
1

Class 2

• Review; questions
• Basic Analyses (2)
• Assign (see Schedule for links)

• Representation and Analysis of Software
(Sections 1-5)

• Additional reading: depth-first presentation,
data-flow analysis, etc.

• Problem Set 1: due 8/25/09

2

Review, Questions?

• T-Square, syllabus, etc.
• Problem Set 1

• Intermediate representations
• Control-flow analysis
• Search and ordering
• Dominance and postdominance

33

Search and Ordering (depth-first)

1

2

3

4

5 6

7

8

9 10

CFG For Thursday:

Is there a depth-first
presentation with depth
greater than 3?

44

Dominators, Postdominators
(dominator algorithm)

1

2 3

4

CFG

5

6

78

Ex

En Intuition for algorithm
• N is set of nodes in CFG with En, Ex
• initialize domin(En) to {En}, change to false
• Initialize domin(n) to N for all n != En
• iterate over all n (except En) until no

change in domin sets
• assign N to T
• compute domin(n) by first taking the

intersection of T and domin(p), forall p, a
predecessor of n

• then add n to T (this is new domin(n))
• If T != domin(n), a change has occurred

• assign T to domin(n)
• change is true

For Thursday:

Show iterations of the
algorithm over the nodes in
the CFG until the result
converges?

55

Dominators, Postdominators
(dominator algorithm)

1

2 3

4

CFG

5

6

78

Ex

En Intuition for algorithm
• N is set of nodes in CFG with En, Ex
• initialize domin(En) to {En}, change to false
• Initialize domin(n) to N for all n != En
• iterate over all n (except En) until no

change in domin sets
• assign N to T
• compute domin(n) by first taking the

intersection of T and domin(p), forall p, a
predecessor of n

• then add n to T (this is new domin(n))
• If T != domin(n), a change has occurred

• assign T to domin(n)
• change is true

66

Dominators, Postdominators
(dominator algorithm)Node domin Iteration 1: domin

En En En
1 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En} {En}; Add 1 {En,1}
2 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En,1} {En,1}; Add 2 {En,1,2}

3 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En,1} {En,1}; Add 3 {En,1,3}

4 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En,1,2}∩{En,1,3}
∩{En,1,…,Ex} {En,1}

Add 4 {En,1,4}
5 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En,1,4} {En,1,4}; Add 5 {En,1,4,5}

6 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En,1,4,5} {En,1,4,5}
Add 6 {En,1,4,5,6}

7 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En,1,4,5,6}∩{En,1,4,5} {En,1,4,5}
Add 7 {En,1,4,5,7}

8 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En,1,4} {En,1,4}
Add 8 {En,1,4,8}

Ex En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En,1,4,8} {En,1,4,8}
Add Ex {En,1,4,8,Ex}

77

Dominators, Postdominators
(dominator algorithm)Node Iteration 1: domin Iteration 2: domin

En En En
1 T={En,1,…,Ex}; T∩{En} {En}; Add 1 {En,1} {En,1}
2 T={En,1,…,Ex}; T∩{En,1} {En,1}; Add 2 {En,1,2} {En,1,2}

3 T={En,1,…,Ex}; T∩{En,1} {En,1}; Add 3 {En,1,3} {En,1,3}

4 T={En,1,…,Ex}; T∩{En,1,2}∩{En,1,3}
∩{En,1,…,Ex} {En,1}

Add 4 {En,1,4}

T={En,1,4}; T∩{En,1,2}∩{En,1,3}
∩{En,1,4,5,7} {En,1}

Add 4 {En,1,4}
5 T={En,1,…,Ex}; T∩{En,1,4} {En,1,4}; Add

5 {En,1,4,5}
{En,1,4,5}

6 T={En,1,…,Ex}; T∩{En,1,4,5} {En,1,4,5}
Add 6 {En,1,4,5,6}

{En,1,4,5,6}

7 T={En,1,…,Ex};
T∩{En,1,4,5,6}∩{En,1,4,5} {En,1,4,5}
Add 7 {En,1,4,5,7}

{En,1,4,5,7}

8 T={En,1,…,Ex}; T∩{En,1,4} {En,1,4}
Add 8 {En,1,4,8}

{En,1,4,8}

Ex T={En,1,…,Ex}; T∩{En,1,4,8} {En,1,4,8}
Add Ex {En,1,4,8,Ex}

{En,1,4,8,Ex}

88

Dominators, Postdominators
(dominator algorithm)Node domin Iteration 1: domin

Ex En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩N N
Add Ex N

8 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩N(for 4) N; Add 8 N
7 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩N(for 5)∩N(for 6) N;

