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Class 1

Introductions; Student Information
Details (syllabus, etc.)

Shown on T-Square (https://t-square.gatech.edu)
Basic Analyses (1):  intermediate 
representations, control-flow analysis, 
Assign

Basic Analyses (1):  Be familiar with concepts
Representation and Analysis of Software       
(Sections 1-5) (Schedule has link)
Problem Set 1 (Schedule has link):  due 8/25/09



3

Course Overview, Syllabus

Motivation for studying program analysis and testing
Course objectives

Learn traditional, promising analyses
Learn traditional, new applications
Explore research areas in analysis, use of artifacts
Apply analyses and applications through homework, semester 
project

Means for approaching course objectives
Class lectures, readings, homework, class presentations
Semester project (proposal, oral, written report)
Exams
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Course Overview, Syllabus

Your responsibilities
Arrive on time, attend all classes
Prepare (read papers before class), participate in class
Submit homework, projects, etc. at the beginning of class on the
due date

Course evaluation
Homework:  30%
Semester project (proposal, written, oral):  30%
Exams:  30%
Class participation:  10%

Prerequisites
CS 4240, graduate-level standing, permission of instructor
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Overview of Course

Static analyses (computed without execution)
Intraprocedural (within a single procedure)

AST, control-flow, control-dependence, data-flow, etc.
Complicating factors

Interprocedural (across procedure boundaries), recursion
Pointers, references, polymorphism, dynamic binding, etc.

Slicing, analysis by reachability, demand analysis
Applications

Dynamic analyses (computed by execution)
Instrumentation, profiling
Dynamic versions of control-flow, etc.
Applications such as testing, debugging,

Combinations of static and dynamic analyses
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Overview of Course

Static analyses (computed without execution)
Intraprocedural (within a single procedure)

AST, control-flow, control-dependence, data-flow, etc.
Complicating factors

Interprocedural (across procedure boundaries), recursion
Pointers, references, polymorphism, dynamic binding, etc.
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Intermediate Representations

9

Intermediate Representations (traditional)

Lexical
analyzer

Source program
(stream of char.)

Code generation,
optimization

Target 
code

Tokens
Parser

Intermediate
representation
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Intermediate Representations (traditional)

Lexical
analyzer

Source program
(stream of char.)

Code generation,
optimization

Target 
code

Tokens
Parser

Intermediate
representation
Intermediate

representation
• Syntax tree, other lower-level

intermediate language
• Little information on what the

program does
Further analysis—e.g.,
• Control-flow analysis: flow of

control within procedures
• Data-flow analysis: global

information on data manipulation
• Use for optimization and software 

engineering tasks
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Intermediate Representations (traditional)

Lexical
analyzer

Source program
(stream of char.)

Code generation,
optimization

Target 
code

Tokens
Parser

Intermediate
representation

Where does Java Bytecode
fit in this process?
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Abstract Syntax Tree (AST)

Concrete versus abstract syntax
Concrete shows structure and is language-specific
Abstract shows structure

Representations
Parse tree represents concrete syntax
Abstract syntax tree represents abstract syntax
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Example:  Grammar

Examples
1. a := b + c 
2. a = b + c; 

Grammar for 1
stmtlist stmt | stmt stmtlist
stmt assign | if-then | …
assign ident “:=“ ident binop ident
binop “+” | “-” | …

Grammar for 2
stmtlist stmt “;” | stmt”;” stmtlist
stmt assign | if-then | …
assign ident “=“ ident binop ident
binop “+” | “-” | …
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Example: Parse tree and AST
• Example: a := b + c;
• Grammar

• stmtlist -> stmt “;” | stmt “;” stmtlist
stmt -> assign | if-then | …
assign -> ident “:=” ident binop ident
binop -> “+” | “-”
…

stmt

stmtlist

ident

assign

a

ident“:=“ binop

cb

ident

“+”

“;”

Parse tree

assign

a add

b c

AST

15

Three Address Code

General form:  x := y op z
May include temporary variables (intermediate values)
Types (examples; rest in handout)

