Class 3

* Review; questions
« Basic Analyses (3)

 Assign (see Schedule for links)

» Representation and Analysis of Software
(Sections 1-5)

+ Additional readings:
» Data-flow analysis
 Control/program-dependence analysis

* Problem Set 2: due 9/1/09

Review, Questions ?

» Data-flow analysis

Data-flow Analysis

Introduction (overview)

Data-flow analysis provides information for these and other
tasks by computing the flow of different types of data to
points in the program

» For structured programs, data-flow analysis can be
performed on an AST; in general, intraprocedural
(global) data-flow analysis performed on the CFG

» Exact solutions to most problems are undecidable—e.g.,

* May depend on input

* May depend on outcome of a conditional statement
* May depend on termination of loop

Thus, we compute approximations to the exact solution

Introduction (overview)

¢ Approximate analysis can overestimate the solution:

¢ Solution contains actual information plus some spurious
information but does not omit any actual information

¢ This type of information is safe or conservative

* Approximate analysis can underestimate the solution:
* Solution may not contains all information in the actual solution
* This type of information in unsafe

Introduction (overview)

¢ Approximate analysis can overestimate the solution:

» Solution contains actual information plus some spurious
information but does not omit any actual information

* This type of information is safe or conservative

» Approximate analysis can underestimate the solution:
* Solution may not contains all information in the actual solution
* This type of information in unsafe

* For optimization, need safe, conservative analysis

* For software engineering tasks, may be able to use
unsafe analysis information

* Biggest challenge for data-flow analysis: provide safe

but precise (i.e., minimize the spurious information)
information in an efficient way

Introduction (overview)

Bl

B3|4. J:=J+1

B4 5 J:=J-4

Compute the flow of data to points
in the program—e.q.,
* Where does the assignmentto | in
statement 1 reach?

* Where does the expression
computed in statement 2 reach?

¢ \Which uses of variable J are
reachable from the end of B1?

¢ |s the value of variable | live after
statement 37?

Interesting points before and after

basic blocks or statements

Data-flow Problems (reaching

definitions)
—

B1| 1 1=

2. J:=1+1

B2|3. 1:=1
|

B3|4. J:=J+1

B4 5 J:=J-4

A definition of a variable or memory location is
a point or statement where that variable gets
a value—e.g., input statement, assignment
statement.

A definition of A reaches a point p if there exists
a control-flow path in the CFG from the
definition to p with no other definitions of A
on the path (called a definition-clear path)

Such a path may exist in the graph but may not
be executable (i.e., there may be no input to
the program that will cause it to be
executed); such a path is infeasible.

Data-flow Problems (reaching

definitions)
: e Where are the definitions in the
1|l | =2 program?
2. J:=1+1 « Of variable I:
e Of variable J:
—— * Which basic blocks (before block) do
B2|3. 1:=1 these definitions reach?
— 7
¢ Def 1 reaches
B3/4. J:=J+1 Def 2 reaches

Def 3 reaches
Def 4 reaches
Def 5 reaches

le——
. . . .

B4 5 J:=J-4

Graph for examples

Bl

B3|4. J:=J+1

B4/5 J:=J-4

10

Data-flow Problems (reaching

definitions)
: e Where are the definitions in the
B1|1 1:=2 program?
2. J:=1+1 « Ofvariable I: 1,3
e Ofvariable J: 2,4, 5
B213. 1:=1 * Which basic blocks (before block) do
B these definitions reach?
e Def 1 reaches B2
B3|4. J:=J+1 Def 2 reaches B1, B2, B3
l e Def 3 reaches B1, B3, B4
e Def 4 reaches B4
B45 J:=J-4 * Def 5 reaches exit

1

Iterative Data-flow Analysis (reaching
definitions)

! Method:

=2 1. Compute two kinds of local information (i.e.,
| +1 within a basic block)

* GENIB] is the set of definitions that are created
l (generated) within B

|

Bl

L e KILL[B] is the set of definitions that, if they
=1 reach the point before B (i.e., the beginning of

