
start predicate ns, the ACDG contains an edge from the entry node ne to n. If
a node n is control dependent on a return predicate, the ACDG contains an edge
from the return node associated with that return predicate to n; thus, the ACDG
contains no return-predicate nodes. For example, the partial control dependences
for procedure M show that node 4 is control dependent on return predicate RP5b.
Therefore, in the ACDG for M, there exists an edge from node 5b—the return node
associated with return predicate RP5b—to node 4.

Fig. 5 illustrates that the ACDG can have multiple root nodes. Each root node
represents a point in the corresponding procedure P where control enters P—either
through a call site that calls P or through a return site in P—and where external
predicates control the statements in P that are reached from that entry. The entry
node and the return nodes for PNRCs represent such points in a procedure, and
therefore, appear as root nodes in the ACDG. Each root node in the ACDG is thus
a placeholder for external predicates. As the figure illustrates, the ACDG can also
have disconnected components.

Our approach to computing partial control dependences involves two main steps.
In Step 1, given program P , we identify the call sites in P where control, on
entering the called procedure, may fail to return to the caller due to the presence
of an embedded halt. In Step 2, we use this information to construct ACFGs and
ACDGs for the procedures in P .

Fig. 6 presents our algorithm, ComputePartialCD. The algorithm takes as in-
put the set of CFGs {CFG1, CFG2, . . . , CFGj} for procedures {P1, P2, . . . , Pj},
respectively, in program P , and outputs, for each Pi in P , the ACDG for Pi. The
algorithm proceeds in two steps, which correspond to the steps described above.

18 · S. Sinha et al.

algorithm ComputePartialCD

input CFG set of CFGi : CFG for each procedure Pi in program P
output ACDG set of ACDGi: augmented control-dependence graph for each

procedure Pi
declare PNRCList set of PNRCListi: call nodes in each CFGi that represent

potentially non-returning call sites
HNList set of HNListi: halt nodes in each CFGi
ACFGi augmented control-flow graph for procedure Pi

begin ComputePartialCD

/* Step 1: Identify potentially non-returning call sites, and record on PNRCList */
1. PNRCList = ClassifyCallSites()

/* Step 2: Compute partial control dependences for Pi */
2. foreach Pi in P do
3. ACFGi = CFGi

4. Nx = exit node of CFGi

5. Create node Nsx labeled ‘super exit’ and add to ACFGi

6. Create edge (Nx, Nsx)
7. foreach call node C in PNRCListi with associated return node R do
8. Create node RP [C] and add to ACFGi

9. Remove edge (C, R)
10. Create edge (C, RP [C])
11. Create edge (RP [C], R) labeled ‘T’
12. Create edge (RP [C], Nsx) labeled ‘F’
13. endfor
14. foreach node H in HNListi do
15. Remove edge (H, Nx)
16. Create edge (H, Nsx)
17. endfor
18. Compute intraprocedural control dependences using ACFGi

19. Construct augmented-control dependence graph ACDGi for Pi
20. endfor
21. return ACDGi s

end ComputePartialCD

Fig. 6. The algorithm for computing partial control dependences.

We next describe each step of the algorithm in turn.
Step 1 (line 1) of ComputePartialCD calls procedure ClassifyCallSites to

identify potentially non-returning call sites (PNRCs) in P : call sites to which con-
trol may not return from called procedures due to the presence of embedded halts.
To identify these call sites, ClassifyCallSites requires information about inter-
procedural flow of control in P . ClassifyCallSites uses the procedure shown in
Fig. 7 to identify PNRCs in P . To obtain PNRC information, the procedure (line
1) constructs an interprocedural control-flow graph (ICFG) that connects individual
CFGs at call nodes [Landi and Ryder 1992]. We define the ICFG more formally as
follows:

Definition 28. Let P be a program with procedures P1, P2, . . . , Pj and let Γ =
G1, G2, . . . , Gj be the corresponding CFGs for the Pi, 1 ≤ i ≤ j. Let E be the
set of edges in the Gi and N be the set of nodes in the Gi. An interprocedural
control-flow graph (ICFG) GC = (NC , EC) for P is a directed graph: NC = N ;
EC = (E − HX − CR) ∪ CE ∪ XR; HX is a set of edges connecting nodes

Interprocedural Control Dependence · 19

procedure ClassifyCallSites

input CFG set of CFGi: control-flow graph for each procedure Pi in P
output PNRCList set of PNRCListi: list of the PNRCs in procedure Pi

CFG set of CFGi: CFG for procedure Pi with statically unreachable
nodes removed

declare GC ICFG for program P with entry node E
DNRPList list of procedures in P from which control cannot statically return
HNList set of HNListi : list of nodes in procedure Pi that represent

embedded halts
UnreachList list of nodes in GC that are statically unreachable

begin ClassifyCallSites

1. Construct ICFG GC for P
2. Call ComputeDNRPs to retrieve DNRPList , UnreachList , and HNList
3. Remove all nodes on UnreachList from GC and CFGis

4. PNRCList = ComputePNRCs(GC , DNRPList , HNList)
5. return PNRCList and modified CFGis

end ClassifyCallSites

Fig. 7. The algorithm for classifying call sites.

that represent embedded halts to exit nodes; CR is a set of edges connecting call
nodes to return nodes; CE is a set of (call node, entry node) edges, one from each
call node to the entry node of the called procedure; and XR is a set of (exit node,
return node) edges, one to each return node from the exit node of the procedure
returned from. Each statement in P corresponds to a unique node in the ICFG for
P .

Fig. 8 depicts the ICFG for program Sum. Each call site is represented by call and
return nodes; the CFGs are connected by (call node, entry node) and (exit node,
return node) edges, shown as dashed lines. Unlike the IIFG, the ICFG contains a
single copy of the CFG for each procedure in a program. Also, in the ICFG, nodes
that represent halt statements are not connected to a unique exit node.

After constructing the ICFG, ClassifyCallSites calls procedure ComputeDNRPs
(line 2). ComputeDNRPs calculates three pieces of data: (1) DNRPList , the list of
definitely non-returning procedures (DNRPs) in P : procedures from which control
(statically) cannot return due to the presence of embedded halts; (2) UnreachList ,
a list of nodes in the ICFG that cannot be reached (statically) from the entry
node; and (3) HNList , a list of nodes in the ICFG that represent embedded halts
that can be reached (statically) from the entry node. To calculate this data,
ComputeDNRPs performs a depth-first traversal along realizable paths in the ICFG,8

marking nodes as it reaches them, until no unmarked nodes remain. During this
traversal, ComputeDNRPs places all halt nodes that it reaches on HNList . Following
the traversal, the procedure examines the exit nodes of individual CFGs in the
ICFG. Any exit node that is not marked indicates that the procedure to which that
exit node belongs is definitely non-returning; ComputeDNRPs places that procedure

8A path in an ICFG is realizable if whenever control leaves a procedure through a normal procedure
exit, such as the end of the procedure or a return statement, it returns to the procedure that
invoked it.

20 · S. Sinha et al.

7. print sum

T

8. exit M

10b. return C

19. exit C

4. while i < 10 do

3. sum = 0

2. read i,j

1. enter M

11. if j >= 0 then

13. read j

14. i = i + 1

17. if sum > 100 then

16. enter C

5a. call B

5b. return B

F

F

T

9. enter B

10a. call C

15. exit B

12. sum = sum + j

T

F
18. halt

6b. return B

6a. call B

Fig. 8. Interprocedural control-flow graph for program Sum.

on DNRPList . Also, any unmarked nodes are statically unreachable; ComputeDNRPs
places these on UnreachList .

Following the call to ComputeDNRPs, ClassifyCallSites uses UnreachList to
remove all statically unreachable nodes (line 3) from the ICFG and all CFGs.

The algorithm can now determine PNRCs. The procedure for accomplishing
this, ComputePNRCs, takes as input the ICFG, from which unreachable nodes have
been removed, the list of definitely non-returning procedures DNRPList , and the
list of halt nodes HNList . The procedure performs a reverse depth-first traversal of
the ICFG, starting at halt nodes and nodes that represent calls to definitely non-
returning procedures, ascending into calling procedures but not descending into
called procedures. Any call site reached during the traversal is a PNRC, and the
called procedure is potentially non-returning. The algorithm places these call nodes
on PNRCList . When the traversal terminates, the procedure returns PNRCList
and the modified CFGs.

To illustrate the operation of ClassifyCallSites, consider our example pro-
gram. Called with the CFGs for this program, ClassifyCallSites first creates
the ICFG shown in Fig. 8. ComputeDNRPs determines that no procedures in this
program are definitely non-returning and that all nodes in the ICFG are reachable,
and adds node 18 to HNList . ComputePNRCs then performs a reverse depth-first
traversal of the ICFG from node 18. During this traversal, the algorithm adds call
nodes 5a, 6a, and 10a to PNRCList because the associated call sites are potentially
non-returning.