Add 7 N
6 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩N(for 5) N Add 6 N

5 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩N(for 4) N
Add 5 N

4 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩N(for 2, 3, 7) N
Add 4 N

3 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩N(for 1) N; Add 3 N

2 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩N(for 1) N; Add 2 N

1 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En} {En}
Add 1 {En,1}

En En {En}

99

Dominators, Postdominators
(dominator algorithm)Node Iteration 1: domin Iteration 2: domin

Ex T={En,1,…,Ex}; T∩N N
Add Ex N

N

8 T={En,1,…,Ex}; T∩N(for 4) N; Add 8 N N
7 T={En,1,…,Ex}; T∩N(for 5)∩N(for 6) N;

Add 7 N
N

6 T={En,1,…,Ex}; T∩N(for 5) N Add 6 N N

5 T={En,1,…,Ex}; T∩N(for 4) N
Add 5 N

N

4 T={En,1,…,Ex}; T∩N(for 2, 3, 7) N
Add 4 N

N

3 T={En,1,…,Ex}; T∩N(for 1) N; Add 3 N T={En,1,…,Ex}; T∩{En,1}(for 1) {En,1};
Add 3 {En,1,3}

2 T={En,1,…,Ex}; T∩N(for 1) N; Add 2 N T={En,1,…,Ex}; T∩{En,1}(for 1) {En,1};
Add 2 {En,1,2}

1 T={En,1,…,Ex}; T∩{En} {En}
Add 1 {En,1}

T={En,1,…,Ex}; T∩{En} {En}
Add 1 {En,1}

En {En} {En}

1010

Node Ordering for Efficiency

1

2 3

4

CFG

5

6

78

Ex

En Visit in DF Order 2 iterations

Visit in another order (e.g.,
reverse DF Order) more,
possibly many, iterations

1111

Node Ordering for Efficiency

1

2 3

4

CFG

5

6

78

Ex

En Visit in DF Order 2 iterations

Visit in another order (e.g.,
reverse DF Order) more,
possibly many, iterations

Does requiring an ordering
of nodes incur any
additional overhead?

12

Loops and Reducibility

13

Finding Loops

• Loops are important—why?
• How do we identify loops?
• Not every cycle in a graph is a loop.
• There are different kinds of loops we need to

consider
• Irreducible loops
• Reducible loops

• We identify “natural loops,” which account
for most loops in real programs

14

Loops

We’ll consider what are known as natural loops
Single entry node (header) that dominates all other nodes
in the loop
Nodes in loop form a strongly connected component
(SCC): from every node there is at least one path back to
the header
There is a way to iterate: there is a back edge (n,d)
whose target node d (called the head)
dominates its source node n (called the tail)

If two back edges have the same target, then all
nodes in the loop sets for these edges are in the
same loop

Why is this important?

15

Loops

d

n

head

tail

We’ll consider what are known as natural loops
• Single entry node (header) that dominates all other nodes

in the loop
• Nodes in loop form a strongly connected component

(SCC): from every node there is at least one path back to
the header

• There is a way to iterate: there is a back edge (n,d)
whose target node d (called the head)
dominates its source node n (called the tail)

• If two back edges have the same target, then all
nodes in the loop sets for these edges are in the
same loop

16

Loops

d

n

head

tail

We’ll consider what are known as natural loops
• Single entry node (header) that dominates all other nodes

in the loop
• Nodes in loop form a strongly connected component

(SCC): from every node there is at least one path back to
the header

• There is a way to iterate: there is a back edge (n,d)
whose target node d (called the head)
dominates its source node n (called the tail)

If two back edges have the same target, then all
nodes in the loop sets for these edges are in the
same loop

17

1

2

3

4

5 6

7

8

9 10

CFG

Loops (example)

Which edges are back edges?

18

1

2

3

4

5 6

7

8

9 10

CFG

Loops (example)

Which edges are back edges?

