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Class 3

• Review; questions
• Basic Analyses (3)
• Assign (see Schedule for links)

• Representation and Analysis of Software 
(Sections 1-5)

• Additional readings: 
• Data-flow analysis
• Control/program-dependence analysis

• Problem Set 2:  due 9/1/09

22

Review, Questions?

• Data-flow analysis
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Data-flow Analysis

44

Introduction (overview)

Data-flow analysis provides information for these and other 
tasks by computing the flow of different types of data to 
points in the program
For structured programs, data-flow analysis can be 
performed on an AST; in general, intraprocedural
(global) data-flow analysis performed on the CFG
Exact solutions to most problems are undecidable—e.g.,

May depend on input
May depend on outcome of a conditional statement
May depend on termination of loop

Thus, we compute approximations to the exact solution
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Introduction (overview)

Approximate analysis can overestimate the solution:
Solution contains actual information plus some spurious 
information but does not omit any actual information
This type of information is safe or conservative

Approximate analysis can underestimate the solution:
Solution may not contains all information in the actual solution
This type of information in unsafe

For optimization, need safe, conservative analysis
For software engineering tasks, may be able to use 
unsafe analysis information
Biggest challenge for data-flow analysis:  provide safe 
but precise (i.e., minimize the spurious information) 
information in an efficient way
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Introduction (overview)

Approximate analysis can overestimate the solution:
Solution contains actual information plus some spurious 
information but does not omit any actual information
This type of information is safe or conservative

Approximate analysis can underestimate the solution:
Solution may not contains all information in the actual solution
This type of information in unsafe

For optimization, need safe, conservative analysis
For software engineering tasks, may be able to use 
unsafe analysis information
Biggest challenge for data-flow analysis:  provide safe 
but precise (i.e., minimize the spurious information) 
information in an efficient way
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Compute the flow of data to points 
in the program—e.g.,

Where does the assignment to I in 
statement 1 reach?
Where does the expression 
computed in statement 2 reach?
Which uses of variable J are 
reachable from the end of B1?
Is the value of variable I live after 
statement 3?

Interesting points before and after 
basic blocks or statements

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4

Introduction (overview)
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Data-flow Problems (reaching 
definitions)

A definition of a variable or memory location is 
a point or statement where that variable gets 
a value—e.g., input statement, assignment 
statement.

A definition of A reaches a point p if there exists 
a control-flow path in the CFG from the 
definition to p with no other definitions of A 
on the path (called a definition-clear path)

Such a path may exist in the graph but may not 
be executable (i.e., there may be no input to 
the program that will cause it to be 
executed); such a path is infeasible. 

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4
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Data-flow Problems (reaching 
definitions)

Where are the definitions in the 
program?

Of variable I:  
Of variable J: 

Which basic blocks (before block)  do 
these definitions reach?

Def 1 reaches   
Def 2 reaches  
Def 3 reaches  
Def 4 reaches  
Def 5 reaches  

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4
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Graph for examples

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4
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Data-flow Problems (reaching 
definitions)

Where are the definitions in the 
program?

Of variable I:  1, 3
Of variable J:  2, 4, 5

Which basic blocks (before block)  do 
these definitions reach?

Def 1 reaches  B2  
Def 2 reaches B1, B2, B3
Def 3 reaches B1, B3, B4
Def 4 reaches B4
Def 5 reaches exit

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4
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Iterative Data-flow Analysis (reaching 
definitions)

Method:
1. Compute two kinds of local information (i.e., 

within a basic block) 
GEN[B] is the set of definitions that are created 
(generated) within B
KILL[B] is the set of definitions that, if they 
reach the point before B (i.e., the beginning of 
B) won’t reach the end of B or
PRSV[B] is the set of definitions that are 
preserved (not killed) by B

2. Compute two other sets by propagation
IN[B] is the set of definitions that reach the 
beginning of B; also RCHin[B]
OUT[B] is the set of definitions that reach the 
end of B; also RCHout[B]

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4
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Method (cont’d):
3. Propagation method:

Initialize the IN[B], OUT[B] sets for all B
Iterate over all B until there are no 
changes to the IN[B], OUT[B] sets
On each iteration, visit all B, and compute 
IN[B], OUT[B] as

IN[B] =  U OUT[P], P is a 
predecessor of B

OUT[B] = GEN[B] U (IN[B] ∩ PRSV[B]) 
or

OUT[B] = GEN[B] U (IN[B] – Kill[B])  

