CS 6340
Software Analysis and Testing

Mary Jean Harrold

Aristotle Research Group
SPARC/CERCS

College of Computing
Georgia Tech

Class 1

Introductions; Student Information

Details (syllabus, etc.)
* Shown on T-Square (https://t-square.gatech.edu)

Basic Analyses (1): intermediate
representations, control-flow analysis,

Assign
* Basic Analyses (1): Be familiar with concepts

* Representation and Analysis of Software
(Sections 1-5) (Schedule has link)

* Problem Set 1 (Schedule has link): due 8/25/09

Course Overview, Syllabus

* Motivation for studying program analysis and testing
* Course objectives
* Learn traditional, promising analyses
¢ Learn traditional, new applications
* Explore research areas in analysis, use of artifacts
* Apply analyses and applications through homework, semester
project
* Means for approaching course objectives
¢ Class lectures, readings, homework, class presentations

* Semester project (proposal, oral, written report)
* Exams

Course Overview, Syllabus

* Your responsibilities
* Arrive on time, attend all classes
* Prepare (read papers before class), participate in class

* Submit homework, projects, etc. at the beginning of class on the
due date

* Course evaluation
* Homework: 30%
* Semester project (proposal, written, oral): 30%
¢ Exams: 30%
¢ Class participation: 10%
* Prerequisites
e CS 4240, graduate-level standing, permission of instructor

Overview of Course

» Static analyses (computed without execution)
¢ Intraprocedural (within a single procedure)
* AST, control-flow, control-dependence, data-flow, etc.
¢ Complicating factors
* Interprocedural (across procedure boundaries), recursion
* Pointers, references, polymorphism, dynamic binding, etc.
* Slicing, analysis by reachability, demand analysis
¢ Applications
* Dynamic analyses (computed by execution)
* Instrumentation, profiling
* Dynamic versions of control-flow, etc.
* Applications such as testing, debugging,

* Combinations of static and dynamic analyses

Overview of Course

» Static analyses (computed without execution)
¢ Intraprocedural (within a single procedure)
* AST, control-flow, control-dependence, data-flow, etc.
¢ Complicating factors
¢ Interprocedural (across procedure boundaries), recursion
* Pointers, references, polymorphism, dynamic binding, etc.
* Slicing, analysis by reachability, demand analysis
¢ Applications
* Dynamic analyses (computed by execution)
¢ Instrumentation, profiling
¢ Dynamic versions of control-flow, etc.
¢ Applications such as testing, debugging,

* Combinations of static and dynamic analyses

Intermediate Representations

Intermediate Representations (traditional)

Source program

(stream of char.) >

Lexical
analyzer

Tokens
— | Parser

Intermediate
representation

Code generation,
optimization

Target
code

Intermediate Representations (traditional)

Source program Lexical | Tokens
> — | Parser

(stream of char.) | analyzer

e Syntax tree, other lower-level
intermediate language

« Little information on what the
program does

=» Further analysis—e.g., _,/ode generation,

e Control-flow analysis: flow of
control within procedures

Intermediate
representation

optimization

« Data-flow analysis: global
information on data manipulation
« Use for optimization and software
engineering tasks

Target
code

10

Intermediate Representations (traditional)

Source program Lexical | Tokens

(stream of char) | analyzer

> — | Parser

Intermediate
representation

Code generation,

optimization

Where does Java Bytecode
fit in this process?

Target

code

1

Abstract Syntax Tree (AST)

e Concrete versus abstract syntax
* Concrete shows structure and is language-specific
* Abstract shows structure

* Representations
* Parse tree represents concrete syntax
* Abstract syntax tree represents abstract syntax

12

Example: Grammar

Examples
1. a=b+c Grammar for 1
2. a=b+cg; » stmtlist = stmt | stmt stmtlist

e stmt - assign | if-then | ...
e assign = ident “:=" ident binop ident
e hinop 2> “+"|“-"| ...

Grammar for 2
e stmtlist > stmt *;” | stmt”;” stmtlist
e stmt - assign | if-then | ...
e assign - ident “=" ident binop ident
e binop 2> “+"|“-"| ...