Following the identification of PNRCs, in Step 2 (lines 2–20), ComputePartialCD
(shown in Fig. 6) computes the set of partial control dependences and constructs the
ACDG for each procedure Pi in P . To do this, ComputePartialCD first constructs
the ACFG for Pi (lines 3–17). ComputePartialCD initializes the ACFG (line 3),
and creates a super-exit node Nsx and adds it to the ACFG (line 5). Next, the

Interprocedural Control Dependence · 21

3. sum = 0

1. enter M

4. while i < 10 do

5a. call B 6a. call B

6b. return B

7. print sum

control dependence on predicate

8. exit M

interprocedural control flow

12. sum = sum + j

19. exit C18. halt

control dependence on placeholder

2. read i,j
5b. return B

T
T

T

T

T T

T F

9. enter B

T

11. if j >= 0 then

13. read j

TT

10b. return C

15. exit B

14. i = i + 1

T

T
T

10a. call C

16. enter C

17. if sum > 100 then

T

T F

Fig. 9. Interprocedural control-dependence graph for program Sum.

algorithm connects the exit node to Nsx (line 6). ComputePartialCD then iterates
through each PNRC in Pi (lines 7–13), creates a return-predicate node for that
PNRC and adds it to the ACFG (line 8), removes the edge that connects the call
node to the corresponding return node (line 9), connects the call node to the return-
predicate node (line 10), and creates outgoing edges labeled ‘T’ and ‘F’ from the
return-predicate node (lines 11–12). ComputePartialCD also removes edges that
connect halt nodes to the exit node, and connects the halt nodes to the super-exit
node (lines 14–17).

Having constructed the ACFG for Pi, ComputePartialCD next computes partial
control dependences for Pi by applying an existing technique for control-dependence
computation [Bilardi and Pingali 1996; Cytron et al. 1991; Ferrante et al. 1987;
Pingali and Bilardi 1997] to the ACFG for Pi (line 18). Finally, the algorithm
constructs the ACDG for Pi (line 19).

Phase 2: Computation of interprocedural control dependences. Intraprocedural
control-dependence computation applied to an ACFG produces correct control de-
pendences for all nodes that are control dependent on non-placeholder nodes in
the ACFG; however, control dependences for nodes that are control dependent on
placeholders—entry or return nodes—must be adjusted. Phase 2 of our algorithm
performs this adjustment and computes interprocedural control dependences.

To compute interprocedural control dependences, the algorithm constructs an in-
terprocedural control-dependence graph (ICDG). We define an ICDG more formally
as follows:

Definition 29. Let P be a program with procedures P1, P2, . . . , Pj and let Γ =
GD1 , G

D
2 , . . . , G

D
j be the corresponding ACDGs for the Pi, 1 ≤ i ≤ j. Let ND be the

set of nodes in the GDi and ED be the set of edges in the GDi . An interprocedural
control-dependence graph (ICDG) GD = (ND, ED) for P is a directed graph: ND =
ND; ED = ED ∪ CE ∪ XR; CE is a set of (call node, entry node) edges, one
from each call node to the entry node of the called procedure; and XR is a set of

22 · S. Sinha et al.

algorithm ComputeInterCD

input ACDG ACDG of each procedure P in program P
CDPL nodes whose partial control dependences include a placeholder
CD(N) partial control dependences (excluding placeholders) for node N

output interCD interprocedural control dependences for P
declare ICDG interprocedural control-dependence graph for P

worklist ICDG nodes traversed by the algorithm

begin ComputeInterCD

1. initialize ICDG by connecting ACDGs using call and return edges
2. foreach node M in CDPL
3. mark each node in ICDG as unvisited
4. initialize worklist with placeholder predecessors of M ; mark those nodes as visited
5. while worklist is not empty
6. remove node N from worklist

7. foreach predecessor P of N
8. if P is a predicate node
9. add P to CD(M)

10. else
11. if P is not visited
12. add P to worklist; mark P as visited
13. endif
14. endif
15. endfor
16. endwhile
17. endfor
18. foreach N in ICFG do
19. InterCD = InterCD ∪ CD(N)
20. endfor
21. return InterCD

end ComputeInterCD

Fig. 10. The algorithm for computing interprocedural control dependences.

(exit node, return node) edges, one to each return node from the exit node of the
procedure returned from.

Fig. 9 shows the ICDG for program Sum. Apart from the control-dependence
edges, the ICDG contains call and return edges. At each call site, a call edge
connects the call node to the entry node of the called procedure; for example, a
call edge connects call node 5a to entry node 9. At each call site, a return edge
connects the exit node of the called procedure to the return node for the call site;
for example, a return edge connects exit node 15 to return node 5b.

Fig. 10 presents ComputeInterCD, the algorithm for Phase 2 of the interproce-
dural control-dependence computation. ComputeInterCD takes three inputs: (1)
the ACDGs for the procedures in a program, (2) the list of nodes that are control
dependent on placeholders (CDPL), and (3) partial control dependences (excluding
placeholders) for each node. The algorithm constructs the ICDG by connecting the
ACDGs using call and return edges (line 1). Then, the algorithm traverses the
ICDG once for each node that is control dependent on a placeholder (lines 2–17).
For each such node M , the algorithm traverses the ICDG backwards along all paths,
starting at each predecessor P of M that is a placeholder, and identifies the closest
predicates that are reachable from P along those paths; P is a placeholder for the

Interprocedural Control Dependence · 23

external predicates that are reached along the paths. To identify such predicates,
the traversal along a path terminates when it reaches a control-dependence edge
whose source is a non-placeholder (neither an entry node nor a return node). The
algorithm uses worklist to traverse the ICDG, and marks nodes as they are visited.

For each node M that is control dependent on a placeholder, the algorithm
initiates the ICDG traversal by marking the ICDG nodes as unvisited (line 3), and
initializing worklist by adding placeholder predecessors of M to worklist (line 4).
Following the initialization, the algorithm traverses the ICDG by removing a node
from worklist and processing it, until worklist becomes empty (lines 5–16).

The algorithm removes a node N from worklist (line 6) and examines all prede-
cessors of N in the ICDG (lines 7–15). If a predecessor P is a predicate node, the
algorithm has identified a control dependence for node M . Therefore, the algorithm
adds P to the set of control dependences for node M (line 9), and terminates the
traversal of the ICDG along that path. For example, to process node 15, which is
control dependent on a return node, the algorithm initializes node 15 on worklist.
Then, the algorithm traverses the path (15, 10b, 19, 17) in the ICDG for Sum, and
identifies node 17 as the predicate on which node 15 is control dependent. For an-
other example, to process node 10a, which is control dependent on an entry node,
the algorithm traverses the ICDG backwards along all paths, starting at node 10a,
and identifies node 4 as the predicate on which node 10 is control dependent.

After the algorithm has processed each node that is control dependent on a
placeholder, it has identified for each such node the external predicates on which
the node is control dependent. Finally, the algorithm builds and returns the set of
interprocedural control dependences for the program (lines 18–21).

4.2.2 Complexity of the algorithm. The cost of our algorithm for computing in-
terprocedural control dependences is determined by the costs of the two phases of
the algorithm—ComputePartialCD (Fig. 6) and ComputeInterCD (Fig. 10).

Step 1 of ComputePartialCD invokes the procedure ClassifyCallSites (Fig.
7), which identifies DNRPs, removes unreachable nodes from the ICFG and the
CFGs, and identifies PNRCs. Let N and E be the number of nodes and edges,
respectively, in the ICFG. The procedure that identifies DNRPs, ComputeDNRPs,
performs a depth-first traversal of the ICFG; therefore, the cost of ComputeDNRPs is
O(N + E). Next, ClassifyCallSites removes unreachable nodes from the ICFG
and CFGs, which can be accomplished in time linear in the sizes of those graphs.
Finally, using the list of halt nodes and call nodes for DNRPs, ClassifyCallSites
identifies PNRCs. The procedure that identifies PNRCs, ComputePNRCs, traverses
the ICFG once for each halt node and each call node for a DNRP. Let H and
CDNRP be the number of halt nodes and call nodes for DNRPs, respectively, in a
program. Then, the cost of ComputePNRCs is O((H + CDNRP) ∗ (N + E)).

