
11

Class 3

• Review; questions
• Basic Analyses (3)
• Assign (see Schedule for links)

• Representation and Analysis of Software
(Sections 1-5)

• Additional readings:
• Data-flow analysis
• Control/program-dependence analysis

• Problem Set 2: due 9/1/09

22

Review, Questions?

• Data-flow analysis

33

Data-flow Analysis

44

Introduction (overview)

Data-flow analysis provides information for these and other
tasks by computing the flow of different types of data to
points in the program
For structured programs, data-flow analysis can be
performed on an AST; in general, intraprocedural
(global) data-flow analysis performed on the CFG
Exact solutions to most problems are undecidable—e.g.,

May depend on input
May depend on outcome of a conditional statement
May depend on termination of loop

Thus, we compute approximations to the exact solution

55

Introduction (overview)

Approximate analysis can overestimate the solution:
Solution contains actual information plus some spurious
information but does not omit any actual information
This type of information is safe or conservative

Approximate analysis can underestimate the solution:
Solution may not contains all information in the actual solution
This type of information in unsafe

For optimization, need safe, conservative analysis
For software engineering tasks, may be able to use
unsafe analysis information
Biggest challenge for data-flow analysis: provide safe
but precise (i.e., minimize the spurious information)
information in an efficient way

66

Introduction (overview)

Approximate analysis can overestimate the solution:
Solution contains actual information plus some spurious
information but does not omit any actual information
This type of information is safe or conservative

Approximate analysis can underestimate the solution:
Solution may not contains all information in the actual solution
This type of information in unsafe

For optimization, need safe, conservative analysis
For software engineering tasks, may be able to use
unsafe analysis information
Biggest challenge for data-flow analysis: provide safe
but precise (i.e., minimize the spurious information)
information in an efficient way

77

Compute the flow of data to points
in the program—e.g.,

Where does the assignment to I in
statement 1 reach?
Where does the expression
computed in statement 2 reach?
Which uses of variable J are
reachable from the end of B1?
Is the value of variable I live after
statement 3?

Interesting points before and after
basic blocks or statements

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

Introduction (overview)

88

Data-flow Problems (reaching
definitions)

A definition of a variable or memory location is
a point or statement where that variable gets
a value—e.g., input statement, assignment
statement.

A definition of A reaches a point p if there exists
a control-flow path in the CFG from the
definition to p with no other definitions of A
on the path (called a definition-clear path)

Such a path may exist in the graph but may not
be executable (i.e., there may be no input to
the program that will cause it to be
executed); such a path is infeasible.

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

99

Data-flow Problems (reaching
definitions)

Where are the definitions in the
program?

Of variable I:
Of variable J:

Which basic blocks (before block) do
these definitions reach?

Def 1 reaches
Def 2 reaches
Def 3 reaches
Def 4 reaches
Def 5 reaches

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

1010

Graph for examples

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

1111

Data-flow Problems (reaching
definitions)

Where are the definitions in the
program?

Of variable I: 1, 3
Of variable J: 2, 4, 5

Which basic blocks (before block) do
these definitions reach?

Def 1 reaches B2
Def 2 reaches B1, B2, B3
Def 3 reaches B1, B3, B4
Def 4 reaches B4
Def 5 reaches exit

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

1212

Iterative Data-flow Analysis (reaching
definitions)

Method:
1. Compute two kinds of local information (i.e.,

within a basic block)
GEN[B] is the set of definitions that are created
(generated) within B
KILL[B] is the set of definitions that, if they
reach the point before B (i.e., the beginning of
B) won’t reach the end of B or
PRSV[B] is the set of definitions that are
preserved (not killed) by B

2. Compute two other sets by propagation
IN[B] is the set of definitions that reach the
beginning of B; also RCHin[B]
OUT[B] is the set of definitions that reach the
end of B; also RCHout[B]

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

1313

Method (cont’d):
3. Propagation method:

Initialize the IN[B], OUT[B] sets for all B
Iterate over all B until there are no
changes to the IN[B], OUT[B] sets
On each iteration, visit all B, and compute
IN[B], OUT[B] as

IN[B] = U OUT[P], P is a
predecessor of B

OUT[B] = GEN[B] U (IN[B] ∩ PRSV[B])
or

OUT[B] = GEN[B] U (IN[B] – Kill[B])

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reaching
definitions)

1414

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reaching
definitions)