13

Example: Parse tree and AST

e Example:a:=b +c;

e Grammar
e stmtlist -> stmt “;” | stmt “;” stmtlist
stmt -> assign | if-then | ...

assign -> ident “:=" ident binop ident
binop _> II+H | u_n
Parse tree stmtlist AST
stmt]
assign
a35|gn / \.
\ a.dd
|dent |dent binop ident / \
l | b b c
a b + c 14

Three Address Code

* General form: x:=yopz
* May include temporary variables (intermediate values)

* Types (examples; rest in handout)
¢ Assignment
* Binary x:=yopz
e Unary x:=opy
e Copy x:=y
e Jumps
* Unconditional goto L
* Conditional if x relop y goto L

15

Example: Three Address Code

Source code Corresponding 3-address
code
if a> 10 then e ifa>10goto 4
X=y+z * XZy-z
else e goto5
X=y-—2z * X=y+z

16

Analysis Levels

* Local: within a single basic block or statement

e Global, Intraprocedural: within a single procedure,
function, or method (sometimes, intramethod)

* Interprocedural: across procedure boundaries,
procedure call, shared globals, etc.

e Intraclass: within a single class
* Interclass: across class boundaries
* Intramodule: within a single module

17

Control-flow Analysis

18

Computing Control Flow

Procedure AVG

S1 count=0

S2 fread(fptr, n)

S3 while (not EOF) do

S4 if(n<0)
S5 return (error)
else
S6 nums[count] =n
S7 count ++
endif
S8 fread(fptr, n)
endwhile

S9 avg = mean(hums,count)
S10 return(avg)

19

Computing Control Flow

Procedure AVG

S1
S2
S3
S4
S5

S6
S7

S8

S9

count=0
fread(fptr, n)
while (not EOF) do
if (n<0)
return (error)
else
nums[count] =n
count ++
endif
fread(fptr, n)

endwhile

avg = mean(nums,count)

S10 return(avg)

Control flow is a relation (i.e., set
of ordered pairs)
* that represents the possible
flow of execution in a program
* (a, b) in the relation means that
control can flow from node a to
node b during execution.

20

Computing Control Flow

Procedure AVG

S1
S2
S3
S4
S5

S6
S7

S8

S9

count=0
fread(fptr, n)
while (not EOF) do
if (n<0)
return (error)
else
nums[count] =n
count ++
endif
fread(fptr, n)

endwhile

avg = mean(nums,count)

S10 return(avg)

Control flow is a relation (i.e., set
of ordered pairs)
* that represents the possible
flow of execution in a program
* (a, b) in the relation means that
control can flow from node a to
node b during execution.

What is the control-flow
relation for Procedure AVG?

21

Computing Control Flow

Control flow is a relation (i.e., set

Procedure AVG of ordered pairs)
S1 count=0 * that represents the possible
S2 fread(fptr, n) flow of execution in a program
S3 while (not EOF) do * (a, b) in the relation means that
S4 if(n<0) control can flow from node a to
S5 return (error) node b during execution.
else

S6 numsfcount] =n {(entry,S1),(S1,52), (S2,S3),
ST aount (S3,S4), (S3,S9), (S4,S5),
s8 fread(fptr, n) (S5,exit), (S4,S6), (S6,S7),

endwhile Y (S7,88), (S8,S3), (S9,S10),
S9 avg = mean(nums,count) (S10,exit)}

S10 return(avg)

What is the control-flow
relation for Procedure AVG?

22
Computing Control Flow
Control-flow Graph (CFG) is a

Procedure AVG way to represent the control-
S1 count=0 flow relation:
S2 fread(fptr, n) * nodes represent elements in
S3 while (not EOF) do pairs (A,B)
S4 if(n<0) * edges represent the relation
S5 return (error) between A and B

else * labels represent the conditions
S6 nums[count] =n that cause that branch to be
S7 count ++ executed

endif « entry and exit nodes added
S8 fread(fptr, n)

endwhile

S9 avg = mean(hums,count)
S10 return(avg)

23

Computing Control Flow

Procedure AVG

S1 count=0

S2 fread(fptr, n)

S3 while (not EOF) do

S4 if (n<0)
S5 return (error)
else
S6 nums[count] =n
S7 count ++
endif
S8 fread(fptr, n)
endwhile

S9 avg = mean(nums,count)
S10 return(avg)

Control-flow Graph (CFG) is a
way to represent the control-
flow relation:

* nodes represent elements in
pairs (A,B)

* edges represent the relation
between A and B

* labels represent the conditions
that cause that branch to be
executed

* entry and exit nodes added

W

hat is the control-flow graph
for Procedure AVG?

