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Class 2

• Review; questions
• Basic Analyses (2)
• Assign (see Schedule for links)

• Representation and Analysis of Software 
(Sections 1-5)

• Additional reading: depth-first presentation, 
data-flow analysis, etc.  

• Problem Set 1:  due 8/25/09

2

Review, Questions?

• T-Square, syllabus, etc.
• Problem Set 1

• Intermediate representations
• Control-flow analysis
• Search and ordering
• Dominance and postdominance
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Search and Ordering (depth-first)  
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CFG For Thursday:

Is there a depth-first 
presentation with depth
greater than 3?
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Dominators, Postdominators 
(dominator algorithm)
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Ex

En Intuition for algorithm
• N is set of nodes in CFG with En, Ex
• initialize domin(En) to {En}, change to false
• Initialize domin(n) to N for all n != En
• iterate over all n (except En) until no 

change in domin sets 
• assign N to T
• compute domin(n) by first taking the 

intersection of T and domin(p), forall  p, a 
predecessor of n 

• then add n to T (this is new domin(n))
• If T != domin(n), a change has occurred

• assign T to domin(n)
• change is true

For Thursday:

Show iterations of the 
algorithm over the nodes in 
the CFG until the result 
converges?
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Dominators, Postdominators 
(dominator algorithm)
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Ex

En Intuition for algorithm
• N is set of nodes in CFG with En, Ex
• initialize domin(En) to {En}, change to false
• Initialize domin(n) to N for all n != En
• iterate over all n (except En) until no 

change in domin sets 
• assign N to T
• compute domin(n) by first taking the 

intersection of T and domin(p), forall  p, a 
predecessor of n 

• then add n to T (this is new domin(n))
• If T != domin(n), a change has occurred

• assign T to domin(n)
• change is true
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Dominators, Postdominators 
(dominator algorithm)Node domin Iteration 1:  domin

En En En
1 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En} {En}; Add 1 {En,1}
2 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En,1} {En,1}; Add 2 {En,1,2}

3 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En,1} {En,1}; Add 3 {En,1,3}

4 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En,1,2}∩{En,1,3}
∩{En,1,…,Ex} {En,1}

Add 4 {En,1,4}
5 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En,1,4} {En,1,4}; Add 5 {En,1,4,5}

6 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En,1,4,5} {En,1,4,5}
Add 6 {En,1,4,5,6}

7 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En,1,4,5,6}∩{En,1,4,5} {En,1,4,5}
Add 7 {En,1,4,5,7}

8 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En,1,4} {En,1,4}
Add 8 {En,1,4,8}

Ex En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En,1,4,8} {En,1,4,8}
Add Ex {En,1,4,8,Ex}
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Dominators, Postdominators 
(dominator algorithm)Node Iteration 1:  domin Iteration 2:  domin

En En En
1 T={En,1,…,Ex}; T∩{En} {En}; Add 1 {En,1} {En,1}
2 T={En,1,…,Ex}; T∩{En,1} {En,1}; Add 2 {En,1,2} {En,1,2}

3 T={En,1,…,Ex}; T∩{En,1} {En,1}; Add 3 {En,1,3} {En,1,3}

4 T={En,1,…,Ex}; T∩{En,1,2}∩{En,1,3}
∩{En,1,…,Ex} {En,1}

Add 4 {En,1,4}

T={En,1,4}; T∩{En,1,2}∩{En,1,3}
∩{En,1,4,5,7} {En,1}

Add 4 {En,1,4}
5 T={En,1,…,Ex}; T∩{En,1,4} {En,1,4}; Add 

5 {En,1,4,5}
{En,1,4,5}

6 T={En,1,…,Ex}; T∩{En,1,4,5} {En,1,4,5}
Add 6 {En,1,4,5,6}

{En,1,4,5,6}

7 T={En,1,…,Ex}; 
T∩{En,1,4,5,6}∩{En,1,4,5} {En,1,4,5}
Add 7 {En,1,4,5,7}

{En,1,4,5,7}

8 T={En,1,…,Ex}; T∩{En,1,4} {En,1,4}
Add 8 {En,1,4,8}

{En,1,4,8}

Ex T={En,1,…,Ex}; T∩{En,1,4,8} {En,1,4,8}
Add Ex {En,1,4,8,Ex}

{En,1,4,8,Ex}
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Dominators, Postdominators 
(dominator algorithm)Node domin Iteration 1:  domin