B) won’t reach the end of B or

PRSV[B] is the set of definitions that are
B3|4. J:=J+1 preserved (not killed) by B
i : 2. Compute two other sets by propagation
l ¢ IN[B] is the set of definitions that reach the
_ beginning of B; also RCHin[B]
B45. J:=J-4 e OUT[B] is the set of definitions that reach the
end of B; also RCHout[B]

12

Iterative Data-flow Analysis (reaching

definitions)
—
B1 1. 1:=2
2. J:=1+1
B2|3. 1:=1
|
B3|4. J:=J+1
B4/5. J:=J-4

Method (cont’d):
3. Propagation method:

Initialize the IN[B], OUT[B] sets for all B

Iterate over all B until there are no
changes to the IN[B], OUT[B] sets
On each iteration, visit all B, and compute
IN[B], OUT[B] as

IN[B] = U OUT[P],Pis a

predecessor of B
OUTI[B] = GEN[B] U (IN[B] N PRSVI[B])
or
OUTI[B] = GEN[B] U (IN[B] — Kill[B])

13

Iterative Data-flow Analysis (reaching

definitions)
—
Bl 1. 1:=2
2. J:=1+1
B2|3. 1:=1
|
B3|4. J:=J+1
B4/5. J:=J-4

14

Iterative Data-flow Analysis (reaching

Init Init Init Init lter1 Iter1 Iter2 lter2
GEN KILL IN ouT IN ouT IN ouT

15

Iterative Data-flow Analysis (reaching
definitions)

{1 Data-flow for example (set approach)
B1|1l 1:=2 Init [Init | Init|Init |lter1 |lter! |Iter2 |Iter2
2.J=1+1 GEN |KILL [IN |OUT | IN |OUT IN | OUT
l 1112 |345|- |12 |3 1,2 2,3 1,2
B2(3. 1:=1 203 |1 -3 (12 [23 [12 |23
3|4 25 |- |4 23 |34 2,3 3,4
B3|4. J:=J+1 45 |24 |- |5 |34 |35 |34 |35
B45 J:=J-4 All entries are sets; sets in red indicate changes
S from last iteration thus, requiring another

iteration of the algorithm

16

Iterative Data-flow Analysis (reaching

definitions)
{1 Data-flow for example (bit-vector approach)
B1 1. 1:=2
2. J=1+1 Init Init Init Init Iter1 Iter1
GEN KILL IN ouT IN ouT
B2(3. 1:=1 !
2
B3|4. J:=J+1| |3
l 4
B4/5. J:=J-4

17

Iterative Data-flow Analysis (reaching

definitions)
1 Data-flow for example (bit-vector approach)
B1 1. 1:=2
2. J=1+1 Init Init Init Init Iter1 | Iter1
l GEN KILL IN ouT IN ouT
B2/3 1:=1 1 {11000 {00111 | 00000 | 11000 | 00100 | 11000
L | {2 |00100 | 10000 | 00000 | 00100 | 11000 | 01100
B3l4. J:=J+1 3 {00010 |01001 [00000 | 00010 | 01100 [00110
l 4 | 00001 | 01010 [00000 | 00001 | 00110 | 00101
B4/5. J:=J-4

18

Iterative Data-flow Analysis (reaching
definitions)

algorithm ReachingDefinitions
Input: CFG w/GEN[B], KILL[B] for all B
Output: IN[B], OUTI[B] for all B
Method: Described on slides 17, 18
begin ReachingDefinitions
IN[B]=empty; OUT[B]=GENIB], for all B; change = true
while change do begin
Change = false
foreach B do begin
In[B] = union OUT[P], P is a predecessor of B
Oldout = OUTIB]
OUT[B] = GEN[B] union (IN[B] — Kill[B])
if OUTI[B] != Oldout then change = true
endfor
endwhile
end Reaching Definitions

19

Iterative Data-flow Analysis (reaching
definitions)

Questions about algorithm:

1. Is the algorithm guaranteed to converge? Why or why not?
2. What is the worst-case time complexity of the algorithm?
3. What is the worst-case space complexity of the algorithm?