Step 2 of ComputePartialCD creates the ACFG and computes partial control
dependences for each procedure. Let NC and EC be the number of nodes and edges
in a CFG, and let CPNRC be the number of PNRCs in a procedure. The cost of
constructing the ACFG is O(NC + EC + CPNRC). After constructing the ACFG,
Step 2 of ComputePartialCD calculates partial control dependences by applying an
existing technique for control-dependence computation [Bilardi and Pingali 1996;
Cytron et al. 1991; Ferrante et al. 1987; Pingali and Bilardi 1997] to the ACFG of

24 · S. Sinha et al.

each procedure. The costs of these techniques vary from linear [Bilardi and Pingali
1996; Pingali and Bilardi 1997] to quadratic [Cytron et al. 1991; Ferrante et al.
1987] in the size of the graph to which they are applied.
ComputeInterCD traverses the ICDG once for each node that is control dependent

on a placeholder; each traversal is linear in the size of the ICDG. Let N be the
number of nodes in the ICDG, E be the number of edges in the ICDG, and Npl
be the number of ICDG nodes that are control dependent on a placeholder. Then,
the worst-case complexity of ComputeInterCD is O(Npl ∗ (N +E)).

4.2.3 Correctness of the algorithm. Our algorithm computes statement-based in-
terprocedural control dependences by summarizing, for each statement, the control
dependences that exist in different calling contexts for that statement in the IIFG.
To demonstrate the correctness of our algorithm, we show that our algorithm com-
putes the same statement-based control dependences as are computed by an al-
ternative approach that constructs an IIFG, applies a traditional algorithm for
control-dependence computation to the IIFG, and summarizes the control depen-
dences for each statement using the NodeSet relations.

The overall structure of the proof is as follows. First, we classify paths in the
IIFG based on the sequences of call and return edges that appear in the paths.
Next, we characterize paths in the ICDG that are traversed by the algorithm.
Finally, by considering the types of path in the IIFG along which an interprocedural
control dependence relation occurs, and the types of paths that are traversed by
our algorithm, we prove the following theorem. The appendix provides an outline
of the proof; further details of the proof can be found in Reference [Sinha et al.
2000].

Theorem 4. Let GI be the IIFG for program P. Let u and v be nodes in GI . Let
su and sv be the statements in P such that u ∈ NodeSet(su) and v ∈ NodeSet(sv).
u is control dependent on v if and only if ComputeInterCD identifies su control
dependent on sv.

4.3 Summary

We have presented two approaches for computing interprocedural control depen-
dences; the first approach computes context-based control dependences, and the
second computes statement-based control dependences. These two approaches lie
in a spectrum of approaches that compute interprocedural control dependences
with various degrees of context-sensitivity. The context-based approach expands
all calling contexts for a statement, and computes distinct control dependences for
the statement in each calling context. The statement-based approach summarizes
all calling contexts for a statement, and computes a single set of control depen-
dences for that statement. Other approaches, intermediate between these two, may
selectively expand the calling context of a procedure [Atkinson and Griswold 1996],
and compute control dependences with varying degrees of precision and efficiency.
The ability of such approaches to compute interprocedural control dependences
safely can be evaluated using our definition of interprocedural control dependence.

Interprocedural Control Dependence · 25

Nodes whose partial

control dependences
Nodes whose partial

control dependences

include only predicates

include a placeholder

100

80

60

40

20

0

100

80

60

40

20

0

34857908 1827 3679 4681 4585 5668 2038

un
zi
p

fl
ex

de
ja
vu

ar
me
nu

sp
ac
e

di
ff

ne
tm
az
e

mp
eg
pl
ay
er

Fig. 11. The percentage of nodes whose partial control dependences include an entry or a return
node; such nodes are processed by ComputeInterCD.

5. EMPIRICAL EVALUATION

To evaluate our algorithm, we conducted two empirical studies with implementa-
tions of ComputePartialCD and ComputeInterCD. To obtain the CFGs and the
intraprocedural control-dependence information required for the studies, we used
the analysis tools provided by the Aristotle analysis system [Harrold and Rother-
mel 1997]; the control-dependence analyzer in the Aristotle analysis system im-
plements the control-dependence algorithm described by Ferrante, Ottenstein, and
Warren [Ferrante et al. 1987]. We used the programs listed in Table 4 for both the
studies.

5.1 Efficiency of interprocedural control-dependence computation

The goal of our first study was to evaluate the performance of ComputeInterCD
in practice. Recall that the complexity of ComputeInterCD is O(Npl ∗ (N + E)),
where Npl is the number of ICDG nodes whose partial control dependences include
a placeholder, and N and E are the number of nodes and edges, respectively,
in the ICDG. To resolve the control dependences of nodes represented by Npl,
ComputeInterCD traverses the ICDG starting at those nodes.

Fig. 11 presents data about the percentage of nodes whose partial control de-
pendences include an entry or a return placeholder. The number at the top of
each bar is the total number of nodes in the ICDG for that program. Five of
the programs—armenu, diff, flex, mpegplayer, and space—contain statically
unreachable statements; for these programs, the number of ICDG nodes is less
than the number of nodes in the CFGs (listed in Table 5) because Phase 1 of our
algorithm identifies and removes nodes that correspond to statically unreachable
statements. The percentage of nodes whose partial control dependences include a
placeholder range from 15.6% for armenu to 36% for flex. On average, 26.3% of
ICDG nodes are control dependent on a placeholder.

The second factor in the cost equation for ComputeInterCDmeasures the percent-
age of the ICDG that is traversed by ComputeInterCD while resolving a node that

26 · S. Sinha et al.

fl
ex

de
ja
vu

ar
me
nu

sp
ac
e

di
ff

ne
tm
az
e

un
zi
p

mp
eg
pl
ay
er

0

0.24%

0.13%

0.22%

0.47%

0.40%
P
e
r
c
e
n
t
a
g
e

o
f

I
C
D
G

n
o
d
e
s

a
n
d

e
d
g
e
s

t
r
a
v
e
r
s
e
d

o
n

a
v
e
r
a
g
e

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

0

0.71%

0.17%

0.29%

Fig. 12. The percentage of nodes and edges in the ICDG that are traversed, on average, by
ComputeInterCD for nodes whose partial control dependences include a placeholder.

0

2

4

6

8

10

0 1000 2000 3000 4000 5000 6000 7000 8000

P
e

rc
e

n
ta

g
e

 o
f

IC
D

G
 n

o
d

e
 a

n
d

 e
d

g
e

s
tr

a
ve

rs
e

d

and edges

Percentage
of ICDG nodes

traversed

i
n
c
l
u
d
e

a

p
l
a
c
e
h
o
l
d
e
r

[0, 1]

(1, 3]

(3, 10)

100

80

60

40

20

0

8898

N
o
d
e
s

w
h
o
s
e

p
a
r
t
i
a
l

c
o
n
t
r
o
l

d
e
p
e
n
d
e
n
c
e
s

Fig. 13. The percentage of nodes and edges in the ICDG that are traversed by ComputeInterCD for
each node whose partial control dependences include a placeholder (left); the percentage of nodes
for which ComputeInterCD traverses various percentages of the ICDG nodes and edges (right).

is control dependent on a placeholder. Although theoretically ComputeInterCD can
traverse the entire ICDG while processing a node, in practice, we expect it to tra-
verse only a fraction of the ICDG. To test this hypothesis, we gathered data about
the percentage of ICDG nodes and edges that are traversed by the algorithm while
processing the nodes whose partial control dependences include a placeholder.

Fig. 12 presents the percentage of ICDG nodes and edges that are traversed
by ComputeInterCD; each bar in the figure represents the proportion of ICDG
nodes and edges that are traversed, averaged over the nodes that are processed
by ComputeInterCD. As the figure illustrates, for each program, ComputeInterCD
traverses fewer than one percent of the nodes and edges in the ICDG: the average is

Interprocedural Control Dependence · 27

Statically unreachable nodes

33057841 1794 3552 4495 4403 5453 1964
100

80

60

40

20

0

100

80

60

40

20

0

dependences differ
and interprocedural control
Nodes whose intraprocedural

Nodes whose intraprocedural
and interprocedural control
dependences are the same

un
zi
p

fl
ex

de
ja
vu

ar
me
nu

sp
ac
e

di
ff

ne
tm
az
e

mp
eg
pl
ay
er

Fig. 14. The percentage of nodes whose intraprocedural and interprocedural control dependences
differ.

highest at 0.71% for armenu, and is as low as 0.13% for netmaze. This data strongly
supports our belief that the quadratic worst-case performance of ComputeInterCD
may not be realized in practice, and that ComputeInterCD may scale well for large
programs.