1515

Iterative Data-flow Analysis (reaching
definitions)Init

GEN
Init

KILL
Init
IN

Init
OUT

Iter1
IN

Iter1
OUT

Iter2
IN

Iter2
OUT

1

2

3

4

1616

Data-flow for example (set approach)

All entries are sets; sets in red indicate changes
from last iteration thus, requiring another
iteration of the algorithm

Init
GEN

Init
KILL

Init
IN

Init
OUT

Iter1
IN

Iter1
OUT

Iter2
IN

Iter2
OUT

1 1,2 3,4,5 -- 1,2 3 1,2 2,3 1,2

2 3 1 -- 3 1,2 2,3 1,2 2,3

3 4 2,5 -- 4 2,3 3,4 2,3 3,4

4 5 2,4 -- 5 3,4 3,5 3,4 3,5

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reaching
definitions)

17

Data-flow for example (bit-vector approach)

4

3

2

1

Iter1
OUT

Iter1
IN

Init
OUT

Init
IN

Init
KILL

Init
GEN

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reaching
definitions)

18

Data-flow for example (bit-vector approach)

0010100110000010000001010000014

0011001100000100000001001000103

0110011000001000000010000001002

1100000100110000000000111110001

Iter1
OUT

Iter1
IN

Init
OUT

Init
IN

Init
KILL

Init
GEN

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reaching
definitions)

19

algorithm ReachingDefinitions
Input: CFG w/GEN[B], KILL[B] for all B
Output: IN[B], OUT[B] for all B
Method: Described on slides 17, 18
begin ReachingDefinitions

IN[B]=empty; OUT[B]=GEN[B], for all B; change = true
while change do begin

Change = false
foreach B do begin

In[B] = union OUT[P], P is a predecessor of B
Oldout = OUT[B]
OUT[B] = GEN[B] union (IN[B] – Kill[B])
if OUT[B] != Oldout then change = true

endfor
endwhile

end Reaching Definitions

Iterative Data-flow Analysis (reaching
definitions)

20

Questions about algorithm:

1. Is the algorithm guaranteed to converge? Why or why not?

2. What is the worst-case time complexity of the algorithm?

3. What is the worst-case space complexity of the algorithm?

4. How does depth-first ordering improve the worst-case time
complexity?

Iterative Data-flow Analysis (reaching
definitions)

21

A use of a variable or memory location is a
point or statement where that variable is
referenced by not changed --- e.g., used in a
computation, used in a conditional, output

A use of A is reachable from a point p if there
exists a control-flow path in the CFG from
the p to the use with no definitions of A on
the path

Reachable uses also called upwards exposed
uses

1. I := 2
2. J := I + 1

3. I := 1

4. J := 1 + J

5. J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reachable
uses)

22

Where are the uses in the
program?

Of variable I: 2.1
Of variable J: 4.2, 5.1

From which basic blocks (end
of block) are these uses
reachable?
Use 2.1 is reachable from entry
Use 4.2 is reachable from B1, B2, B3
Use 5.1 is reachable from B4

1. I := 2
2. J := I + 1

3. I := 1

4. J := 1 + J

5. J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reachable
uses)

23

Where are the uses in the
program?

Of variable I: 2.1
Of variable J: 4.2, 5.1

From which basic blocks (end
of block) are these uses
reachable?

Use 4.2 is reachable from B1, B2,
B3
Use 5.1 is reachable from B3

1. I := 2
2. J := I + 1

3. I := 1

4. J := 1 + J

5. J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reachable
uses)

24

Method:
1. Compute two kinds of local information (i.e.,

within a basic block)
GEN[B] is the set of uses that are created
(generated) within B and can be reached from
the beginning of B (called upwards exposed
uses); sometimes called USE[B]
KILL[B] is the set of uses that, if they can be
reached from the end of B, they cannot be
reached from the beginning of B; sometimes
called DEF[B]

2. Compute two other sets by propagation
IN[B] is the set of uses that can be reached
from the end of B
OUT[B] is the set of uses that can be reached
from the beginning of B

1. I := 2
2. J := I + 1

3. I := 1

4. J := 1 + J

5. J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reachable
uses)

25

Method (cont’d):
3. Propagation method:

Initialize the IN[B], OUT[B] sets for all B
Iterate over all B until there are no
changes to the IN[B], OUT[B] sets
On each iteration, visit all B, and compute
IN[B], OUT[B] as
IN[B] = union OUT[S], S is a successor of
B
OUT[B] = GEN[B] union (IN[B] – Kill[B])