Ex En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩N N
Add Ex N

8 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩N(for 4) N; Add 8 N
7 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩N(for 5)∩N(for 6) N;

Add 7 N
6 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩N(for 5) N Add 6 N

5 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩N(for 4) N
Add 5 N

4 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩N(for 2, 3, 7) N
Add 4 N

3 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩N(for 1) N; Add 3 N

2 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩N(for 1) N; Add 2 N

1 En,1,2,3,4,5,6,7,8,Ex T={En,1,…,Ex}; T∩{En} {En}
Add 1 {En,1}

En En {En}
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Dominators, Postdominators 
(dominator algorithm)Node Iteration 1:  domin Iteration 2:  domin

Ex T={En,1,…,Ex}; T∩N N
Add Ex N

N

8 T={En,1,…,Ex}; T∩N(for 4) N; Add 8 N N
7 T={En,1,…,Ex}; T∩N(for 5)∩N(for 6) N;

Add 7 N
N

6 T={En,1,…,Ex}; T∩N(for 5) N Add 6 N N

5 T={En,1,…,Ex}; T∩N(for 4) N
Add 5 N

N

4 T={En,1,…,Ex}; T∩N(for 2, 3, 7) N
Add 4 N

N

3 T={En,1,…,Ex}; T∩N(for 1) N; Add 3 N T={En,1,…,Ex}; T∩{En,1}(for 1) {En,1}; 
Add 3 {En,1,3}

2 T={En,1,…,Ex}; T∩N(for 1) N; Add 2 N T={En,1,…,Ex}; T∩{En,1}(for 1) {En,1}; 
Add 2 {En,1,2}

1 T={En,1,…,Ex}; T∩{En} {En}
Add 1 {En,1}

T={En,1,…,Ex}; T∩{En} {En}
Add 1 {En,1}

En {En} {En}
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Node Ordering for Efficiency
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78

Ex

En Visit in DF Order 2 iterations

Visit in another order (e.g., 
reverse DF Order) more, 
possibly many, iterations
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Node Ordering for Efficiency
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Ex

En Visit in DF Order 2 iterations

Visit in another order (e.g., 
reverse DF Order) more, 
possibly many, iterations

Does requiring an ordering 
of nodes incur any 
additional overhead?

12

Loops and Reducibility
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Finding Loops

• Loops are important—why?
• How do we identify loops?
• Not every cycle in a graph is a loop.
• There are different kinds of loops we need to 

consider
• Irreducible loops
• Reducible loops

• We identify “natural loops,” which account 
for most loops in real programs

14

Loops

We’ll consider what are known as natural loops
Single entry node (header) that dominates all other nodes 
in the loop 
Nodes in loop form a strongly connected component 
(SCC): from every node there is at least one path back to 
the header  
There is a way to iterate:  there is a back edge (n,d) 
whose target node d (called the head) 
dominates its source node n (called the tail)

If two back edges have the same target, then all 
nodes in the loop sets for these edges are in the 
same loop

Why is this important?
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Loops

d

n

head

tail

We’ll consider what are known as natural loops
• Single entry node (header) that dominates all other nodes 

in the loop 
• Nodes in loop form a strongly connected component 

(SCC): from every node there is at least one path back to 
the header  

• There is a way to iterate:  there is a back edge (n,d) 
whose target node d (called the head) 
dominates its source node n (called the tail)

• If two back edges have the same target, then all 
nodes in the loop sets for these edges are in the 
same loop
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Loops

d

n

head

tail

We’ll consider what are known as natural loops
• Single entry node (header) that dominates all other nodes 

in the loop 
• Nodes in loop form a strongly connected component 

(SCC): from every node there is at least one path back to 
the header  

• There is a way to iterate:  there is a back edge (n,d) 
whose target node d (called the head) 
dominates its source node n (called the tail)

If two back edges have the same target, then all 
nodes in the loop sets for these edges are in the 
same loop
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Loops (example)

Which edges are back edges?
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CFG

Loops (example)

Which edges are back edges?
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8 3
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Loops

Construction of loops
1. Find dominators in CFG
2. Find back edges
3. Traverse back edge in reverse execution direction 

until the target of the back edge (i.e., head) is 
reached; all nodes encountered during this traversal 
form the loop.  
Result is all nodes that can reach the source of the 
edge without going through the target
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Back Edge Loop Induced
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Back Edge Loop Induced
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Loops (example)
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Back Edge Loop Induced