Although Fig. 12 shows the percentage of ICDG that is traversed, on average,
for each program, it does not illustrate the distribution of those percentages. The
scatter plot on the left in Fig. 13 illustrates the distribution of the percentages:
it shows, for each node that is processed by ComputeInterCD, the percentage of
the ICDG that is traversed. There are 8,898 data points in the scatter plot, which
correspond to the nodes that are processed by ComputeInterCD. The cluster of
points at the bottom of the plot illustrates that the algorithm traverses a small
fraction of the ICDG for most of the nodes. For each node, the algorithm traverses
less than 10% of the ICDG nodes and edges. The segmented bar on the right in
Fig. 13 provides a different view of the data: it partitions the nodes based on the
percentage of the ICDG nodes and edges that are traversed by ComputeInterCD.
As the figure shows, for over 94% of the nodes, ComputeInterCD traverses less than
1% of the ICDG nodes and edges.

5.2 Differences between intraprocedural and interprocedural control dependences

The goal of our second study was to examine the extent to which interprocedural
control dependences (computed by our second approach) differ from intraprocedural
control dependences (computed by applying a traditional algorithm for computing
control dependences [Bilardi and Pingali 1996; Cytron et al. 1991; Ferrante et al.
1987; Pingali and Bilardi 1997] to each CFG in a program).9

Intraprocedural control-dependence computation does not consider the effects

9As mentioned earlier, we used an implementation of the control-dependence algorithm described
in Reference [Ferrante et al. 1987] for the empirical studies. However, the other algorithms [Bilardi
and Pingali 1996; Cytron et al. 1991; Pingali and Bilardi 1997] would also compute the same
control dependences when applied to the CFGs; therefore, the discussion in this section applies
to those algorithms as well.

28 · S. Sinha et al.

control−dependence path
an unbalanced−right−left

control−dependence path
an unbalanced−right

control−dependence path
an unbalanced−left

a control−dependence edge

context
in the intraprocedural
dependences that are missed
Interprocedural control

context
also in the intraprocedural
dependences that are computed
Interprocedural control

un
zipfle

x

de
ja
vu

ar
m

en
u

sp
ac

e

ne
tm

az
e

m
pe

gp
la
ye

r
di
ff

un
zipfle

x

de
ja
vu

ar
m

en
u

sp
ac

e
di
ff

ne
tm

az
e

m
pe

gp
la
ye

r

80

60

40

20

0

100

80

60

40

20

0

828 5745 1745 7129 116836473 50451121

interprocedural context along:
that are computed only in the
Interprocedural control dependences

100

100

80

60

40

20

0

100

80

60

40

20

0

58534140 2576 8044 9188 10940 332845583

Fig. 15. The percentage of interprocedural control dependences that are missed by the intrapro-
cedural control-dependence computation (top), and the classification of those control dependences
based on the type of path in the ICDG along which they are computed (bottom).

that interactions among procedures can have on control dependences. Therefore, in-
traprocedural control dependences can exclude dependences that exist because of in-
teractions among procedures; interprocedural control dependences include such de-
pendences. Also, intraprocedural control dependences can contain spurious control
dependences—dependences that do not exist when interactions among procedures
are considered; interprocedural control dependences exclude such dependences. Fi-
nally, intraprocedural control dependences can include dependences that are com-
puted also by the interprocedural control-dependence computation; such common
control dependences are unaffected by the interactions among procedures.10

Fig. 14 shows the percentage of ICFG nodes whose control dependences are af-

10In some cases, the intraprocedural control-dependence computation identifies a statement as
control dependent on entry into the procedure to which the statement belongs, whereas the in-
terprocedural control-dependence computation identifies that statement as control dependent on
entry into the program. In the empirical results reported in this section, we considered such
control dependences as common control dependences.

Interprocedural Control Dependence · 29

fected by the interactions among procedures; such nodes have different intraproce-
dural and interprocedural control dependences. The numbers at the top of the bars
in the figure are the number of ICFG nodes, excluding the entry and the exit nodes,
in the respective programs. The figure also shows the percentage of nodes that are
statically unreachable; such nodes occur in armenu, diff, flex, mpegplayer, and
space. The percentage of nodes whose control dependences differ ranges from 9.5%
for dejavu to 37.2% for mpegplayer. On average, the control dependences of 26.8%
of the nodes differ.

Fig. 15 presents data about interprocedural control dependences computed for
the programs. The graph at the top in the figure shows the percentages of interpro-
cedural control dependences that are computed only by the interprocedural control-
dependence computation, and those that are computed also by the intraprocedural
control-dependence computation. The number at the top of each bar is the total
number of interprocedural control dependences computed for that program. The
percentage of control dependences that are missed by the intraprocedural control-
dependence computation ranges from 20% for dejavu to 80% for armenu. On
average, 66.1% of the interprocedural control dependences are missed by the in-
traprocedural control-dependence computation.

Each control dependence that is missed by the intraprocedural control-dependence
computation is computed either by ComputePartialCD (and received as an input
by ComputeInterCD), or by ComputeInterCD along a control-dependence path in
the ICDG. Intuitively, a control-dependence path in the ICDG is a path from a pred-
icate node to a node that is control dependent on a placeholder.11 Each control-
dependence path crosses procedure boundaries and contains one or more call and
return edges. The sequence of call and return edges along a control-dependence path
can contain (1) only call edges (the path is an unbalanced-left control-dependence
path), (2) only return edges (the path is an unbalanced-right control-dependence
path), or (3) a subsequence that contains only return edges followed by a subse-
quence that contains only call edges (the path is an unbalanced-right-left path).
Control dependences computed along unbalanced-left control-dependence paths
are caused by call relations among the procedures, whereas control dependences
computed during the partial-dependence computation or along unbalanced-right or
unbalanced-right-left control-dependence paths are caused by the effects of PNRCs.

The graph at the bottom in Fig. 15 classifies the missed control dependences us-
ing the above criteria. It shows the percentage of missed control dependences that
are computed by ComputePartialCD (and represented as control-dependence edges
in the ICDG), or by ComputeInterCD along different types of control-dependence
paths. The number at the top of each bar is the total number of missed control de-
pendences for that program; this number is also represented as a percentage by the
darker segment in the graph at the top. The data in the figure illustrate that only
a small fraction of the missed interprocedural control dependences are identified
during the partial control-dependence computation: on average, the percentage of
such control dependences is 5.9%. The percentage of missed control dependences
that are computed along unbalanced-left paths ranges from 25.4% for armenu to
84.3% for netmaze. On average, 35.2% of the missed control dependences are

11See Appendix B for formal definitions of control-dependence paths and their types.

30 · S. Sinha et al.

represent:
intraprocedural context and
that are computed only in the
Intraprocedural control dependences

context

context

fl
ex

ar
me
nu

sp
ac
e

di
ff

ne
tm
az
e

un
zi
p

de
ja
vu

mp
eg
pl
ay
er

un
zi
p

fl
ex

de
ja
vu

ar
me
nu

di
ff

mp
eg
pl
ay
er

100

80

60

40

20

sp
ac
e

100

80

60

40

20

0

2076 338 707 1346 1774 935 1910 336

Intraprocedural control
dependences that are computed
also in the interprocedural

ne
tm
az
e

only in the intraprocedural
dependences that are computed
Intraprocedural control

spurious control dependences

incomplete control dependences

0

100

80

60

40

20

0

100

80

60

40

20

0

3650 4345 5217 5043 5721 249611186 2162

Fig. 16. The percentage of intraprocedural control dependences that are computed only by the
intraprocedural control-dependence computation (top), and a classification of those control de-
pendences (bottom).

computed along unbalanced-left paths, and are therefore, caused because of call
relations among the procedures. The remaining 58.9% of the missed control de-
pendences are caused because of the effects of PNRCs: 56.1% are computed along
unbalanced-right paths, and 2.8% are computed along unbalanced-right-left paths.

Fig. 16 presents data about intraprocedural control dependences computed for
the programs. The data illustrate the extent to which intraprocedural control
dependences include spurious dependences. The graph at the top in the figure shows
the percentages of intraprocedural control dependences that are computed only by
the intraprocedural control-dependence computation, and those that are computed
also by the interprocedural control-dependence computation. The number at the
top of each bar is the total number of intraprocedural control dependences computed
for that program. The percentage of spurious control dependences ranges from 9.3%
for dejavu to 36.5% for mpegplayer. On average, 23.7% of the intraprocedural
control dependences are spurious; such dependences do not exist when interactions
among procedures are considered.