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reaching 
definitions)
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1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reaching 
definitions)
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Iterative Data-flow Analysis (reaching 
definitions)Init

GEN
Init

KILL
Init
IN

Init
OUT

Iter1
IN

Iter1
OUT

Iter2
IN

Iter2
OUT

1

2

3

4

1616

Data-flow for example (set approach)

All entries are sets; sets in red indicate changes 
from last iteration thus, requiring another 
iteration of the algorithm

Init
GEN

Init
KILL

Init
IN

Init
OUT

Iter1
IN

Iter1
OUT

Iter2
IN

Iter2
OUT

1 1,2 3,4,5 -- 1,2 3 1,2 2,3 1,2

2 3 1 -- 3 1,2 2,3 1,2 2,3

3 4 2,5 -- 4 2,3 3,4 2,3 3,4

4 5 2,4 -- 5 3,4 3,5 3,4 3,5

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reaching 
definitions)
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Data-flow for example (bit-vector approach)

4

3

2

1

Iter1
OUT

Iter1
IN

Init
OUT

Init
IN

Init
KILL

Init
GEN

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reaching 
definitions)
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Data-flow for example (bit-vector approach)

0010100110000010000001010000014

0011001100000100000001001000103

0110011000001000000010000001002

1100000100110000000000111110001

Iter1
OUT

Iter1
IN

Init
OUT

Init
IN

Init
KILL

Init
GEN

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reaching 
definitions)
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algorithm ReachingDefinitions
Input: CFG w/GEN[B], KILL[B] for all B
Output: IN[B], OUT[B] for all B
Method: Described on slides 17, 18
begin ReachingDefinitions

IN[B]=empty; OUT[B]=GEN[B], for all B;  change = true
while change do begin

Change = false
foreach B do begin

In[B] = union OUT[P], P is a predecessor of B
Oldout = OUT[B]
OUT[B] = GEN[B] union (IN[B] – Kill[B])
if OUT[B] != Oldout then change = true

endfor
endwhile

end Reaching Definitions

Iterative Data-flow Analysis (reaching 
definitions)
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Questions about algorithm:

1. Is the algorithm guaranteed to converge?  Why or why not?

2. What is the worst-case time complexity of the algorithm?

3. What is the worst-case space complexity of the algorithm?

4. How does depth-first ordering improve the worst-case time 
complexity?

Iterative Data-flow Analysis (reaching 
definitions)
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A use of a variable or memory location is a 
point or statement where that variable is 
referenced by not changed --- e.g., used in a 
computation, used in a conditional, output

A use of A is reachable from a point p if there 
exists a control-flow path in the CFG from 
the p to the use with no definitions of A on 
the path

Reachable uses also called upwards exposed 
uses

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := 1 + J

5.  J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reachable 
uses)
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Where are the uses in the 
program?

Of variable I:   2.1
Of variable J:   4.2, 5.1

From which basic blocks (end 
of block) are these uses 
reachable?
Use 2.1 is reachable from entry
Use 4.2 is reachable from B1, B2, B3
Use 5.1 is reachable from B4

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := 1 + J

5.  J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reachable 
uses)
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Where are the uses in the 
program?

Of variable I:   2.1 
Of variable J:   4.2, 5.1

From which basic blocks (end 
of block) are these uses 
reachable?

Use 4.2 is reachable from B1, B2, 
B3
Use 5.1 is reachable from B3

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := 1 + J

5.  J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reachable 
uses)
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Method:
1. Compute two kinds of local information (i.e., 

within a basic block) 
GEN[B] is the set of uses that are created 
(generated) within B and can be reached from 
the beginning of B (called upwards exposed 
uses); sometimes called USE[B]
KILL[B] is the set of uses that, if they can be 
reached from the end of B, they cannot be 
reached from the beginning of B; sometimes 
called DEF[B]     

2. Compute two other sets by propagation
IN[B] is the set of uses that can be reached 
from the end of B
OUT[B] is the set of uses that can be reached 
from the beginning of B

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := 1 + J

5.  J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reachable 
uses)
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Method (cont’d):
3. Propagation method:

Initialize the IN[B], OUT[B] sets for all B
Iterate over all B until there are no 
changes to the IN[B], OUT[B] sets
On each iteration, visit all B, and compute 
IN[B], OUT[B] as
IN[B] =  union OUT[S], S is a successor of 
B
OUT[B] = GEN[B] union (IN[B] – Kill[B])