Assignment
Binary   x := y op z 
Unary  x := op y

Copy  x := y 
Jumps 

Unconditional  goto L 
Conditional if x relop y goto L

…
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Example:  Three Address Code

Source code

if a > 10 then
x = y + z

else 
x = y – z

…

Corresponding 3-address 
code

if a > 10 goto 4
x = y – z
goto 5
x = y + z
…
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Analysis Levels

Local: within a single basic block or statement
Global, Intraprocedural: within a single procedure, 
function, or method (sometimes, intramethod)
Interprocedural: across procedure boundaries, 
procedure call, shared globals, etc.
Intraclass: within a single class
Interclass: across class boundaries
Intramodule: within a single module
…
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Control-flow Analysis
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Computing Control Flow

Procedure AVG
S1   count = 0
S2   fread(fptr, n)
S3   while (not EOF) do
S4      if (n < 0)
S5         return (error)

else
S6         nums[count] = n
S7         count ++

endif
S8         fread(fptr, n)

endwhile
S9   avg = mean(nums,count)
S10  return(avg)
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Computing Control Flow

Procedure AVG
S1   count = 0
S2   fread(fptr, n)
S3   while (not EOF) do
S4      if (n < 0)
S5         return (error)

else
S6         nums[count] = n
S7         count ++

endif
S8         fread(fptr, n)

endwhile
S9   avg = mean(nums,count)
S10  return(avg)

Control flow is a relation (i.e., set 
of ordered pairs) 

that represents the possible 
flow of execution in a program
(a, b) in the relation means that 
control can flow from node a to 
node b during execution.
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Computing Control Flow

Procedure AVG
S1   count = 0
S2   fread(fptr, n)
S3   while (not EOF) do
S4      if (n < 0)
S5         return (error)

else
S6         nums[count] = n
S7         count ++

endif
S8         fread(fptr, n)

endwhile
S9   avg = mean(nums,count)
S10  return(avg)

Control flow is a relation (i.e., set 
of ordered pairs) 

that represents the possible 
flow of execution in a program
(a, b) in the relation means that 
control can flow from node a to 
node b during execution.

What is the control-flow 
relation for Procedure AVG?
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Computing Control Flow

Procedure AVG
S1   count = 0
S2   fread(fptr, n)
S3   while (not EOF) do
S4      if (n < 0)
S5         return (error)

else
S6         nums[count] = n
S7         count ++

endif
S8         fread(fptr, n)

endwhile
S9   avg = mean(nums,count)
S10  return(avg)

Control flow is a relation (i.e., set 
of ordered pairs) 

that represents the possible 
flow of execution in a program
(a, b) in the relation means that 
control can flow from node a to 
node b during execution.

{(entry,S1),(S1,S2), (S2,S3), 
(S3,S4), (S3,S9), (S4,S5), 
(S5,exit), (S4,S6), (S6,S7), 
(S7,S8), (S8,S3), (S9,S10), 
(S10,exit)}

What is the control-flow 
relation for Procedure AVG?
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Computing Control Flow

Procedure AVG
S1   count = 0
S2   fread(fptr, n)
S3   while (not EOF) do
S4      if (n < 0)
S5         return (error)

else
S6         nums[count] = n
S7         count ++

endif
S8         fread(fptr, n)

endwhile
S9   avg = mean(nums,count)
S10  return(avg)

Control-flow Graph (CFG) is a 
way to represent the control-
flow relation:  

nodes represent elements in 
pairs (A,B)
edges represent the relation 
between A and B
labels represent the conditions 
that cause that branch to be 
executed
entry and exit nodes added



24

Computing Control Flow

Procedure AVG
S1   count = 0
S2   fread(fptr, n)
S3   while (not EOF) do
S4      if (n < 0)
S5         return (error)

else
S6         nums[count] = n
S7         count ++

endif
S8         fread(fptr, n)

endwhile
S9   avg = mean(nums,count)
S10  return(avg)

Control-flow Graph (CFG) is a 
way to represent the control-
flow relation:  

nodes represent elements in 
pairs (A,B)
edges represent the relation 
between A and B
labels represent the conditions 
that cause that branch to be 
executed
entry and exit nodes added