Interprocedural Control Dependence · 31

The graph at the bottom in Fig. 16 classifies the spurious control dependences
based on a semantic interpretation of those control dependences. A spurious control
dependence is computed only by the intraprocedural control-dependence computa-
tion. Let s be a statement in procedure P such that s is control dependent on
p and the control-dependence relation is spurious. In this control-dependence re-
lation, p is either a predicate in P or the entry into P . If p is a predicate, the
control-dependence relation is clearly spurious, and provides misleading informa-
tion, because p does not control the execution of s. However, if p is the entry into P ,
the control-dependence relation can provide information that is not misleading but
incomplete. Suppose that p is the entry into P . Then, the intraprocedural control-
dependence relation is equivalent to stating that if control enters procedure P , s is
definitely reached. This statement is valid also in the interprocedural context if all
interprocedural control dependences for s are computed along only unbalanced-left
or unbalanced-right-left paths. In such cases, although external predicates control
the execution of s, it is still valid to state that if control enters P , s is definitely
reached. Therefore, in such cases, the intraprocedural control-dependence relation
does not provide misleading information; it provides incomplete information.

The graph at the bottom in Fig. 16 classifies the intraprocedural control depen-
dences as spurious or incomplete. The graph illustrates that, for armenu, diff,
flex, and mpegplayer, a considerable percentage of the intraprocedural control
dependences are spurious: 85.7% for armenu, 73.6% for diff, 74.8% for flex, and
67.7% for mpegplayer. On average, 61.1% of the intraprocedural control depen-
dences are spurious.

6. RELATED WORK

Definitions of control dependence appear frequently in the research literature (e.g.,
[Bilardi and Pingali 1996; Cytron et al. 1991; Ferrante et al. 1987; Loyall and
Mathisen 1993; Pingali and Bilardi 1997; Podgurski and Clarke 1990]). In most
cases (with the exception of the definition in [Loyall and Mathisen 1993], dis-
cussed below) these definitions are stated in terms of relationships between nodes
in flow graphs that are described as representing “programs”. However, these def-
initions seldom explicitly describe the way in which these graphs can represent
whole programs built of interacting procedures. For example, Podgurski and Clarke
[Podgurski and Clarke 1990] state that their definition of the control flow graph can
represent any procedural program; however, as presented, that definition also ap-
plies to a class of ICFGs on which the syntactic–semantic relationship does not
hold (see Appendix A for details). Our Definition 12 clarifies the application of
Podgurski and Clarke’s (and other flow-graph based) definitions of control depen-
dence to the interprocedural setting.

Various algorithms for calculating control dependences exist (e.g., [Ballance and
Maccabe 1992; Bilardi and Pingali 1996; Cytron et al. 1991; Ferrante et al. 1987;
Harrold and Rothermel 1996; Loyall and Mathisen 1993]). Some of these algo-
rithms (e.g., [Ballance and Maccabe 1992; Harrold and Rothermel 1996]) operate
on abstract syntax trees for individual procedures, and are therefore, strictly in-
traprocedural. As presented, most other algorithms operate on control-flow graphs.
We have shown that when such algorithms are applied independently to control-flow
graphs for individual procedures in program P without accounting for the context

32 · S. Sinha et al.

in which those procedures are invoked in P , the algorithms can calculate control
dependences in a manner that does not support the syntactic–semantic relation-
ship. Alternatively, given an IIFG, these algorithms can calculate correct control
dependences for P for non-recursive programs; however, the size of the IIFG may
be exponential in program size; thus, such an application may be inefficient.

Loyall and Mathisen [Loyall and Mathisen 1993] use ICFGs to define interproce-
dural control dependence. They define an interprocedural walk in an ICFG G to be
a sequence of nodes that represent a realizable path through G. A node u ∈ G is
said to postdominate a node v ∈ G if and only if every interprocedural walk from
v to the exit node of the ICFG contains u. Control dependence is then defined
in a manner similar to that of our Definition 4. However, this definition does not
support the syntactic–semantic relationship. To see this, refer again to Fig. 1, and
consider the version of Sum created by substituting the alternative version of line
18, but not substituting the alternative version of line 6: this version contains both
calls to B, but halts (assuming normal termination) only on reaching statement 8.
Consider also the ICFG for this version of Sum, not pictured, but easily constructed
from the ICFG of Fig. 8 by replacing node 18 with its alternative version, and
adding an edge from that node to node 19.12 In this ICFG, because of the uncondi-
tional calls to B in node 6a and to C in node 10a, nodes 10, 11, 14, and 17 occur on
every realizable path from both successors of node 4 (6a and 5a). Thus, according
to Loyall and Mathisen’s definitions, nodes 10, 11, 14, and 17 postdominate both
successors of 4, and thus, they are not control dependent on node 4. According to
Podgurski and Clarke’s definition of semantic dependence, however, nodes 10, 11,
14, and 17 are semantically dependent on node 4, because the condition in node 4
determines (through its control of the call to B in 5a) the number of times these
statements execute. Thus, in this case, Loyall and Mathisen’s definitions of control
dependence do not support the syntactic–semantic relationship.

Loyall and Mathisen extend their basic definitions, summarized above, to ac-
count for the presence of embedded halts. Their extended definitions utilize an
ICFG in which halt nodes are connected to a unique ICFG exit node, and (we be-
lieve) correctly identify the effects of halts on control dependences (at least in cases
where that effect does not interact with the multiple-context effect). However, this
extended definition does not circumvent the difficulty described above; thus, the
extended definition does not support the syntactic–semantic relationship.

Loyall and Mathisen do not provide an algorithm for calculating interprocedu-
ral control dependences between nodes or statements; their goal is to define and
calculate control dependence between procedures, and they use their definitions
of interprocedural control dependence between nodes to define control dependence
between procedures. By their definition, a procedure Pi is control dependent on
procedure Pj if and only if there exists some node ni in the portion of the ICFG
associated with Pi, and some node nj in the portion of the ICFG associated with
Pj , such that ni is control dependent on nj . Loyall and Mathisen provide an algo-
rithm for calculating procedure-level control dependences without first calculating
node-level dependences. Although procedure-level dependence is not our focus in

12An ICFG of Loyall and Mathisen’s form also merges call and return nodes; however, this does
not affect our argument.

Interprocedural Control Dependence · 33

this work, we observe that this algorithm has two drawbacks. First, the procedure-
level control dependences calculated by Loyall and Mathisen’s algorithm conflict
with those identified by their definition. For example, applied to the version of Sum
that does not contain the embedded halt, Loyall and Mathisen’s definitions imply
that no nodes in B are control dependent on the predicate in M, because they all
postdominate the successors of that predicate through the second, unconditional
call to B in node 6a. However, Loyall and Mathisen’s algorithm does identify pro-
cedure B as control dependent on procedure M, on the basis of the existence of the
conditional call to B in M. In this case then, and, we believe, in general, their al-
gorithm for calculating procedure-level control dependences does accommodate the
multiple-context effect—at least for programs that do not contain embedded halts.

The second drawback of Loyall and Mathisen’s algorithm is that it does not
accommodate the embedded-halt effect. Thus, the algorithm can incorrectly iden-
tify control dependences between procedures for programs that contain halts. For
example, in Sum, the second call to B (from node 6a) is control dependent on pred-
icate node 17 due to the embedded halt at node 18; thus, node 10a in B is control
dependent on that predicate node. According to Loyall and Mathisen’s definition
of procedure-level control dependence, B is control dependent on C; similar rea-
soning also shows that by their definition, C is control dependent on C. Loyall and
Mathisen’s algorithm identifies neither of these procedure-level control dependences.

7. CONCLUSIONS AND FUTURE WORK

There are three primary contributions of this paper. First, the paper identifies and
discusses several ways in which control dependences calculated intraprocedurally do
not correctly represent control dependences that exist in programs. Second, the pa-
per presents a precise definition of interprocedural control dependence that supports
the syntactic–semantic relationship. Third, the paper presents two approaches for
computing interprocedural control dependences: one approach computes precise
interprocedural control dependences but may be inordinately expensive; the other
approach efficiently obtains a conservative estimate of those dependences.

Interprocedural control dependences are useful for applications in software test-
ing and maintenance. For example, the partial control dependences computed in
the first phase of our algorithm can be used by an interprocedural slicing algorithm
to account correctly for interprocedural control dependences in programs that con-
tain embedded halts [Harrold and Ci 1998]. For further example, statement-based
interprocedural control dependences computed by our algorithm can be used to
calculate procedure-level dependences [Loyall and Mathisen 1993], which provide a
higher-level view of dependences than statement dependences for use in program
comprehension, debugging, and impact analysis.