4 3

7 4

10 7

9 1

8 3

19

Loops

Construction of loops
1. Find dominators in CFG
2. Find back edges
3. Traverse back edge in reverse execution direction

until the target of the back edge (i.e., head) is
reached; all nodes encountered during this traversal
form the loop.
Result is all nodes that can reach the source of the
edge without going through the target

20

Back Edge Loop Induced

4 3

7 4

10 7

8 3

9 1

Back Edge Loop Induced

4 3

7 4

10 7

8 3

9 1

1

2

3

4

5 6

7

8

9 10

CFG

Loops (example)

21

Back Edge Loop Induced

4 3

7 4

10 7

8 3

9 1

Back Edge Loop Induced

4 3 {3,4,5,6,7,8,10}

7 4 {4,5,6,7,8,10}

10 7 {7,8,10}

8 3 {3,4,5,6,7,8,10}

9 1 {1,2,…,10}

1

2

3

4

5 6

7

8

9 10

CFG

Loops (example)

22

Loops (algorithm)

Input: CFG and back edge n d
Output: set of nodes in natural loop n d
Method: start with n; consider nodes m != d that are in loop; each node in loop

except d is pushed onto stack once so predecessors are examined

stack = empty
loop = {d}
insert (n}
while stack is not empty do

pop m
foreach predecessor p of m do

insert (p)

procedure insert (m)
if m is not in loop then

loop = loop union {m}
push m onto stack;

23

Reducibility

First T1-T2 analysis: apply the following two
transformations to the CFG:
• T1: if n is a node with a self loop (i.e., an edge n n), delete

that edge
• T2: if there is a node n, not the initial node, that has a unique

predecessor, m, then m may consume n by deleting n and
making all successors of n (including m, possibly) be successors
of m

Properties of T1-T2 transformations:
• If T1-T2 transformations applied in any order until no more

transformations are possible, a unique flow graph results
• The CFG resulting from T1-T2 application is the limit flow graph

24

Graphs for examples

1

2 3

4 5

6

78

Graph 1 Graph 2

1

2 3

4 5

6

7

25

Reducibility

Apply T1-T2 transformations to
this CFG1

2 3

4 5

6

78

Graph 1

26

Reducibility

1

2 3

4 5

6

7

Apply T1-T2 transformations to
this CFG

Graph 2

27

Graphs for examples

1

2

3

4

1

2

3

4

5

Graph 3 Graph 4

28

Reducibility

Apply T1-T2 transformations to
this CFG1

2

3

4

Graph 3

29

Reducibility

A flow graph is reducible iff
its edges can be partitioned into two groups

Forward edges forming an acyclic graph in which every
node can be reached from the initial node and
Back edges in which the head dominates the tail (i.e., every
retreating edge is a back edge)

T1-T2 transformations applied to the graph result in
a single node

30

Reducibility (example)

1

2

3

4

Is this graph reducible?

5

Graph 4

31

Reducibility (example)

Is this graph reducible?

1

2

3

4

Graph 3

32

Data-flow Analysis

33

Data-flow Analysis

1. Introduction (motivation, overview)
2. Data-flow problems (reaching definitions, etc.)
3. Iterative data-flow analysis
4. Other types of data-flow analysis: worklist,

interval
5. DU-chains, UD-Chains, Webs
6. Data-dependence graph

34

Introduction (uses of data-flow)

Compiler Optimization
common subexpression elimination

need to know available expressions: which expressions have
been computed at the point before this statement

c=a+b d=a+b

e=a+b

35

Introduction (uses of data-flow)

Compiler Optimization
common subexpression elimination

need to know available expressions: which expressions have
been computed at the point before this statement

c=a+b d=a+b

e=a+b

t=a+b
c=t

t=a+b
d=t

e=t

36

Introduction (uses of data-flow)

Compiler Optimization
constant propagation

suppose every assignment to c that reaches this
statement assigns 5

then a can be replaced by 15
need to know reaching definitions: which definitions
of variable c reach this statement

a=c+10

37

Introduction (uses of data-flow)

Software Engineering Tasks
data-flow testing

suppose that a statement assigns a value but the use of that
value is never executed under test

need definition-use pairs (du-pairs): associations between
definitions and uses of the same variable or memory location

a=c+10

d=a+ya not used on
this path

38

Introduction (uses of data-flow)

Software Engineering Tasks
Debugging

suppose that a has the incorrect value in the statement

need data dependence information: statements that can
affect the incorrect value at this point

a=c+y

39

Uninitialized variables
A variable is uninitialized if there is a
path from entry on which the variable
is not defined

1. I := 2
2. J := I + 1

3. I := 1

4. J := K + J

5. J := J - 4

B1

B2

B3

B4

Introduction (uses of data-flow)

Software Engineering Tasks

40

Introduction (overview)

Data-flow analysis provides information for these and other
tasks by computing the flow of different types of data to
points in the program
For structured programs, data-flow analysis can be
performed on an AST; in general, intraprocedural
(global) data-flow analysis performed on the CFG
Exact solutions to most problems are undecidable—e.g.,