1. I := 2
2. J := I + 1

3. I := 1

4. J := 1 + J

5. J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reachable
uses)

26

Method (cont’d):
3. Propagation method:

Initialize the IN[B], OUT[B] sets for all B
Iterate over all B until there are no
changes to the IN[B], OUT[B] sets
On each iteration, visit all B, and compute
IN[B], OUT[B] as
IN[B] = union OUT[S], S is a successor of
B
OUT[B] = GEN[B] union (IN[B] – Kill[B])

1. I := 2
2. J := I + 1

3. I := 1

4. J := 1 + J

5. J := J - 4

B1

B2

B3

B4

Iterative Data-flow Analysis (reachable
uses)

27

Questions about algorithm:

1. Is the algorithm guaranteed to converge? Why or why not?

2. What is the worst-case time complexity of the algorithm?

3. What is the worst-case space complexity of the algorithm?

4. How does depth-first ordering improve the w-c time
complexity?

Iterative Data-flow Analysis (reachable
uses)

28

Similarities between RD and RU

Differences between RD and RU

reverse depth-first (reverse topological)

Iterative Data-flow Analysis (reachable
uses)

29

Similarities between RD and RU
Local information (GEN and KILL) computed for each B
IN and OUT sets defined: IN at point where data flows into B
from outside B; OUT at point where data flow out of B
Flow into block computed as union of predecessors in flow
Iteration until no more changes

Differences between RD and RU
RD flow is forward; RU flow is backward
RD best ordering is depth-first (topological); RU best ordering is
reverse depth-first (reverse topological)

Iterative Data-flow Analysis (reachable
uses)

30

Intuition for algorithm
N is set of nodes in CFG with En, Ex
initialize domin(En) to {En}; change to false
Initialize domin(n) to N for all n != En
iterate over all n (except En) until no
change in domin sets

assign N to T
compute domin(n) by first taking the
intersection of T and domin(p), forall p, a
predecessor of n
then add n to T (this is new domin(n))
If T != domin(n), a change has occurred

assign T to domin(n)
change is true

1

2 3

4 5

6

78

Ex

En

Iterative Data-flow Analysis
(dominators)

31

1

2 3

4 5

6

78

Ex

En

Iterative Data-flow Analysis
(dominators)

Dom as iterative data-flow:
1. Compute two kinds of local information (i.e.,

within a basic block)
GEN[B]
KILL[B]

2. Compute two other sets by propagation
IN[B]
of B

OUT[B]
Initialize
Iterate over all B
IN[B] or OUT[B]

On each iteration, visit all B, and compute

32

1

2 3

4 5

6

78

Ex

En

Iterative Data-flow Analysis
(dominators)

Dom as iterative data-flow:
1. Compute two kinds of local information (i.e.,

within a basic block)
GEN[B] is the node itself
KILL[B] is empty

2. Compute two other sets by propagation
IN[B] is the set of dominators of nodes that are

predecessors of B
OUT[B] is the set of dominators of B
Initialize the IN[B], OUT[B] sets for all B
Iterate over all B until there are no changes in IN[B]

or OUT[B]
On each iteration, visit all B, and compute IN[B] as

intersection of OUT[P], P a predecessor of B;
compute OUT[B] as union of IN[B] and GEN[B]
(because KILL[B] is empty)

33

Data-flow Framework
<answered in class>

Iterative Data-flow Analysis
(generalization)

34

1. Data-flow for nodes 1, 2, 3 never changes
but is computed on every iteration of the
algorithm

1

return f2

i=2

i<=m
return m

fib(m)

f0=0

m<=1

f1=1

i=i+1

f1=f2

f0=f1

f2=f0+f1T

T F

F

2

3

4 5

6
8

7 10

11

9
12

Other Types of Data-flow Analysis
(worklist)

35

1

return f2

i=2

i<=m
return m

fib(m)

f0=0

m<=1

f1=1

i=i+1

f1=f2

f0=f1

f2=f0+f1T

T F

F

2

3

4 5

6
8

7 10

11

9
12

Other Types of Data-flow Analysis
(worklist)

2. Nodes involved in the computation
may be a small subset of the nodes
in the graph; for example, what if
only want to compute reaching
definitions for f1