Our first approach to computing interprocedural control dependences distin-
guishes each calling context in which a procedure can be invoked, and computes
distinct control dependences for each calling context. To compute such control
dependences, the approach inlines the called procedure at each call site, and con-
structs a representation that can be exponential in the size of the program. Our
study on the effects of such inlining (see Fig. 3) shows that, for some programs, the
resulting representation can be excessively large, which can cause our first approach
to be impractical. However, for other programs, the representation grows by only

34 · S. Sinha et al.

a few factors over the program size; for such programs, our first approach may be
applicable. Future experiments that study not only the effects of procedure inlining
but also evaluate the performance of the traditional control-dependence algorithms
[Bilardi and Pingali 1996; Cytron et al. 1991; Ferrante et al. 1987; Pingali and
Bilardi 1997] on the inlined representations, would help establish the parameters
that determine the feasibility and applicability of our first approach.

Our second approach to computing interprocedural control dependences does not
distinguish the calling contexts in which a procedure can be invoked to compute
control dependences efficiently. For applications, such as computation of procedure-
level control dependence, this loss of context-specific information causes no impre-
cision in analysis results. In future work, we intend to investigate the precision that
is lost in going from the context-based approach to the statement-based approach,
and the effects of the loss of this precision on other analysis techniques.

Embedded halts belong more generally to a class of constructs that cause ar-
bitrary interprocedural transfer of control, which, in practical programs, includes
constructs such as exception handling and interprocedural jumps. Our definition
of interprocedural control dependence applies to programs that contain such con-
structs. Our current work includes an investigation of the effects of such constructs
on interprocedural control dependence computation and on other analysis tech-
niques [Sinha and Harrold 2000; Sinha et al. 1999], with the aim of of generalizing
the results presented in this paper to constructs that cause arbitrary interprocedural
transfer of control.

We believe that our definitions extend to weak control dependence [Podgurski and
Clarke 1990], and thus, can define interprocedural control dependences that preserve
the relationship between weak syntactic dependence and (possibly non-finitely-
demonstrated) semantic dependence demonstrated by Podgurski and Clarke. Fu-
ture work could investigate this extension, and the relationship of these results to
generalized control dependence [Bilardi and Pingali 1996].

ACKNOWLEDGMENTS

This work was supported in part by a grant from Microsoft, Inc., by NSF under
National Young Investigator award CCR-9696157 to Ohio State University, by Na-
tional Science Foundation Faculty Early Career Development Award CCR-9703108
to Oregon State University, by National Science Foundation Award CCR-9707792
to Ohio State University and Oregon State University, by an Ohio State University
Research Foundation Seed Grant, and by funding through the Yamacraw Mission
to Georgia Institute of Technology. Sujatha Sathi and Jim Jones helped with the
development and implementation of ComputePartialCD and ComputeInterCD. The
anonymous reviewers provided useful feedback that improved the paper.

APPENDIX

A. FLOW GRAPHS, INTERPROCEDURAL CONTROL DEPENDENCE, AND THE
SYNTACTIC-SEMANTIC RELATIONSHIP

Podgurski and Clarke [Podgurski and Clarke 1990] define control-flow graphs as
follows:

Interprocedural Control Dependence · 35

A control-flow graph G is a directed graph that satisfies each of the
following conditions:
(1) The maximum out-degree of the nodes is at most two (this restric-

tion is made for simplicity only).
(2) G contains two distinguished nodes: the initial node ne, which has

in-degree zero, and the final node nx, which has out-degree zero.
(3) Every node of G occurs on some ne to nx walk.13

Podgurski and Clarke [Podgurski and Clarke 1990] state that their definition
of control-flow graph, though somewhat restricted to simplify presentation, “can
be used to represent any procedural program . . . by employing straightforward
representation conventions involving the use of dummy vertices and arcs.” However,
as stated, their definition of control-flow graph fails to exclude a class of ICFGs
for which, under the given definitions of postdominance and control dependence,
the syntactic–semantic relationship does not hold. Specifically, consider the set of
programs that contain no unreachable code, and no procedures that are called more
than twice. An ICFG for these programs meets the three conditions for control-
flow graphs stated above. However, when Podgurski and Clarke’s definitions of
postdominance and control dependence are applied to the ICFG for our example
program, the effect described in Section 3.1 as the multiple-context effect results:
nodes 10, 11, 14, and 17, although semantically dependent on node 4, are not
control dependent on node 4, because they do not postdominate either successor of
node 4.

On closer examination of [Podgurski and Clarke 1990], focusing particularly on
the proof of the syntactic–semantic relationship, it is clear that Podgurski and
Clarke require additional properties of control-flow graphs that are not stated in
the definition cited above. The authors define the context14 CON (v ,Wv) of a node
v with respect to an initial walk Wv in a def/use graph Gdu to be a directed tree
that represents the cumulative flow of data to v along W . We refer the reader
to [Podgurski and Clarke 1990] (page 975) for details; however, the idea is that
the context of node v on walk Wv is similar to the set of symbolic values held by
variables in the use set U of the node along walk Wv. Next, the authors define
a hyperwalk to be either an ordinary walk on graph G, or an infinite walk. A
hyperwalk is consistent “if there are no two occurrences of a decision node d in W
that have the same context but are followed by different successors of d.” Because
the context of a node determines the values of the variables in the use set of that
node when a walk to that node is executed, that context determines the branch
taken at that node; thus, an executable hyperwalk must be consistent. Finally, the
authors define a pair of hyperwalks as reciprocally v-consistent if (informally), the
fact that the hyperwalks diverge at a pair of nodes implies that either their contexts
differ at those nodes, or the node v whose interpretation has changed causes the

13The discussion in this section is drawn directly from Reference [Podgurski and Clarke 1990]. For
simplicity of reproducing that discussion, we retain the use of the term “walk” in that discussion
to refer to a path.
14Podgurski and Clarke use the term “context” in a different sense than we do. Our usage pertains
to the sequence of procedure calls that lead up to a particular procedure call. However, to avoid
unnecessary complications in presenting their discussion, we retain their usage of the term.

36 · S. Sinha et al.

difference.
The notions of consistency and reciprocal v-consistency are central to Podgurski

and Clarke’s proof of the syntactic–semantic relationship. However, ICFGs do not
properly support these notions. In ICFGs, exit nodes, like predicate nodes, may
have multiple successors. The direction of control flow from such nodes is not,
however, determined solely by the context of those nodes; instead, it is determined
by the identity of the call node from which the exiting procedure was invoked. An
exit node in an ICFG may occur twice in a hyperwalk, both times with the same
context, but in each case followed by a different successor. Thus, an executable
hyperwalk on an ICFG need not be consistent; and thus, Podgurski and Clarke’s
proof does not apply to ICFGs. In contrast, the IIFG, in which procedures are
inlined, does support the notions of consistency and reciprocal v-consistency, be-
cause it explicitly depicts control flow from exit nodes to their successors, and is
otherwise identical to the flow graphs defined by Podgurski and Clarke. The fact
that IIFGs possess the properties of graphs that allow Podgurski and Clarke to
prove Theorem 1 implies that those proofs apply also to IIFGs.

To state that our definition of the IIFG and of interprocedural control dependence
corrects deficiencies in Podgurski and Clarke’s is unduly strong; their definition
must be intended to exclude ICFGs, and the natural extension of their graphs to
the interprocedural context is to the IIFG. Thus, it is more appropriate to say
that our definitions clarify, rather than correct, Podgurski and Clarke’s definitions
of control dependence, and the application of those definitions to interprocedural
control dependence.

B. PROOF OF CORRECTNESS OF OUR ALGORITHM FOR COMPUTING STATEMENT-
BASED INTERPROCEDURAL CONTROL DEPENDENCES

Our algorithm computes statement-based interprocedural control dependences by
summarizing for each statement, the control dependences that exist in different
contexts for that statement in the IIFG. To demonstrate the correctness of our
algorithm, we show that our algorithm computes the same statement-based control
dependences as are computed by an alternative approach that constructs an IIFG,
applies a traditional algorithm for control-dependence computation to the IIFG,
and summarizes the control dependences for each statement using the NodeSet
relations. We present here only an outline of the proof; further details of the proof
can be found in Reference [Sinha et al. 2000].

The overall structure of the proof is as follows. First, we classify paths in the
IIFG. Next, we characterize paths in the ICDG that are traversed by the algorithm.
Finally, we show by cases that (1) if a control-dependence relation occurs along a
certain type of path in the IIFG, there exists a corresponding path in the ICDG that
is traversed by the algorithm, and (2) if the algorithm traverses a certain type of
path in the ICDG, there exists a control-dependence relation along a corresponding
type of path in the IIFG.