What is the control-flow graph  
for Procedure AVG?
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Computing Control Flow

Procedure AVG
S1   count = 0
S2   fread(fptr, n)
S3   while (not EOF) do
S4      if (n < 0)
S5         return (error)

else
S6         nums[count] = n
S7         count ++

endif
S8         fread(fptr, n)

endwhile
S9   avg = mean(nums,count)
S10  return(avg)

S1

S2

S3

S4

S5 S6

S7

S8

S9

S10

F

T

F

T

entry

exit
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Control Flow: Basic Blocks

• A basic block is a sequence of consecutive statements in which flow 
of control enters at the beginning and leaves at the end without halt 
or possibility of branch except at the end

• A basic block may or may not be maximal
• For compiler optimizations, maximal basic blocks are desirable
• For software engineering tasks, basic blocks that represent one 

source code statement are often used
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CFG with Maximal Basic Blocks
S1

S2

S3

S4

S5 S6

S7

S8

S9

S10

entry

exit

F

T

F

T

Procedure AVG
S1   count = 0
S2   fread(fptr, n)
S3   while (not EOF) do
S4      if (n < 0)
S5         return (error)

else
S6         nums[count] = n
S7         count ++

endif
S8   fread(fptr, n)

endwhile
S9   avg = mean(nums,count)
S10  return(avg)

What are the maximal basic 
blocks for Procedure AVG?



28

CFG with Maximal Basic Blocks
S1

S2

S3

S4

S5 S6

S7

S8

S9

S10

entry

exit

F

T

F

T

Procedure AVG
S1   count = 0
S2   fread(fptr, n)
S3   while (not EOF) do
S4      if (n < 0)
S5         return (error)

else
S6         nums[count] = n
S7         count ++

endif
S8   fread(fptr, n)

endwhile
S9   avg = mean(nums,count)
S10  return(avg)
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Computing Control Flow: Algorithm

Input:  a list of program statements in some form
Output: A list of control-flow graph (CFG) nodes and edges
Method:

• Construct basic blocks  
• Create entry and exit nodes; create edge (entry, B1); create (Bk, exit) for each 

Bk that represents an exit from program
• Add CFG edge from Bi to Bj if Bj can immediately follow Bi in some execution, 

i.e.,
• There is conditional or unconditional goto from last statement of Bi to first statement of 

Bj or
• Bj immediately follows Bi in the order of the program and Bi does not end in an 

unconditional goto statement
• Label edges that represent conditional transfers of control

How?

How do we determine this?
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Computing Control Flow: Algorithm

Input:  a list of program statements in some form
Output: A list of control-flow graph (CFG) nodes and edges
Method:

• Construct basic blocks  
• Create entry and exit nodes; create edge (entry, B1); create (Bk, exit) for each 

Bk that represents an exit from program
• Add CFG edge from Bi to Bj if Bj can immediately follow Bi in some execution, 

i.e.,
• There is conditional or unconditional goto from last statement of Bi to first statement of 

Bj or
• Bj immediately follows Bi in the order of the program and Bi does not end in an 

unconditional goto statement
• Label edges that represent conditional transfers of control

What is the complexity of the algorithm, given n 
statements in the program?
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Control Flow Analysis: Terminology

CFG = <N, E>, rooted directed graph
N = set of nodes
E ⊆ N x N = set of edges, some labeled
entry ∈ N, exit ∈ N

Successors/predecessors of a basic block
Branch node is a node with two or more 
outgoing edges
Join node is a node with two or more outgoing 
edges
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Applications of Control Flow

• Program understanding 
• program structure and flow is explicit

• Complexity 
• Cyclomatic (McCabe’s)
• Computed in several ways: 

• Edges – nodes +2
• Number of regions in CFG
• Number of decision statements + 1 (if structured)

• Indication of number of test case needed; 
indication of difficulty of maintaining

1

2 3

4 5

6

78
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Applications of Control Flow

• Testing: branch, path, basis path
• Branch: must test 1 2, 1 3, 4 5, 

4 8, 5 6, 5 7
Path: infinite number because of loop

• Basis path:  set of paths such that each 
path executes at least one more edge 
(cyclomatic complexity gives max 
necessary); example: 1,2,4,8; 
1,3,4,5,6,7,4,8