24

Computing Control Flow

Procedure AVG

S1 count=0

S2 fread(fptr, n)

S3 while (not EOF) do

S4 if(n<0)
S5 return (error)
else
S6 nums[count] =n
S7 count ++
endif
S8 fread(fptr, n)
endwhile

S9 avg = mean(hums,count)
S10 return(avg)

[entry}—— S1 |

S10 exit

25

Control Flow: Basic Blocks

» A basic block is a sequence of consecutive statements in which flow
of control enters at the beginning and leaves at the end without halt
or possibility of branch except at the end

» A basic block may or may not be maximal
» For compiler optimizations, maximal basic blocks are desirable

» For software engineering tasks, basic blocks that represent one
source code statement are often used

26

CFG with Maximal Basic Blocks

Procedure AVG entry] s1 |

S1 count=0
S2 fread(fptr, n)
S3 while (not EOF) do
S4 if(n<0)
S5 return (error)
else
S6 nums[count] = n
S7 count ++
endif
S8 fread(fptr, n)
endwhile
S9 avg = mean(nums,count)
S10 return(avg)

blocks for Procedure AVG? [510] exit |

What are the maximal basic

27

CFG with Maximal Basic Blocks

1
Procedure AVG :l entry| s1 |
1

S1 count=0
S2 fread(fptr, n) 1
S3 while (not EOF) do
S4 if(n<0)
S5 return (error)

else
S6 nums[count] =n
S7 count ++

endif
S8 fread(fptr, n)

endwhile

S9 avg = mean(nums,count)
S10 return(avg)

{59
'[520 J+—{exit |

[mp——

28

Computing Control Flow: Algorithm

e Input: alist of program statements in some form
e Output: A list of control-flow graph (CFG) nodes and edges
* Method:
”?
« Construct basic blocks How*

« Create entry and exit nodes; create edge (entry, B1); create (Bk, exit) for each
Bk that represents an exit from program

« Add CFG edge from Bi to Bj if Bj can immediately follow Bi in some execution,
i.e.,

How do we determine this?

« Label edges that represent conditional transfers of control

31

Computing Control Flow: Algorithm

e Input: alist of program statements in some form
e Output: A list of control-flow graph (CFG) nodes and edges
* Method:

¢ Construct basic blocks

« Create entry and exit nodes; create edge (entry, B1); create (Bk, exit) for each
Bk that represents an exit from program

« Add CFG edge from Bi to Bj if Bj can immediately follow Bi in some execution,
ie.,

« There is conditional or unconditional goto from last statement of Bi to first statement of
Bj or

« Bjimmediately follows Bi in the order of the program and Bi does not end in an
unconditional goto statement

« Label edges that represent conditional transfers of control

What is the complexity of the algorithm, given n
statements in the program?

32

Control Flow Analysis: Terminology

e CFG = <N, E>, rooted directed graph
* N = set of nodes
* E < N x N = set of edges, some labeled
* entry € N, exit e N
» Successors/predecessors of a basic block
* Branch node is a node with two or more
outgoing edges

Join node is a node with two or more outgoing
edges

33

Applications of Control Flow

* Program understanding 1
» program structure and flow is explicit 2/ \3

« Complexity %
« Cyclomatic (McCabe's) 4—»“/5
e Computed in several ways: \ 6 \
» Edges — nodes +2 8 \

* Number of regions in CFG /
* Number of decision statements + 1 (if structured)

* Indication of number of test case needed,;
indication of difficulty of maintaining

35

Applications of Control Flow

e Testing: branch, path, basis path

* Branch: musttest 122, 1> 3, 45, 1
48,526, 5>7 O\
* Path: infinite number because of loop 2 /3