4 3

7 4

10 7

8 3

9 1

Back Edge Loop Induced

4 3 {3,4,5,6,7,8,10}

7 4 {4,5,6,7,8,10}

10 7 {7,8,10}

8 3 {3,4,5,6,7,8,10}

9 1 {1,2,…,10}
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5 6

7

8

9 10

CFG

Loops (example)
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Loops (algorithm)

Input: CFG and back edge n d
Output: set of nodes in natural loop n d
Method: start with n; consider nodes m != d that are in loop; each node in loop 

except d is pushed onto stack once so predecessors are examined

stack = empty
loop = {d}
insert (n}
while stack is not empty do

pop m
foreach predecessor p of m do

insert (p)                            

procedure insert (m)
if m is not in loop then 

loop = loop union {m}
push m onto stack;
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Reducibility

First T1-T2 analysis: apply the following two 
transformations to the CFG:
• T1:  if n is a node with a self loop (i.e., an edge n n), delete 

that edge
• T2: if there is a node n, not the initial node, that has a unique 

predecessor, m, then m may consume n by deleting n and 
making all successors of n (including m, possibly) be successors
of m

Properties of T1-T2 transformations:
• If T1-T2 transformations applied in any order until no more 

transformations are possible, a unique flow graph results
• The CFG resulting from T1-T2 application is the limit flow graph

24

Graphs for examples
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Reducibility

Apply T1-T2 transformations to 
this CFG1

2 3

4 5

6

78

Graph 1                                 
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Reducibility
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Apply T1-T2 transformations to 
this CFG

Graph 2                                 
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Graphs for examples
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Reducibility

Apply T1-T2 transformations to 
this CFG1

2

3

4

Graph 3                                 
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Reducibility

A flow graph is reducible iff
its edges can be partitioned into two groups

Forward edges forming an acyclic graph in which every 
node can be reached from the initial node and
Back edges in which the head dominates the tail (i.e., every 
retreating edge is a back edge)

T1-T2 transformations applied to the graph result in 
a single node 
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Reducibility (example)

1

2

3

4

Is this graph reducible?

5

Graph 4                                



31

Reducibility (example)

Is this graph reducible?

1

2

3

4

Graph 3                                 

32

Data-flow Analysis
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Data-flow Analysis

1. Introduction (motivation, overview)
2. Data-flow problems (reaching definitions, etc.)
3. Iterative data-flow analysis
4. Other types of data-flow analysis:  worklist, 

interval
5. DU-chains, UD-Chains, Webs
6. Data-dependence graph 
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Introduction (uses of data-flow)

Compiler Optimization
common subexpression elimination

need to know available expressions: which expressions have 
been computed at the point before this statement

c=a+b d=a+b

e=a+b
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Introduction (uses of data-flow)

Compiler Optimization
common subexpression elimination

need to know available expressions: which expressions have 
been computed at the point before this statement

c=a+b d=a+b

e=a+b

t=a+b
c=t

t=a+b
d=t

e=t
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Introduction (uses of data-flow)

Compiler Optimization
constant propagation

suppose every assignment to c that reaches this 
statement assigns 5

then a can be replaced by 15
need to know reaching definitions: which definitions 
of variable c reach this statement

a=c+10
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Introduction (uses of data-flow)

Software Engineering Tasks
data-flow testing

suppose that a statement assigns a value but the use of that 
value is never executed under test

need definition-use pairs (du-pairs):  associations between 
definitions and uses of the same variable or memory location

a=c+10

d=a+ya not used on 
this path
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Introduction (uses of data-flow)

Software Engineering Tasks
Debugging

suppose that a has the incorrect value in the statement

need data dependence information:  statements that can 
affect the incorrect value at this point 

a=c+y
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Uninitialized variables
A variable is uninitialized if there is a 
path from entry on which the variable 
is not defined

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := K + J

5.  J := J - 4

B1

B2

B3

B4

Introduction (uses of data-flow)

Software Engineering Tasks
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Introduction (overview)

Data-flow analysis provides information for these and other 
tasks by computing the flow of different types of data to 
points in the program
For structured programs, data-flow analysis can be 
performed on an AST; in general, intraprocedural 
(global) data-flow analysis performed on the CFG
Exact solutions to most problems are undecidable—e.g.,

May depend on input
May depend on outcome of a conditional statement
May depend on termination of loop

Thus, we compute approximations to the exact solution



41

Introduction (overview)