1

2 3

4 5

6

78
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Search and Ordering
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Some Useful Concepts

• Depth-First Search (DFS): Visits descendants before visiting 
siblings

• Depth-first spanning tree: All nodes, only edges traversed in the 
DFS

• Depth-first presentation: spanning tree + remaining edges 
(marked)
• Forward edges: node direct descendant in the tree
• Back edges: node ancestor in the tree
• Cross edges: node neither ancestor nor descendant in the tree
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Some Useful Concepts

• Depth-First Search (DFS): Visits descendants before visiting 
siblings

• Depth-first spanning tree: All nodes, only edges traversed in the 
DFS

• Depth-first presentation: spanning tree + remaining edges 
(marked)
• Forward edges: node direct descendant in the tree
• Back edges: node ancestor in the tree
• Cross edges: node neither ancestor nor descendant in the tree

S1

S3

S0

S2

What are some depth-first 
spanning trees and presentations 
for this CFG?
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Some Useful Concepts

• Depth-First Search (DFS): Visits descendants before visiting 
siblings

• Depth-first spanning tree: All nodes, only edges traversed in the 
DFS

• Depth-first presentation: spanning tree + remaining edges 
(marked)
• Forward edges: node direct descendant in the tree
• Back edges: node ancestor in the tree
• Cross edges: node neither ancestor nor descendant in the tree

S1

S3

S0

S2

S1

S3

S0

S2

Forward S3 S1

S0

S2

Cross
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Search and Ordering (depth-first)  

1

2

3

4

5 6

7

8

9 10

CFG Show one depth-first 
presentation for the CFG?
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Search and Ordering (depth-first)  

• One DFS  of CFG is 
1 3 4 6 7 8 10, back to 8, 9, 
back to 8, 7, 6, 4, 5, back to 4, 1, 3, 

2, back to 1
• Depth-first ordering of nodes is the 

reverse of the order in which nodes are 
visited in the DFS

• For the DFS, nodes are visited 
1,3,4,6,7,8,10,8,9,8,7,6,4,5,4,1,3,2,1

• Depth-first ordering is 
1,2,3,4,5,6,7,8,9,10

1

2

3

4

5 6

7

8

9 10

CFG
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Search and Ordering (depth-first)  

1

2

3

4

5 6

7

8

9 10

CFG

23
4

56
7

8

910

1
Depth-first presentation

Advancing
Retreating
Cross
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Search and Ordering (depth-first)  

Given a depth-first 
presentation of a 
CFG, the depth of the 
CFG is the greatest 
number of retreating 
edges on any cycle-
free path

There is a path 
10 7 4 3 with 
three retreating 
edges; thus  the depth 
of the CFG is 3

23
4

56
7

8

910

1
Depth-first presentation

Advancing
Retreating
Cross

What is the depth 
of this CFG, given 
this presentation?
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Search and Ordering (depth-first)  

Given a depth-first 
presentation of a 
CFG, the depth of the 
CFG is the greatest 
number of retreating 
edges on any cycle-
free path

There is a path 
10 7 4 3 with 
three retreating 
edges; thus  the depth 
of the CFG is 3

23
4

56
7

8

910

1
Depth-first presentation

Advancing
Retreating
Cross
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Search and Ordering (depth-first)  

1

2

3

4

5 6

7

8

9 10

CFG For Thursday:

Is there a depth-first 
presentation with depth
greater than 3?
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Some Useful Concepts

• Preorder traversal (reverse postorder): Traversal of the depth-
first spanning tree in which each node is processed before its 
descendants

• Postorder traversal: Traversal of the depth-first spanning tree in 
which each node is processed after its descendants

• Breadth-First Search (BFS): All of a node’s immediate 
descendants are processed before any of their unprocessed 
descendants

• Breadth-first order: Order imposed by a BFS

Search and ordering algorithms are review, and you are expected 
to know them.   
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Dominance and Postdominance
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Dominators, Postdominators  

Given a CFG with nodes D and N, D dominates N 
if every path from the initial node to N goes 
through D

Properties of dominance
1. Every node dominates itself
2. Initial node dominates all others
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Node Dominates
1
2
3
4
5
6
7
8
9
10

Dominators, Postdominators (example)

1

2

3

4

5 6

7

8

9 10

CFG
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Node Dominates
1
2
3
4
5
6
7
8
9
10

Dominators, Postdominators (example)

1

2

3

4

5 6

7

8

9 10

CFG

What are the dominators 
for nodes in the CFG?

