## Class 2

- Review; questions
- Basic Analyses (2)
- Assign (see Schedule for links)
  - Representation and Analysis of Software (Sections 1-5)
  - Additional reading: depth-first presentation, data-flow analysis, etc.

1

• Problem Set 1: due 8/25/09







## Dominators, Postdominators (dominator algorithm)



| Node | domin                 | Iteration 1: domin                                                         |
|------|-----------------------|----------------------------------------------------------------------------|
| En   | En                    | En                                                                         |
| 1    | En,1,2,3,4,5,6,7,8,Ex | T={En,1,,Ex}; T∩{En}→{En}; Add 1→{En,1}                                    |
| 2    | En,1,2,3,4,5,6,7,8,Ex | T={En,1,,Ex}; T∩{En,1}→{En,1}; Add 2→{En,1,2}                              |
| 3    | En,1,2,3,4,5,6,7,8,Ex | T={En,1,,Ex}; T∩{En,1}→{En,1}; Add 3→{En,1,3}                              |
| 4    | En,1,2,3,4,5,6,7,8,Ex | T={En,1,,Ex}; T∩{En,1,2}∩{En,1,3}<br>∩{En,1,,Ex} →{En,1}<br>Add 4→{En,1,4} |
| 5    | En,1,2,3,4,5,6,7,8,Ex | T={En,1,,Ex}; T∩{En,1,4}→{En,1,4}; Add 5→{En,1,4,5}                        |
| 6    | En,1,2,3,4,5,6,7,8,Ex | T={En,1,,Ex}; T∩{En,1,4,5}→{En,1,4,5}<br>Add 6→{En,1,4,5,6}                |
| 7    | En,1,2,3,4,5,6,7,8,Ex | T={En,1,,Ex}; T∩{En,1,4,5,6}∩{En,1,4,5}→{En,1,4,5}<br>Add 7→{En,1,4,5,7}   |
| 8    | En,1,2,3,4,5,6,7,8,Ex | T={En,1,,Ex}; T∩{En,1,4}→{En,1,4}<br>Add 8→{En,1,4,8}                      |
| Ex   | En,1,2,3,4,5,6,7,8,Ex | T={En,1,,Ex}; T∩{En,1,4,8}→{En,1,4,8}<br>Add Ex→{En,1,4,8,Ex}              |

| Dominators, Postdominators |                                                                                            |                                                                            |  |  |  |
|----------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|
| Node                       | Iteration 1: domin                                                                         | Iteration 2: domin                                                         |  |  |  |
| En                         | En                                                                                         | En                                                                         |  |  |  |
| 1                          | T={En,1,,Ex}; T∩{En}→{En}; Add 1→{En,1}                                                    | {En,1}                                                                     |  |  |  |
| 2                          | $T=\{En,1,\ldots,Ex\}; T\cap\{En,1\} \rightarrow \{En,1\}; Add \ 2 \rightarrow \{En,1,2\}$ | {En,1,2}                                                                   |  |  |  |
| 3                          | T={En,1,,Ex}; T∩{En,1}→{En,1}; Add 3→{En,1,3}                                              | {En,1,3}                                                                   |  |  |  |
| 4                          | T={En,1,,Ex}; T∩{En,1,2}∩{En,1,3}<br>∩{En,1,,Ex} →{En,1}<br>Add 4→{En,1,4}                 | T={En,1,4}; T∩{En,1,2}∩{En,1,3}<br>∩{En,1,4,5,7} →{En,1}<br>Add 4→{En,1,4} |  |  |  |
| 5                          | T={En,1,,Ex}; T∩{En,1,4}→{En,1,4}; Add<br>5→{En,1,4,5}                                     | {En,1,4,5}                                                                 |  |  |  |
| 6                          | T={En,1,,Ex}; T∩{En,1,4,5}→{En,1,4,5}<br>Add 6→{En,1,4,5,6}                                | {En,1,4,5,6}                                                               |  |  |  |
| 7                          | T={En,1,,Ex};<br>T∩{En,1,4,5,6}∩{En,1,4,5}→{En,1,4,5}<br>Add 7→{En,1,4,5,7}                | {En,1,4,5,7}                                                               |  |  |  |
| 8                          | T={En,1,,Ex}; T∩{En,1,4}→{En,1,4}<br>Add 8→{En,1,4,8}                                      | {En,1,4,8}                                                                 |  |  |  |
| Ex                         | T={En,1,,Ex}; T∩{En,1,4,8}→{En,1,4,8}<br>Add Ex→{En,1,4,8,Ex}                              | {En,1,4,8,Ex}                                                              |  |  |  |