Approximate analysis can overestimate the solution:
Solution contains actual information plus some spurious 
information but does not omit any actual information
This type of information is safe or conservative

Approximate analysis can underestimate the solution:
Solution may not contains all information in the actual solution
This type of information in unsafe

For optimization, need safe, conservative analysis
For software engineering tasks, may be able to use 
unsafe analysis information
Biggest challenge for data-flow analysis:  provide safe 
but precise (i.e., minimize the spurious information) 
information in an efficient way
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Introduction (overview)

Approximate analysis can overestimate the solution:
Solution contains actual information plus some spurious 
information but does not omit any actual information
This type of information is safe or conservative

Approximate analysis can underestimate the solution:
Solution may not contains all information in the actual solution
This type of information in unsafe

For optimization, need safe, conservative analysis
For software engineering tasks, may be able to use 
unsafe analysis information
Biggest challenge for data-flow analysis:  provide safe 
but precise (i.e., minimize the spurious information) 
information in an efficient way
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Compute the flow of data to points 
in the program—e.g.,

Where does the assignment to I in 
statement 1 reach?
Where does the expression 
computed in statement 2 reach?
Which uses of variable J are 
reachable from the end of B1?
Is the value of variable I live after 
statement 3?

Interesting points before and after 
basic blocks or statements

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4

Introduction (overview)
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Data-flow Problems (reaching 
definitions)

A definition of a variable or memory location is 
a point or statement where that variable gets 
a value—e.g., input statement, assignment 
statement.

A definition of A reaches a point p if there exists 
a control-flow path in the CFG from the 
definition to p with no other definitions of A 
on the path (called a definition-clear path)

Such a path may exist in the graph but may not 
be executable (i.e., there may be no input to 
the program that will cause it to be 
executed); such a path is infeasible. 

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4
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Data-flow Problems (reaching 
definitions)

Where are the definitions in the 
program?

Of variable I:  
Of variable J: 

Which basic blocks (before block)  do 
these definitions reach?

Def 1 reaches   
Def 2 reaches  
Def 3 reaches  
Def 4 reaches  
Def 5 reaches  

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4
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Graph for examples

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4
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Data-flow Problems (reaching 
definitions)

Where are the definitions in the 
program?

Of variable I:  1, 3
Of variable J:  2, 4, 5

Which basic blocks (before block)  do 
these definitions reach?

Def 1 reaches  B2  
Def 2 reaches B1, B2, B3
Def 3 reaches B1, B3, B4
Def 4 reaches B4
Def 5 reaches exit

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4

48

Iterative Data-flow Analysis (reaching 
definitions)

Method:
1. Compute two kinds of local information (i.e., 

within a basic block) 
GEN[B] is the set of definitions that are created 
(generated) within B
KILL[B] is the set of definitions that, if they 
reach the point before B (i.e., the beginning of 
B) won’t reach the end of B or
PRSV[B] is the set of definitions that are 
preserved (not killed) by B

2. Compute two other sets by propagation
IN[B] is the set of definitions that reach the 
beginning of B; also RCHin[B]
OUT[B] is the set of definitions that reach the 
end of B; also RCHout[B]

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4



49

Method (cont’d):
3. Propagation method:

Initialize the IN[B], OUT[B] sets for all B
Iterate over all B until there are no 
changes to the IN[B], OUT[B] sets
On each iteration, visit all B, and compute 
IN[B], OUT[B] as

IN[B] =  U OUT[P], P is a 
predecessor of B

OUT[B] = GEN[B] U (IN[B] ∩ PRSV[B]) 
or

OUT[B] = GEN[B] U (IN[B] – Kill[B])  

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reaching 
definitions)
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Iterative Data-flow Analysis (reaching 
definitions)Init

GEN
Init

KILL
Init
IN

Init
OUT

Iter1
IN

Iter1
OUT

Iter2
IN

Iter2
OUT

1

2

3

4
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Data-flow for example (set approach)

All entries are sets; sets in red indicate changes 
from last iteration thus, requiring another 
iteration of the algorithm

Init
GEN

Init
KILL

Init
IN

Init
OUT

Iter1
IN

Iter1
OUT

Iter2
IN

Iter2
OUT

1 1,2 3,4,5 -- 1,2 3 1,2 2,3 1,2

2 3 1 -- 3 1,2 2,3 3 2,3

3 4 2,5 -- 4 2,3 3,4 2,3 3,4

4 5 2,4 -- 5 3,4 3,5 5 3,5

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reaching 
definitions)