4. How does depth-first ordering improve the worst-case time
complexity?

20

Iterative Data-flow Analysis (reachable

uses)

B1 1. 1:=2
2.J:=1+1
—
B2|3. 1:=1

B3|4. J:=1+1

B4/5. J:=

A use of a variable or memory location is a
point or statement where that variable is
referenced by not changed --- e.g., used in a
computation, used in a conditional, output

A use of A is reachable from a point p if there
exists a control-flow path in the CFG from
the p to the use with no definitions of A on
the path

Reachable uses also called upwards exposed
uses

21

Iterative Data-flow Analysis (reachable

uses)

Bl 1. 1:=2
2.J=1+1
=
B2|3. 1:=1

B3|4. J:=1+J

B4

* Where are the uses in the
program?
e Of variable I:
e Of variable J:

* From which basic blocks (end

of block) are these uses
reachable?

22

Iterative Data-flow Analysis (reachable
uses)

¢ Where are the uses in the

1. 1:=
B1 5 J=l+1 program?
S Of variable I: 2.1
{ e Ofvariable J: 4.2,5.1
B2|3. 1:=1 From which basic blocks (end
of block) are these uses
B3l4. J:=1+J reachable?
l * Use 4.2 is reachable from B1, B2,
B3
B4/5. J:i=J-4 Use 5.1 is reachable from B3

23

Iterative Data-flow Analysis (reachable
uses)

Method:

1. 1:= 1. Compute two kinds of local information (i.e.,
2.J=1+1 within a basic block)

l * GENIB] is the set of uses that are created

|

Bl

(generated) within B and can be reached from
the beginning of B (called upwards exposed
=1 uses); sometimes called USE[B]

* KILL[B] is the set of uses that, if they can be
reached from the end of B, they cannot be
K reached from the beginning of B; sometimes
B3(4. J:=1+J called DEF[B]

l 2. Compute two other sets by propagation
* IN[B] is the set of uses that can be reached

B4/5. J:=J-4 from the end of B

* OUT[B] is the set of uses that can be reached
from the beginning of B

24

Iterative Data-flow Analysis (reachable

uses)
_ Method (cont'd):
Bp|l 1:=2 _ _
_ 3. Propagation method:
2. J=1+1 e
¢ |Initialize the IN[B], OUT[B] sets for all B
! * |terate over all B until there are no
B2!3. 1:=1 changes to the IN[B], OUT[B] sets
¢ On each iteration, visit all B, and compute
IN[B], OUT[B] as
B3|4. J:=1+J
il—
B4/5. J:=J-4

25

Iterative Data-flow Analysis (reachable

uses)
_ Method (cont'd):
g1/l 1:=2 _ _
. 3. Propagation method:
2. J:=1+1 el
* Initialize the IN[B], OUT[B] sets for all B
h * |terate over all B until there are no
B213. 1:=1 changes to the IN[B], OUT[B] sets
* On each iteration, visit all B, and compute
IN[B], OUT[B] as
B3(4. J:=1+J IN[B] = union OUT[S], S is a successor of
| B
l OUT[B] = GENIB] union (IN[B] — Kill[B])
B4/5 J:=J-4

26

Iterative Data-flow Analysis (reachable
uses)

Questions about algorithm:

1. Is the algorithm guaranteed to converge? Why or why not?
2. What is the worst-case time complexity of the algorithm?
3. What is the worst-case space complexity of the algorithm?

4. How does depth-first ordering improve the w-c time
complexity?

27

Iterative Data-flow Analysis (reachable
uses)

Similarities between RD and RU

Differences between RD and RU

28

Iterative Data-flow Analysis (reachable
uses)

Similarities between RD and RU
* Local information (GEN and KILL) computed for each B

* IN and OUT sets defined: IN at point where data flows into B
from outside B; OUT at point where data flow out of B

¢ Flow into block computed as union of predecessors in flow
* [teration until no more changes

Differences between RD and RU

¢ RD flow is forward; RU flow is backward

* RD best ordering is depth-first (topological); RU best ordering is
reverse depth-first (reverse topological)