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := 1 + J

5.  J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reachable 
uses)
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Method (cont’d):
3. Propagation method:

Initialize the IN[B], OUT[B] sets for all B
Iterate over all B until there are no 
changes to the IN[B], OUT[B] sets
On each iteration, visit all B, and compute 
IN[B], OUT[B] as
IN[B] =  union OUT[S], S is a successor of 
B
OUT[B] = GEN[B] union (IN[B] – Kill[B])  

1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := 1 + J

5.  J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reachable 
uses)
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Questions about algorithm:

1. Is the algorithm guaranteed to converge?  Why or why not?

2. What is the worst-case time complexity of the algorithm?

3. What is the worst-case space complexity of the algorithm?

4. How does depth-first ordering improve the w-c time 
complexity?

Iterative Data-flow Analysis (reachable 
uses)
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Similarities between RD and RU

Differences between RD and RU

reverse depth-first (reverse topological)

Iterative Data-flow Analysis (reachable 
uses)
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Similarities between RD and RU 
Local information (GEN and KILL) computed for each B
IN and OUT sets defined:  IN at point where data flows into B 
from outside B; OUT at point where data flow out of B
Flow into block computed as union of predecessors in flow
Iteration until no more changes

Differences between RD and RU
RD flow is forward; RU flow is backward
RD best ordering is depth-first (topological); RU best ordering is 
reverse depth-first (reverse topological)

Iterative Data-flow Analysis (reachable 
uses)

30

Intuition for algorithm
N is set of nodes in CFG with En, Ex
initialize domin(En) to {En}; change to false
Initialize domin(n) to N for all n != En
iterate over all n (except En) until no 
change in domin sets 

assign N to T
compute domin(n) by first taking the 
intersection of T and domin(p), forall p, a 
predecessor of n 
then add n to T (this is new domin(n))
If T != domin(n), a change has occurred

assign T to domin(n)
change is true

1

2 3

4 5

6

78

Ex

En

Iterative Data-flow Analysis 
(dominators)
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1

2 3

4 5

6

78

Ex

En

Iterative Data-flow Analysis 
(dominators)

Dom as iterative data-flow:
1. Compute two kinds of local information (i.e., 

within a basic block) 
GEN[B]
KILL[B]

2. Compute two other sets by propagation
IN[B]
of B

OUT[B]  
Initialize  
Iterate over all B
IN[B] or OUT[B]

On each iteration, visit all B, and compute 
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1

2 3

4 5

6

78

Ex

En

Iterative Data-flow Analysis 
(dominators)

Dom as iterative data-flow:
1. Compute two kinds of local information (i.e., 

within a basic block) 
GEN[B] is the node itself
KILL[B] is empty

2. Compute two other sets by propagation
IN[B] is the set of dominators of nodes that are 

predecessors of B
OUT[B] is the set of dominators of B
Initialize the IN[B], OUT[B] sets for all B
Iterate over all B until there are no changes in IN[B] 

or OUT[B]
On each iteration, visit all B, and compute IN[B] as 

intersection of OUT[P], P a predecessor of B; 
compute OUT[B] as union of IN[B] and GEN[B] 
(because KILL[B] is empty)
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Data-flow Framework
<answered in class>

Iterative Data-flow Analysis 
(generalization)

34

1. Data-flow for nodes 1, 2, 3 never changes 
but is computed on every iteration of the 
algorithm

1

return f2

i=2

i<=m
return m

fib(m)

f0=0

m<=1

f1=1

i=i+1

f1=f2

f0=f1

f2=f0+f1T

T F

F

2

3

4 5

6
8

7 10

11

9
12

Other Types of Data-flow Analysis 
(worklist)
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1

return f2

i=2

i<=m
return m

fib(m)

f0=0

m<=1

f1=1

i=i+1

f1=f2

f0=f1

f2=f0+f1T

T F

F

2

3

4 5

6
8

7 10

11

9
12

Other Types of Data-flow Analysis 
(worklist)

2. Nodes involved in the computation 
may be a small subset of the nodes 
in the graph; for example, what if 
only want to compute  reaching 
definitions for f1