We classify IIFG paths based on sequences of call and return edges that appear
in the paths; previous work [Melski and Reps 1998] defined such paths in the
ICFG. A path in the IIFG is a same-level path if each call edge in the path is
matched with a return edge. A same-level path represents an execution sequence
that begins and ends in the same CFG; the depth of the call stack is the same

Interprocedural Control Dependence · 37

at the beginning and the end of such a path. A path is an unbalanced-left path
if it contains at least one call edge that is not matched by a return edge. An
unbalanced-left path represents an execution sequence in which some procedure
calls have not completed; the call stack is deeper at the end of such a path than
at the beginning. A path is an unbalanced-right path if it contains at least one
return edge that is not preceded by a matching call edge. An unbalanced-right
path represents an execution sequence in which some procedure calls complete such
that the sequence that led to the invocations of those procedures is not part of the
path; the call stack is thus shallower at the end of an unbalanced-right path than
at the beginning. Finally, a path is an unbalanced-right-left path if it contains an
unbalanced-right subpath followed by an unbalanced-left subpath.

It follows from the definition of an IIFG that each path in an IIFG is a same-level
path, an unbalanced-left path, an unbalanced-right path, or an unbalanced-right-
left path. Moreover, as the following lemma shows, each path between two nodes
in an IIFG is of the same type.

Lemma 1. Let GI be an IIFG, and let u and v be nodes in GI . Let ψ
u

+→v
be the

set of paths from u to v. Then, each ψ ∈ ψ
u

+→v
is of the same type.

Proof. The proof considers each of the four types of paths that any ψ ∈ ψ
u

+→v
can be, and shows that all other paths in ψ

u
+→v

must also be of that type. The
proof uses the properties of the IIFG that (1) in an IIFG, a different copy of the
CFG is inlined at each call site, and (2) an IIFG contains no interprocedural cycles
that are caused by recursion [Sinha et al. 2000].

Next, we characterize paths in the ICDG that are traversed by ComputeInterCD.
A placeholder segment in an ICDG is a path (X,P,N), where edge (X,P) is a
call or a return edge, and edge (P,N) is a placeholder control-dependence edge.
An entry placeholder segment is a placeholder segment in which (X,P) is a call
edge and P is an entry placeholder. A return placeholder segment is a placeholder
segment in which (X,P) is a return edge and P is a return placeholder. A control-
dependence path in an ICDG is a path Ψ = (P,X1) ·PS 1 ·PS 2 · . . . ·PSm,15 m ≥ 1,
where PS i = (Xi, Pi, Ni), 1 ≤ i ≤ m, is a placeholder segment, and edge (P,X1) is
a predicate control-dependence edge.

A control-dependence path is composed of a control-dependence edge followed by
one or more placeholder segments. Fig. 17 illustrates a control-dependence path in
the ICDG for Sum; the path consists of two return placeholder segments: (19, 10b,
15) and (15, 6b, 8). Like paths in the IIFG, we classify control-dependence paths
according to calls and returns that appear along the paths. An unbalanced-left
control-dependence path contains one or more unmatched call edges; each place-
holder segment in such a path is an entry placeholder segment. An unbalanced-
right control-dependence path contains one or more unmatched return edges; each
placeholder segment in such a path is a return placeholder segment. An unbalanced-
right-left control-dependence path is an unbalanced-right control-dependence path
followed by one or more entry placeholder segments. For example, the path shown

15The notation ψ1 ·ψ2 represents a concatenation of paths ψ1 and ψ2, where the last node in path
ψ1 is the same as the first node in path ψ2.

38 · S. Sinha et al.

3. sum = 0

1. enter M

4. while i < 10 do

5a. call B

7. print sum

6a. call B

control dependence on predicate

control dependence on placeholder

interprocedural control flow
18. halt

2. read i,j

12. sum = sum + j

5b. return B

T
T

T

T

T T

T F

9. enter B

T

11. if j >= 0 then

13. read j

TT

10b. return C

15. exit B

14. i = i + 1

T

T
T

10a. call C

16. enter C

17. if sum > 100 then

T

T F

6b. return B

8. exit M

19. exit C

Fig. 17. An unbalanced-right control-dependence path in the ICDG for Sum; the path consists of
two return placeholder segments: (19, 10b, 15) and (15, 6b, 8).

in Fig. 17 is an unbalanced-right control-dependence path.
The following lemma shows that ComputeInterCD traverses all and only control-

dependence paths in the ICDG.

Lemma 2. Let GD be an ICDG. There exists a control-dependence path Ψ in GD
if and only if ComputeInterCD traverses Ψ.

Proof. (=⇒) First, the proof states that (1) each control-dependence path
is incident only on a node that is control dependent on a placeholder, and (2)
ComputeInterCD processes each node that is control dependent on a placeholder.
Next, the proof shows that, while processing a node that is control dependent on a
placeholder, ComputeInterCD traverses each control-dependence path incident on
that node.

(⇐=) Each path traversed by ComputeInterCD starts at a node that is control
dependent on a placeholder. Depending on whether the node is control dependent
of an entry or a return placeholder, the proof shows—using the properties of a
control-dependence path—that the path traversed by ComputeInterCD must be an
unbalanced-left, an unbalanced-right, or an unbalanced-right-left path [Sinha et al.
2000].

The next lemma shows that a postdominance relation between two nodes that
belong to the same CFG in an IIFG is preserved in the corresponding ACFG.

Lemma 3. Let GI be an IIFG and let u and v be nodes in CFG Gi in GI . Let GA

be the ACFG that corresponds to Gi, and let U and V be the nodes in GA that cor-
respond to u and v, respectively. U postdominates V if and only if u postdominates
v.

Proof. (⇐=) Suppose that u postdominates v. Show that U postdominates V .
The proof uses contraposition: it assumes that U does not postdominate V , and
shows that this causes u to not postdominate v. If U does not postdominate V ,

Interprocedural Control Dependence · 39

there exists a V –Nsx path Ψ = (V,N1, N2, . . . , Nj , Nsx) in GA such that U does
not appear in the path. The proof considers two cases for Ψ—whether Ψ contains
a node that represents a call site—and shows that, in each case, there exists a path
in GI from v to the exit node of GI that does not contain u [Sinha et al. 2000].

(=⇒) The proof again shows that the contrapositive of the implication is true:
it assumes that u does not postdominate v, and shows that this causes U to not
postdominate V . Because u does not postdominate v, there exists a path ψ from
v to the exit node of GI that does not contain u. The proof considers three cases
for ψ—(1) ψ contains no call site, (2) ψ contains a definitely returning call site, or
(3) ψ contains a PNRC—and shows that, in each case, there exists a V –Nsx path
Ψ in GA that does not contain U [Sinha et al. 2000].

Lemma 4. Let GI be the IIFG for program P. Let u and v be nodes in GI . Let
ψ
v

+→u
be the set of paths from v to u such that each path ψ ∈ ψ

v
+→u

is a same-level
path. Let GD be the ICDG for P. Let U and V be the nodes in GD that correspond
to u and v, respectively. Then, u is control dependent on v if and only if there
exists an edge from V to U in GD.

Proof. Because each ψ is a same-level path, u and v belong in the same CFG
Gi in GI . Let GA be the ACFG for Gi. Then, according to Lemma 3, the post-
dominance relation between any two nodes in Gi is equivalent to a postdominance
relation between the corresponding nodes in GA. Moreover, as a consequence of
Lemma 3, a node belonging to Gi does not postdominate another node belonging
to Gi if and only if the corresponding nodes in GA have the same relation. Then,
it is easy to show that u is control dependent on v if and only if U is control depen-
dent on V (or equivalently, there exists an edge from V to U in GD) [Sinha et al.
2000].

Lemma 5. Let GI be the IIFG for program P. Let u and v be nodes in GI . Let
ψ
v

+→u
be the set of paths from v to u. Let GD be the ICDG for P. Let U and V be

the nodes in GD that correspond to u and v, respectively.

(1) Let each path ψ ∈ ψ
v

+→u
be an unbalanced-right path. Then, u is control de-

pendent on v if and only if there exists an unbalanced-right control-dependence
path Ψ in GD from V to U .

(2) Let each path ψ ∈ ψ
v

+→u
be an unbalanced-left path. Then, u is control de-

pendent on v if and only if there exists an unbalanced-left control-dependence
path Ψ in GD from V to U .

(3) Let each path ψ ∈ ψ
v

+→u
be an unbalanced-right-left path. Then, u is con-

trol dependent on v if and only if there exists an unbalanced-right-left control-
dependence path Ψ in GD from V to U .

Proof. (1) (=⇒) Suppose that u is control dependent on v. Show that there
exists path Ψ in GD. The proof shows, by induction on the number of unmatched
returns in ψ, that there exists a corresponding path Ψ in GD.