29
Iterative Data-flow Analysis
(dominators)
En Intuition for algorithm
l ¢ N is set of nodes in CFG with En, Ex
1 * initialize domin(En) to {En}; change to false
/ \ * Initialize domin(n) to N for all n != En
2 3 * jterate over all n (except En) until no
\ “//— change in domin sets
4~ .5 e assignNtoT
/ * compute domin(n) by first taking the
6 intersection of T and domin(p), forall p, a
\ predecessor of n
7— e then add nto T (this is new domin(n))
e [f T = domin(n), a change has occurred
Ex * assign T to domin(n)

* change is true

30

Iterative Data-flow Analysis
(dominators)

Dom as iterative data-flow:

En 1. Compute two kinds of local information (i.e.,
l within a basic block)
1 GEN[B]
/ \ KILL[B]
2 3 2. Compute two other sets by propagation
N IN[B]
425
/ OUTI[B]
\ 6 \ Initialize
\ lterate over all B
? I On each iteration, visit all B, and compute
Ex
31
Iterative Data-flow Analysis
(dominators)
Dom as iterative data-flow:
En 1. Compute two kinds of local information (i.e.,
| within a basic block)
1 GENIB] is the node itself
/ \ KILL[B] is empty
2 3 2. Compute two other sets by propagation
\ “//— IN[B] is the set of dominators of nodes that are
4 5 predecessors of B
/ OUTIB] is the set of dominators of B
Initialize the IN[B], OUTI[B] sets for all B
\ 6 \ Iterate over all B until there are no changes in IN[B]
. or OUT[B]
? T On each iteration, visit all B, and compute IN[B] as
intersection of OUT[P], P a predecessor of B;
Ex compute OUTI[B] as union of IN[B] and GEN[B]

(because KILL[B] is empty)

32

Iterative Data-flow Analysis
(generalization)

Data-flow Framework
<answered in class>

33

Other Types of Data-flow Analysis
(worklist)

nr 1. Data-flow for nodes 1, 2, 3 never changes
but is computed on every iteration of the

2 algorithm
3
T Il

return m 12 éﬂl

7 | return 2 5110

34

Other Types of Data-flow Analysis
(worklist)

1 T 2. Nodes involved in the computation
may be a small subset of the nodes
in the graph; for example, what if
2 only want to compute reaching

definitions for 1
3 | f1=1

return m 12 éﬂl

7 | return f2 10

35

Other Types of Data-flow Analysis
(worklist)

algorithm RDWorklist
Input: GENIB], KILL[B] for all B
output reaching definitions for each B
Method:
initialize IN[B], OUT[B] for all B; add successors of B involved
initially involved in computation to worklist W

repeat

remove B from W

Oldout=0UT][B]

compute IN[B], OUT[B]

if oldout != OUTI[B] then add successors of B to W endif
until W is empty

36

Other Types of Data-flow Analysis
(worklist)

Compute RD for f1 using RDWorklist
1 * GEN[3]is {3}, GEN[10] is {10}, KILL[3] is {10},
KILL[10] is {3}
2 e add successors of 3, 10 to W
* remove 4 from W, compute IN[4], OUT[4], etc

3 | f1=1

return m 12 éﬂl

7 | return f2 10

37

Other Types of Data-flow Analysis
(incremental)

I Init |Init | Init|Init |Iter1 |lter1 |lter2 | lter2
1. 1:=2 GEN [KILL | IN [OUT | IN |OUT IN | OUT
B1|- -~
2. J:=1+1 111,2 345~ [12 [3 [12 |23 [12
l 2|3 1 - 13 1,2 |23 1,2 23
B2|3. 1:=1 3[4 |25 |- |4 |23 |34 |23 |34
4|5 24 |- |5 34 |35 5 3.5
B3[4. J:=J+1 * Whatif stmt 4 changesto J := 1+ 1?

l e Whatif stmt4 changesto | :=J + 1,
B4/5. J:=J-4 * What if stmt 4 changes to J :=J -17?
* Etc