| Node | domin                 | Iteration 1: domin                                                          |
|------|-----------------------|-----------------------------------------------------------------------------|
| Ex   | En,1,2,3,4,5,6,7,8,Ex | T={En,1,,Ex}; T∩N→N<br>Add Ex→N                                             |
| 8    | En,1,2,3,4,5,6,7,8,Ex | T={En,1,,Ex}; T∩N(for 4)→N; Add 8→N                                         |
| 7    | En,1,2,3,4,5,6,7,8,Ex | T={En,1,,Ex}; T∩N(for 5)∩N(for 6) $\rightarrow$ N;<br>Add 7 $\rightarrow$ N |
| 6    | En,1,2,3,4,5,6,7,8,Ex | T={En,1,,Ex}; T∩N(for 5)→N Add 6→N                                          |
| 5    | En,1,2,3,4,5,6,7,8,Ex | T={En,1,,Ex}; T∩N(for 4) $\rightarrow$ N<br>Add 5 $\rightarrow$ N           |
| 4    | En,1,2,3,4,5,6,7,8,Ex | T={En,1,,Ex}; T∩N(for 2, 3, 7) $\rightarrow$ N<br>Add 4 $\rightarrow$ N     |
| 3    | En,1,2,3,4,5,6,7,8,Ex | $T=\{En,1,\ldots,Ex\}; T\cap N(for 1)\rightarrow N; Add 3\rightarrow N$     |
| 2    | En,1,2,3,4,5,6,7,8,Ex | $T=\{En,1,\ldots,Ex\}; T\cap N(for 1)\rightarrow N; Add 2\rightarrow N$     |
| 1    | En,1,2,3,4,5,6,7,8,Ex | T={En,1,,Ex}; T∩{En}→{En}<br>Add 1→{En,1}                                   |
| En   | En                    | {En}                                                                        |

| Dominators, Postdominators |                                                                             |                                                         |  |  |  |
|----------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|
| Node                       | Iteration 1: domin                                                          | Iteration 2: domin                                      |  |  |  |
| Ex                         | T={En,1,,Ex}; T∩N→N<br>Add Ex→N                                             | Ν                                                       |  |  |  |
| 8                          | T={En,1,,Ex}; T∩N(for 4)→N; Add 8→N                                         | N                                                       |  |  |  |
| 7                          | T={En,1,,Ex}; T∩N(for 5)∩N(for 6) $\rightarrow$ N;<br>Add 7 $\rightarrow$ N | Ν                                                       |  |  |  |
| 6                          | T={En,1,…,Ex}; T∩N(for 5)→N Add 6→N                                         | N                                                       |  |  |  |
| 5                          | T={En,1,,Ex}; T∩N(for 4) →N<br>Add 5→N                                      | Ν                                                       |  |  |  |
| 4                          | T={En,1,,Ex}; T∩N(for 2, 3, 7)→N<br>Add 4→N                                 | Ν                                                       |  |  |  |
| 3                          | T={En,1,,Ex}; T∩N(for 1)→N; Add 3→N                                         | T={En,1,,Ex}; T∩{En,1}(for 1)→{En,1};<br>Add 3→{En,1,3} |  |  |  |
| 2                          | T={En,1,,Ex}; T∩N(for 1)→N; Add 2→N                                         | T={En,1,,Ex}; T∩{En,1}(for 1)→{En,1};<br>Add 2→{En,1,2} |  |  |  |
| 1                          | T={En,1,,Ex}; T∩{En}→{En}<br>Add 1→{En,1}                                   | T={En,1,,Ex}; T∩{En}→{En}<br>Add 1→{En,1}               |  |  |  |
| En                         | {En}                                                                        | {En}                                                    |  |  |  |









- · Loops are important—why?
- · How do we identify loops?
- Not every cycle in a graph is a loop.
- There are different kinds of loops we need to consider
  - Irreducible loops
  - Reducible loops
- We identify "natural loops," which account for most loops in real programs











































- 1. Introduction (motivation, overview)
- 2. Data-flow problems (reaching definitions, etc.)
- 3. Iterative data-flow analysis
- 4. Other types of data-flow analysis: worklist, interval
- 5. DU-chains, UD-Chains, Webs
- 6. Data-dependence graph



33













## Introduction (overview)

- <u>Approximate analysis can overestimate the solution:</u>
  - Solution contains actual information plus some spurious information but does not omit any actual information
  - This type of information is safe or conservative
- Approximate analysis can underestimate the solution:
  - Solution may not contains all information in the actual solution
  - This type of information in unsafe

## 41

















| lt | Iterative Data-flow Analysis (reaching |              |            |             |             |              |             |              |
|----|----------------------------------------|--------------|------------|-------------|-------------|--------------|-------------|--------------|
|    | Init<br>GEN                            | Init<br>KILL | Init<br>IN | Init<br>OUT | Iter1<br>IN | Iter1<br>OUT | Iter2<br>IN | lter2<br>OUT |
| 1  |                                        |              |            |             |             |              |             |              |
| 2  |                                        |              |            |             |             |              |             |              |
| 3  |                                        |              |            |             |             |              |             |              |
| 4  |                                        |              |            |             |             |              |             |              |
|    |                                        |              |            |             |             |              |             | 50           |