55

Node Dominates
1
2
3
4
5
6
7
8
9
10

Dominators, Postdominators (example)

1

2

3

4

5 6

7

8

9 10

CFG
Node Dominates
1 1,2,…,10
2 2
3 3,4,…,10
4 4,5,…,10
5 5
6 6
7 7,8,9,10
8 8,9,10
9 9
10 10
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Dominators, Postdominators 
(dominator properties)

a dom b iff
• a = b or
• a is the unique immediate 

predecessor of b or
• b has more than one 

predecessor and for all 
immediate predecessors 
c of b, a dominates c

dom is reflexive, transitive, 
and antisymmetric

1

2 3

4

CFG

5

6

78
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Dominators, Postdominators 
(dominator properties)

a dom b iff
• a = b or
• a is the unique immediate 

predecessor of b or
• b has more than one 

predecessor and for all 
immediate predecessors 
c of b, a dominates c

dom is reflexive, transitive, 
and antisymmetric

1

2 3

4

CFG

5

6

78

What these properties 
mean for the dom relation?
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Dominators, Postdominators 
(dominator algorithm)

Intuition for algorithm
• N is set of nodes in CFG with En, Ex
• initialize domin(En) to {En}, change to false
• Initialize domin(n) to N for all n != En
• iterate over all n (except En) until no 

change in domin sets 
• assign N to T
• compute domin(n) by first taking the 

intersection of T and domin(p), forall  p, a 
predecessor of n 

• then add n to T (this is new domin(n))
• If T != domin(n), a change has occurred

• assign T to domin(n)
• change is true

1

2 3

4

CFG

5

6

78

Ex

En
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Dominators, Postdominators 
(dominator algorithm)

1

2 3

4

CFG

5

6

78

Ex

En Intuition for algorithm
• N is set of nodes in CFG with En, Ex
• initialize domin(En) to {En}, change to false
• Initialize domin(n) to N for all n != En
• iterate over all n (except En) until no 

change in domin sets 
• assign N to T
• compute domin(n) by first taking the 

intersection of T and domin(p), forall  p, a 
predecessor of n 

• then add n to T (this is new domin(n))
• If T != domin(n), a change has occurred

• assign T to domin(n)
• change is true

For Thursday:

Show iterations of the 
algorithm over the nodes in 
the CFG until the result 
converges?
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Dominators, Postdominators 
(dominator tree)

In a dominator tree
• The initial node n is the root of the CFG
• The parent of a node n is its immediate dominator

(i.e., the last dominator of n on any path); the 
immediate dominator for n is unique
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Dominators, Postdominators 
(dominator tree)

CFG 1

2 3

4

5 6 7

8

9 10

Dominator 
Tree

1

2

3

4

5 6

7

8

9 10
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Dominators, Postdominators  

Given a CFG with nodes PD and N, PD 
postdominates N if every path from N to the 
final nodes goes through PD
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Node Postdominates
1
2
3
4
5
6
7

Dominators, Postdominators (example)

CFG
Node Postdominates
1 --
2 --
3 --
4 --
5 --
6 2,4,5
7 1,2,..,6

1

2 3

4 5

6

7
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Dominators, Postdominators 
(dominator tree)

In a postdominator tree
• The initial node n is the exit node of the CFG
• The parent of a node n is its immediate 

postdominator (i.e., the first postdominator of n on 
any path); the immediate postdominator for n is 
unique
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Dominators, Postdominators 
(dominator tree)

Postdominator 
Tree1

2 3

4 5

6

7

CFG

7

2

3

4 5

6 1