36

Other Types of Data-flow Analysis
(worklist)

algorithm RDWorklist
Input: GEN[B], KILL[B] for all B
output reaching definitions for each B
Method:

initialize IN[B], OUT[B] for all B; add successors of B involved
initially involved in computation to worklist W

repeat
remove B from W
Oldout=OUT[B]
compute IN[B], OUT[B]
if oldout != OUT[B] then add successors of B to W endif

until W is empty

37

1

return f2

i=2

i<=m
return m

fib(m)

f0=0

m<=1

f1=1

i=i+1

f1=f2

f0=f1

f2=f0+f1T

T F

F

2

3

4 5

6
8

7 10

11

9
12

Other Types of Data-flow Analysis
(worklist)

Compute RD for f1 using RDWorklist
GEN[3] is {3}, GEN[10] is {10}, KILL[3] is {10},
KILL[10] is {3}
add successors of 3, 10 to W
remove 4 from W, compute IN[4], OUT[4], etc

38

3,553,53,45--2,454

3,42,33,42,34--2,543

2,31,22,31,23--132

1,22,31,231,2--3,4,51,21

Iter2
OUT

Iter2
IN

Iter1
OUT

Iter1
IN

Init
OUT

Init
IN

Init
KILL

Init
GEN1. I := 2

2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

Other Types of Data-flow Analysis
(incremental)

What if stmt 4 changes to J := I + 1?
What if stmt 4 changes to I := J + 1;
What if stmt 4 changes to J := J –1?
Etc

39

1. I := 2
2. J := I + 1

3. I := 1

4. J := J + 1

5. J := J - 4

B1

B2

B3

B4

Other Types of Data-flow Analysis
(demand)

What if want data flow for one
statement only—e.g., find reaching
definitions for B3?

40

DU-Chains, UD-Chains, Webs

A definition-use chain or DU-chain for a
definition D of variable v connects the D to all
uses of v that it can reach
A use-definition chain or UD-chain for a use U of
variable v connects U to all definitions of v that
reach it

41

DU-Chains, UD-Chains, Webs

DU-chain(X,2)

DU-chain(X,4)

DU-chain(X,5)

DU-chain(Y,3)

DU-chain(Z,5)

DU-chain(Z,6)

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4

42

DU-Chains, UD-Chains, Webs

DU-chain(X,2)
{(X,3), (X,5)}

DU-chain(X,4)
{(X,5)}

DU-chain(X,5)
{(X,6)}

DU-chain(Y,3)
{}

DU-chain(Z,5)
{}

DU-chain(Z,6)
{}

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4

43

DU-Chains, UD-Chains, Webs

UD-chain(Z,1)

UD-chain(Z,2)

UD-chain(X,3)

UD-chain(X,5)

UD-chain(X,6)

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4

44

DU-Chains, UD-Chains, Webs

UD-chain(Z,1)
{}

UD-chain(Z,2)
{}

UD-chain(X,3)
{(X,2)}

UD-chain(X,5)
{(X,2),(X,4)}

UD-chain(X,6)
{(X,5)}

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4

45

DU-Chains, UD-Chains, Webs

How can we compute DU-chains?

How can we compute UD-chains?

46

DU-Chains, UD-Chains, Webs

A web for a variable is the maximal union of
intersecting du-chains

47

DU-Chains, UD-Chains, Webs

DU-chains
1. DU-chain(X,2) = {(X,3), (X,5)}
2. DU-chain(X,4) = {(X,5)}
3. DU-chain(X,5) = {(X,6)}
4. DU-chain(Y,3) = {}
5. DU-chain(Z,5) = {}
6. DU-chain(Z,6) = {}

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4

48

DU-Chains, UD-Chains, Webs

DU-chains
1. DU-chain(X,2) = {(X,3), (X,5)}
2. DU-chain(X,4) = {(X,5)}
3. DU-chain(X,5) = {(X,6)}
4. DU-chain(Y,3) = {}
5. DU-chain(Z,5) = {}
6. DU-chain(Z,6) = {}

Intersecting: 1 and 2 web
consisting of defs 2 and 4,
uses 3 and 5

Intersecting: 3 web consisting of
def 5, use 6

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4

49

Data-dependence Graph

A data-dependence graph
has one node for every
variable (basic block) and
one edge representing
the flow of data between
the two nodes

Different types of data
dependence

Flow: def to use
Anti: use to def
Out: def to def

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4

50

Data-dependence Graph

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4

51

Data-dependence Graph

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4

entry

Z > 1

X = 1
Z > 2

Y = X + 1

X = 2

Z = X – 3
X = 4

Z = X + 7

exit

B1

B3

B2

B6

B5

B4

52

Data-flow Wrap-up (for now)

Why is straight propagation inefficient?

What are ways to improve it?