36

Other Types of Data-flow Analysis 
(worklist)

algorithm RDWorklist
Input: GEN[B], KILL[B] for all B
output reaching definitions for each B
Method:

initialize IN[B], OUT[B] for all B; add successors of B involved
initially involved in computation to worklist W

repeat
remove B from W
Oldout=OUT[B]
compute IN[B], OUT[B]
if oldout != OUT[B] then add successors of B to W endif

until W is empty
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1

return f2

i=2

i<=m
return m

fib(m)

f0=0

m<=1

f1=1

i=i+1

f1=f2

f0=f1

f2=f0+f1T

T F

F

2

3

4 5

6
8

7 10

11

9
12

Other Types of Data-flow Analysis 
(worklist)

Compute RD for f1 using RDWorklist
GEN[3] is {3}, GEN[10] is {10}, KILL[3] is {10}, 
KILL[10] is {3}
add successors of 3, 10 to W
remove 4 from W, compute IN[4], OUT[4], etc
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3,553,53,45--2,454

3,42,33,42,34--2,543

2,31,22,31,23--132

1,22,31,231,2--3,4,51,21

Iter2
OUT

Iter2
IN

Iter1
OUT

Iter1
IN

Init
OUT

Init
IN

Init
KILL

Init
GEN1.  I := 2

2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4

Other Types of Data-flow Analysis 
(incremental)

What if stmt 4 changes to J := I + 1?
What if stmt 4 changes to I := J + 1;
What if stmt 4 changes to J := J –1?
Etc
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1.  I := 2
2.  J := I + 1

3.  I := 1

4.  J := J + 1

5.  J := J - 4

B1

B2

B3

B4

Other Types of Data-flow Analysis 
(demand)

What if want data flow for one 
statement only—e.g., find reaching 
definitions for B3?
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DU-Chains, UD-Chains, Webs

A definition-use chain or DU-chain for a 
definition D of variable v connects the D to all 
uses of v that it can reach
A use-definition chain or UD-chain for a use U of 
variable v connects U to all definitions of v that 
reach it
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DU-Chains, UD-Chains, Webs

DU-chain(X,2)

DU-chain(X,4)

DU-chain(X,5)

DU-chain(Y,3)

DU-chain(Z,5)

DU-chain(Z,6)

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4
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DU-Chains, UD-Chains, Webs

DU-chain(X,2)
{(X,3), (X,5)}

DU-chain(X,4)
{(X,5)}

DU-chain(X,5)
{(X,6)}

DU-chain(Y,3)
{}

DU-chain(Z,5)
{}

DU-chain(Z,6)
{}

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4
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DU-Chains, UD-Chains, Webs

UD-chain(Z,1)

UD-chain(Z,2)

UD-chain(X,3)

UD-chain(X,5)

UD-chain(X,6)

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4

44

DU-Chains, UD-Chains, Webs

UD-chain(Z,1)
{}

UD-chain(Z,2)
{}

UD-chain(X,3)
{(X,2)}

UD-chain(X,5)
{(X,2),(X,4)}

UD-chain(X,6)
{(X,5)}

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4
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DU-Chains, UD-Chains, Webs

How can we compute DU-chains?

How can we compute UD-chains?

46

DU-Chains, UD-Chains, Webs

A web for a variable is the maximal union of 
intersecting du-chains
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DU-Chains, UD-Chains, Webs

DU-chains
1. DU-chain(X,2) = {(X,3), (X,5)}
2. DU-chain(X,4) = {(X,5)}
3. DU-chain(X,5) = {(X,6)}
4. DU-chain(Y,3) = {}
5. DU-chain(Z,5) = {}
6. DU-chain(Z,6) = {}

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4
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DU-Chains, UD-Chains, Webs

DU-chains
1. DU-chain(X,2) = {(X,3), (X,5)}
2. DU-chain(X,4) = {(X,5)}
3. DU-chain(X,5) = {(X,6)}
4. DU-chain(Y,3) = {}
5. DU-chain(Z,5) = {}
6. DU-chain(Z,6) = {}

Intersecting:  1 and 2 web 
consisting of defs 2 and 4, 
uses 3 and 5

Intersecting: 3 web consisting of 
def 5, use 6

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4
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Data-dependence Graph

A data-dependence graph
has one node for every 
variable (basic block) and 
one edge representing 
the flow of data between 
the two nodes

Different types of data 
dependence

Flow:  def to use
Anti:  use to def
Out: def to def 

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4
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Data-dependence Graph

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4
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Data-dependence Graph

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4
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Data-flow Wrap-up (for now)

Why is straight propagation inefficient?

What are ways to improve it? 