» Basis path: set of paths such thateach 4~< .5
path executes at least one more edge \ e
(cyclomatic complexity gives max
necessary); example: 1,2,4,8; 8
1,3,4,5,6,7,4,8

36

Search and Ordering

37
Some Useful Concepts

* Depth-First Search (DFS): Visits descendants before visiting
siblings

« Depth-first spanning tree: All nodes, only edges traversed in the
DFS

« Depth-first presentation: spanning tree + remaining edges
(marked)

« Forward edges: node - direct descendant in the tree
« Back edges: node - ancestor in the tree
« Cross edges: node - neither ancestor nor descendant in the tree

38

Some Useful Concepts

e Depth-First Search (DFS): Visits descendants before visiting

siblings

e Depth-first spanning tree: All nodes, only edges traversed in the
DFS

e Depth-first presentation: spanning tree + remaining edges
(marked)

« Forward edges: node - direct descendant in the tree
« Back edges: node - ancestor in the tree
« Cross edges: node - neither ancestor nor descendant in the tree

S0 | :
What are some depth-first
S1 spanr_nng trees and presentations
for this CFG?
[s2 | | s3]
40
Some Useful Concepts
* Depth-First Search (DFS): Visits descendants before visiting
siblings
« Depth-first spanning tree: All nodes, only edges traversed in the
DFS
« Depth-first presentation: spanning tree + remaining edges
(marked)
« Forward edges: node - direct descendant in the tree
« Back edges: node - ancestor in the tree
« Cross edges: node - neither ancestor nor descendant in the tree
SO SO |- SO
31 S1 Forward [S3 Je-----{ 51|

Search and Ordering (depth-first)

CFG

\@/ﬁ\—H

AN ‘/m\{ /“\‘

Show one depth-first
presentation for the CFG?

[

10

43

Search and Ordering (depth-first)

CFG

\Q/BYH

SN /“\\

[{e]

o0 +—
=
o

One DFS of CFG is
12>32>4->6>7->8->10, back to 8, 29,
backto 8, 7, 6, 4, 5, backto 4, 1, 3,
22, backto 1l

Depth-first ordering of nodes is the
reverse of the order in which nodes are
visited in the DFS

For the DFS, nodes are visited
13,46,78108938764541321
Depth-first ordering is
1,2,3,4,5,6,7,8,9,10

44

Search and Ordering (depth-first)

CFG

WaN
N/ u\

|
N
P o

Depth-first presentation

BT
........... e
6/\5:
R preca
I
PN
10 Q) o

— Advancing
- Retreating

Cross
46

Search and Ordering (depth-first)

Given a dep.th-flrst Depth-first presentation
presentation of a e,
CFG, the depth of the o <
CFG is the greatest i 7 ? 2
number of retreating I 74 |
edges on any cycle- | 6 \5§
free path 7// |

s

What is the depth |

of this CFG, given 10/ ~ o

this presentation? — Advancing

T Retreating
—_~ __cross

47

Search and Ordering (depth-first)

Given a depth-first Depth-first presentation

presentation of a
CFG, the depth of the oo Ny ;
CFG is the greatest L ?47 2
number of retreating oo 74\ |

edges on any cycle-

: 6 5
free path ’
° T yar

There is a path

10>7>4->3 with I |

three retreating 1'0‘/ ~ 9

edges; thus the depth —~ Advancing

of the CFG is 3 "> Retreating
__~ Ccross

48

Search and Ordering (depth-first)

— 1 CFG For Thursday:
7~ \
Is there a depth-first
\3/ presentation with depth
111] greater than 3?
5/ N ;
NS
7
|
8
— 9/ ~ 10

49

Some Useful Concepts

+ Preorder traversal (reverse postorder): Traversal of the depth-
first spanning tree in which each node is processed before its
descendants

« Postorder traversal: Traversal of the depth-first spanning tree in
which each node is processed after its descendants

¢ Breadth-First Search (BFS): All of a node’s immediate
descendants are processed before any of their unprocessed
descendants

» Breadth-first order: Order imposed by a BFS

Search and ordering algorithms are review, and you are expected
to know them.