May depend on input
May depend on outcome of a conditional statement
May depend on termination of loop

Thus, we compute approximations to the exact solution

41

Introduction (overview)

Approximate analysis can overestimate the solution:
Solution contains actual information plus some spurious
information but does not omit any actual information
This type of information is safe or conservative

Approximate analysis can underestimate the solution:
Solution may not contains all information in the actual solution
This type of information in unsafe

For optimization, need safe, conservative analysis
For software engineering tasks, may be able to use
unsafe analysis information
Biggest challenge for data-flow analysis: provide safe
but precise (i.e., minimize the spurious information)
information in an efficient way

42

Introduction (overview)

Approximate analysis can overestimate the solution:
Solution contains actual information plus some spurious
information but does not omit any actual information
This type of information is safe or conservative

Approximate analysis can underestimate the solution:
Solution may not contains all information in the actual solution
This type of information in unsafe

For optimization, need safe, conservative analysis
For software engineering tasks, may be able to use
unsafe analysis information
Biggest challenge for data-flow analysis: provide safe
but precise (i.e., minimize the spurious information)
information in an efficient way

43

Compute the flow of data to points
in the program—e.g.,

Where does the assignment to I in
statement 1 reach?
Where does the expression
computed in statement 2 reach?
Which uses of variable J are
reachable from the end of B1?
Is the value of variable I live after
statement 3?

Interesting points before and after
basic blocks or statements

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

Introduction (overview)

44

Data-flow Problems (reaching
definitions)

A definition of a variable or memory location is
a point or statement where that variable gets
a value—e.g., input statement, assignment
statement.

A definition of A reaches a point p if there exists
a control-flow path in the CFG from the
definition to p with no other definitions of A
on the path (called a definition-clear path)

Such a path may exist in the graph but may not
be executable (i.e., there may be no input to
the program that will cause it to be
executed); such a path is infeasible.

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

45

Data-flow Problems (reaching
definitions)

Where are the definitions in the
program?

Of variable I:
Of variable J:

Which basic blocks (before block) do
these definitions reach?

Def 1 reaches
Def 2 reaches
Def 3 reaches
Def 4 reaches
Def 5 reaches

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

46

Graph for examples

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

47

Data-flow Problems (reaching
definitions)

Where are the definitions in the
program?

Of variable I: 1, 3
Of variable J: 2, 4, 5

Which basic blocks (before block) do
these definitions reach?

Def 1 reaches B2
Def 2 reaches B1, B2, B3
Def 3 reaches B1, B3, B4
Def 4 reaches B4
Def 5 reaches exit

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

48

Iterative Data-flow Analysis (reaching
definitions)

Method:
1. Compute two kinds of local information (i.e.,

within a basic block)
GEN[B] is the set of definitions that are created
(generated) within B
KILL[B] is the set of definitions that, if they
reach the point before B (i.e., the beginning of
B) won’t reach the end of B or
PRSV[B] is the set of definitions that are
preserved (not killed) by B

2. Compute two other sets by propagation
IN[B] is the set of definitions that reach the
beginning of B; also RCHin[B]
OUT[B] is the set of definitions that reach the
end of B; also RCHout[B]

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

49

Method (cont’d):
3. Propagation method:

Initialize the IN[B], OUT[B] sets for all B
Iterate over all B until there are no
changes to the IN[B], OUT[B] sets
On each iteration, visit all B, and compute
IN[B], OUT[B] as

IN[B] = U OUT[P], P is a
predecessor of B

OUT[B] = GEN[B] U (IN[B] ∩ PRSV[B])
or

OUT[B] = GEN[B] U (IN[B] – Kill[B])

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reaching
definitions)

50

Iterative Data-flow Analysis (reaching
definitions)Init

GEN
Init

KILL
Init
IN

Init
OUT

Iter1
IN

Iter1
OUT

Iter2
IN

Iter2
OUT

1

2

3

4

51

Data-flow for example (set approach)

All entries are sets; sets in red indicate changes
from last iteration thus, requiring another
iteration of the algorithm

Init
GEN

Init
KILL

Init
IN

Init
OUT

Iter1
IN

Iter1
OUT

Iter2
IN

Iter2
OUT

1 1,2 3,4,5 -- 1,2 3 1,2 2,3 1,2

2 3 1 -- 3 1,2 2,3 3 2,3

3 4 2,5 -- 4 2,3 3,4 2,3 3,4

4 5 2,4 -- 5 3,4 3,5 5 3,5

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reaching
definitions)