For brevity, we outline only the basis step of the proof.
Basis step. Each ψ ∈ ψ

v
+→u

contains a single unmatched return. Let x and r be

40 · S. Sinha et al.

the exit node and the return node, in Gv and Gu respectively, that are the source
and the target of the unmatched return edge. Let X and R be the corresponding
ICDG nodes.

The proof for the basis step proceeds as follows. (1) First, the proof shows that
x is control dependent on v. Then, because X and V belong in the same ACFG,
according to Lemma 4, X is control dependent on V . Thus, GD contains an edge
(V,X). (2) Next, the proof shows that there exists an edge (R,U) in GD; this
follows from Lemma 3 and the construction of the ACFG. (3) Finally, the proof
shows that there exists a return edge (X,R) in GD. Then, concatenating edges
(V,X), (X,R), and (R,U) yields the unbalanced-right control-dependence path Ψ.

In the inductive hypothesis, the proof assumes that if ψ contains k unmatched
returns, there exists a corresponding unbalanced-right control-dependence path in
GD from V to U . Finally, in the inductive step, the proof shows that if the number of
unmatched returns increases by one, there still exists a corresponding unbalanced-
right control-dependence path in GD [Sinha et al. 2000].

(1) (⇐=) Suppose that there exists an unbalanced-right control-dependence path
Ψ from node V to node U in GD. Show that u is control dependent on v in GI .

In this case, the proof uses induction on the number of return placeholder seg-
ments in Ψ [Sinha et al. 2000].

(2), (3) The proof proceeds in a similar manner; see Reference [Sinha et al. 2000]
for details.

The proof of Theorem 4 follows directly from the preceding lemmas. For a
given control-dependence relation, u control dependent on v, in the IIFG, Lemma
1 establishes the types that the paths from v to u can be. The proof considers each
of these types, and shows that, in each case, there exists either a corresponding
control-dependence edge (Lemma 4) or a corresponding control-dependence path
(Lemma 5) in the ICDG, and that the algorithm traverses this edge or path [Sinha
et al. 2000].

For a given control-dependence relation, U control dependent on V , computed
by the algorithm, either the relation is computed by ComputePartialCD (and
ComputeInterCD receives that relation as an input) or by ComputeInterCD along a
control-dependence path (Lemma 2). Then, using the results of Lemmas 4 and 5,
the proof shows that there must exist a corresponding control-dependence relation
in the IIFG [Sinha et al. 2000].

REFERENCES

Atkinson, D. C. and Griswold, W. G. 1996. The design of whole-program analysis tools.
In Proceedings of the 18th International Conference on Software Engineering (March 1996),
pp. 16–27.

Ballance, R. and Maccabe, B. 1992. Program dependence graphs for the rest of us.
Technical Report 92-10 (Nov.), University of New Mexico.

Bilardi, G. and Pingali, K. 1996. A framework for generalized control dependence. In
Proceedings of the ACM SIGPLAN ’96 Conference on Programming Language Design and
Implementation (May 1996), pp. 291–300.

Binkley, D. 1992. Using semantic differencing to reduce the cost of regression testing. In
Proceedings of the 1992 Conference on Software Maintenance (Nov. 1992), pp. 41–50.

Cooper, K. D. and Kennedy, K. 1988. Interprocedural side-effect analysis in linear time.
In Proceedings of the SIGPLAN ’88 Conference on Programming Language Design and

Interprocedural Control Dependence · 41

Implementation (June 1988), pp. 57–66.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. 1991.
Efficiently computing static single assignment form and the control dependence graph.
ACM Trans. on Programm. Lang. Syst. 13, 4 (Oct.), 450–90.

Emami, M., Ghiya, R., and Hendren, L. J. 1994. Context-sensitive interprocedural points-
to analysis in the presence of function pointers. In Proceedings of the ACM SIGPLAN ’94
Conference on Programming Language Design and Implementation (June 1994), pp. 242–
256.

Ferrante, J., Ottenstein, K. J., and Warren, J. D. 1987. The program dependence
graph and its use in optimization. ACM Trans. on Programm. Lang. Syst. 9, 3 (July),
319–349.

Harrold, M. J. and Ci, N. 1998. Reuse-driven interprocedural slicing. In Proceedings of
the 20th International Conference on Software Engineering (April 1998), pp. 74–83.

Harrold, M. J. and Rothermel, G. 1996. Syntax-directed construction of program de-
pendence graphs. Technical Report OSU-CISRC-5/96-TR32 (May), The Ohio State Uni-
versity.

Harrold, M. J. and Rothermel, G. 1997. Aristotle: A system for research on and
development of program-analysis-based tools. Technical Report OSU-CISRC-3/97-TR17
(March), The Ohio State University.

Harrold, M. J., Rothermel, G., and Sinha, S. 1998. Computation of interprocedural
control dependence. In Proceedings of the ACM SIGSOFT International Symposium on
Software Testing and Analysis (March 1998), pp. 11–20.

Harrold, M. J. and Soffa, M. L. 1994. Efficient computation of interprocedural
definition-use chains. ACM Trans. on Programm. Lang. Syst. 16, 2 (March), 175–204.

Horwitz, S., Prins, J., and Reps, T. 1989. Integrating noninterfering versions of pro-
grams. ACM Trans. on Programm. Lang. Syst. 11, 3 (July), 345–387.

Hutchins, M., Foster, H., Goradia, T., and Ostrand, T. 1994. Experiments on the
effectiveness of dataflow- and controlflow-based test adequacy criteria. In Proceedings of
the 16th International Conference on Software Engineering (May 1994), pp. 191–200.

Landi, W. and Ryder, B. G. 1992. A safe approximate algorithm for interprocedural
pointer aliasing. In Proceedings of the SIGPLAN ’92 Conference on Programming Language
Design and Implementation (June 1992), pp. 235–248.

Loyall, J. P. and Mathisen, S. A. 1993. Using dependence analysis to support the soft-
ware maintenance process. In Proceedings of the Conference on Software Maintenance
(Sept. 1993), pp. 282–291.

Melski, D. and Reps, T. 1998. Interprocedural path profiling. Technical Report TR-1382
(Sept.), Computer Sciences Department, University of Wisconsin.

Murphy, G. C. and Notkin, D. 1996. Lightweight lexical source model extraction. ACM
Trans. on Programm. Lang. Syst. 5, 3 (July), 262–292.

Pande, H., Landi, W., and Ryder, B. G. 1994. Interprocedural def-use associations in C
programs. IEEE Trans. Softw. Eng. 20, 5 (May), 385–403.

Pingali, K. and Bilardi, G. 1997. Optimal control dependence computation and the Ro-
man chariots problem. ACM Trans. on Programm. Lang. Syst. 19, 3 (May), 462–491.

Podgurski, A. 1989. The significance of program dependences for software testing, debug-
ging, and maintenance. Ph. D. thesis, University of Massachusetts.

Podgurski, A. and Clarke, L. A. 1990. A formal model of program dependences and
its implications for software testing, debugging, and maintenance. IEEE Trans. Softw.
Eng. 16, 9 (Sept.), 965–979.

Pollock, L. L. and Soffa, M. L. 1989. An incremental version of iterative data flow
analysis. IEEE Trans. Softw. Eng. 15, 12 (Dec.), 1537–1549.

Reps, T., Horwitz, S., and Sagiv, M. 1995. Precise interprocedural dataflow analysis via
graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Jan. 1995), pp. 49–61.

42 · S. Sinha et al.

Rothermel, G. and Harrold, M. J. 1997. A safe, efficient regression test selection tech-

nique. ACM Transactions on Software Engineering and Methodology 6, 2 (April), 173–210.

Ryder, B. G. and Paull, M. C. 1988. Incremental data flow analysis algorithms. ACM
Trans. on Programm. Lang. Syst. 10, 1 (Jan.), 1–50.

Sharir, M. and Pnueli, A. 1981. Two approaches to interprocedural data flow analysis. In
S. S. Muchnick and N. D. Jones Eds., Program Flow Analysis: Theory and Applications,
pp. 189–233. Englewood Cliffs, NJ: Prentice-Hall.

Sinha, S. and Harrold, M. J. 2000. Analysis and testing of programs with exception-
handling constructs. IEEE Trans. Softw. Eng. 26, 9 (Sept.), 849–871.

Sinha, S., Harrold, M. J., and Rothermel, G. 1999. System-dependence-graph-based
slicing of programs with arbitrary interprocedural control flow. In Proceedings of the 21st
International Conference on Software Engineering (May 1999), pp. 432–441.

Sinha, S., Harrold, M. J., and Rothermel, G. 2000. Interprocedural control depen-
dence. Technical Report GIT-CC-00-17 (June), College of Computing, Georgia Institute of
Technology.