50

Dominance and Postdominance

51

Dominators, Postdominators

Given a CFG with nodes D and N, D dominates N
if every path from the initial node to N goes
through D

Properties of dominance
1. Every node dominates itself
2. Initial node dominates all others

52

Dominators, Postdominators (example)

E— CFG
2/\ Node Dominates
1
\3/ :
] :
— 4 2
N -
5 6
NS 6
7l 7
8 J 8
— 9/ ~ 10 io

53

Dominators, Postdominators (example)

‘/m\{ RN

CFG

D

‘\o/u\

7
!

Node

Dominates

8

What are the dominators
for nodes in the CFG?

O|o(N|O|O|R|W|IN|F

[En
o

54

Dominators, Postdominators (example)

CFG

\@/BYH

SN /“\\

Node

Dominates

12,..,10

2

34,...,10

45,...,10

5

6

7,8,9,10

OO (N[O |D|W|IN|F

8,9,10

|—/th

10

=
o

10

55

Dominators, Postdominators
(dominator properties)

CEG a dom b iff
1 e a=bor
RN « ais the unique immediate
2 3 predecessor of b or

\‘4‘// 5 e b has more than one

S predecessor and for all
6 immediate predecessors
8 ~ c of b, a dominates c

dom is reflexive, transitive,
and antisymmetric

56

Dominators, Postdominators
(dominator properties)

CEG a dom b iff
1 e a=bor
2/ \3 * ais the unique immediate
predecessor of b or
\‘4‘/_,/5 * b has more than one
. predecessor and for all
6\ immediate predecessors
8 — c of b, a dominates c

dom is reflexive, transitive,
and antisymmetric

What these properties
mean for the dom relation?

57

Dominators, Postdominators
(dominator algorithm)

CFG |ntuition for algorithm
l * Nis set of nodes in CFG with En, Ex
* initialize domin(En) to {En}, change to false
/ \ * Initialize domin(n) to N for all n I= En
2 3 iterate over all n (except En) until no
\ “//— change in domin sets
4~ 5 e assignNtoT
/ « compute domin(n) by first taking the
intersection of T and domin(p), forall p, a
predecessor of n

\‘ ¢ thenadd nto T (this is new domin(n))
e If T I= domin(n), a change has occurred
Ex ¢ assign T to domin(n)
« change is true

58
Dominators, Postdominators
(dominator algorithm)
En CFG |ntuition for algorithm
l * N is set of nodes in CFG with En, Ex
1 « initialize domin(En) to {En}, change to false
/ \ * Initialize domin(n) to N for all n !'= En
2 3 iterate over all n (except En) until no

change in domin sets
Jn Nto T

bute domin(n) by first taking the
section of T and domin(p), forall p, a

For Thursday:

Show iterations of the peessorofn _
algorithm over the nodes in [294" 0 T (this is new domin(n))

. = domin(n), a change has occurred
the CFG until the result ssign T to domin(n)
converges? hange is true

59

Dominators, Postdominators
(dominator tree)

e |n a dominator tree
* The initial node n is the root of the CFG

» The parent of a node n is its immediate dominator
(i.e., the last dominator of n on any path); the
immediate dominator for n is unique

60

Dominators, Postdominators
(dominator tree)

1 Dominator
2/\1 CFG 2/ \‘3TreeI
N |
§ :
. VRN
5/ \6 5 6 7
N |
! 8
é 9/\10
—9‘/ \‘10

61

Dominators, Postdominators

Given a CFG with nodes PD and N, PD
postdominates N if every path from N to the
final nodes goes through PD

62

Dominators, Postdominators (example)

CFG
1 Node |Postdominates
2/ \3 1
NS 2
4 5 3
NS 4
6 5
\ 6 2,45
7 7 1,2,..6

63

Dominators, Postdominators
(dominator tree)

* |In a postdominator tree
* The initial node n is the exit node of the CFG

* The parent of a node n is its immediate
postdominator (i.e., the first postdominator of n on
any path); the immediate postdominator for n is
unique

64

Dominators, Postdominators
(dominator tree)

CFG Postdominator
/1\ ; Tree
2 3
4/ \5/ 6/ g \1
. N
6 2 4 5

65