38

Other Types of Data-flow Analysis
(demand)

1 Whatif want data flow for one

1|l 1:=2 statement only—e.g., find reaching
2. J:=1+1 definitions for B3?
B2|3. 1:=1
L
B3|4. J:=J+1
B4/5. J:=J-4

39

DU-Chains, UD-Chains, Webs

e A definition-use chain or DU-chain for a
definition D of variable v connects the D to all
uses of v that it can reach

e A use-definition chain or UD-chain for a use U of
variable v connects U to all definitions of v that
reach it

40

DU-Chains, UD-Chains, Webs

@ DU-chain(X,2)

z>1|B1 DU-chain(X,4)
X=1 X=2|B4 DU-chain(X,5)
Z

>2
DU-chain(Y,3)

B2

X-3
4

z
B3|vy=x+1 BS| x

DU-chain(Z,5)

B6|z=x+7 DU-chain(Z,6)

DU-Chains, UD-Chains, Webs

entry DU-chain(X,2)

{(X.3), (X,5)}

z>1|B1 DU-chain(X,4)
{(X,5)}
X=1 X=2|B4 DU-chain(X,5)

B2|z>2 {(X,6)}
DU-chain(Y,3)
Z=X-3 0
B3|y=x+1| B5|x=4 DU-chain(Z,5)
{}

B6[7z=x+7 DU-chain(Z,6)
{}

DU-Chains, UD-Chains, Webs

B2|z>2

B3|lvy=x+1

entry

Z>1|B1
X=1 x=2|B4
z

X-3
4

Z
B5| x

B6 Z=X+7

UD-chain(Z,1)
UD-chain(Z,2)
UD-chain(X,3)
UD-chain(X,5)

UD-chain(X,6)

43

DU-Chains, UD-Chains, Webs

B2|z>2

B3 Y=X+1

entry

z>1|B1
X=1 X =2|B4

Z=X-3
B5|x=4

B6|z=x+7

UD-chain(Z,1)
{
UD-chain(Z,2)
{
UD-chain(X,3)

{(X,2)}
UD-chain(X,5)

{(X,2),(X,4)}

UD-chain(X,6)
{(X,5)}

44

DU-Chains, UD-Chains, Webs

* How can we compute DU-chains?

* How can we compute UD-chains?

45

DU-Chains, UD-Chains, Webs

e A web for a variable is the maximal union of
intersecting du-chains

46

DU-Chains, UD-Chains, Webs

@ DU-chains

DU-chain(X,2) = {(X,3), (X,5)}
DU-chain(X,4) = {(X,5)}
DU-chain(X,5) = {(X,6)}
DU-chain(Y,3) = {}
DU-chain(z,5) = {}
DU-chain(Z,6) = {}

I

47

DU-Chains, UD-Chains, Webs

@ DU-chains

1. DU-chain(X,2) = {(X,3), (X,5)}
DU-chain(X.4) = {(X,5)}
DU-chain(X,5) = {(X,6)}

DU-chain(Y,3) = {}

(

(

DU-chain(Z,5) = {}

6. DU-chain(Z,6) = {}

X-3 Intersecting: 1 and 2 > web
4 consisting of defs 2 and 4,
uses 3 and 5

B6(z=X+7 Intersecting: 3 - web consisting of
def 5, use 6

48

Data-dependence Graph

A data-dependence graph
has one node for every
variable (basic block) and
one edge representing
the flow of data between
the two nodes

Different types of data
dependence
e Flow: defto use
e Anti: use to def
e QOut: def to def

Data-dependence Graph

Enp

X=2 B4

X =
Z

1
B2|z>2

Z=
B3[voxei] 85|

Data-dependence Graph

entry

Bl z>1|B1
X=11._ B4 X=1 X =2|B4
Z>2] e

1
>2 B2|z>2

B2

X-3
4

: ; Z
B3[v=x+1] B5|X

B6[7<-x17 \ B6[7<xq+7

Data-flow Wrap-up (for now)

* Why is straight propagation inefficient?

* What are ways to improve it?

52

