Class 4

• Basic Analyses (4)
• Assign (see Schedule for links)
 • Readings
 • Control/program-dependence analysis
 • Static single assignment and control dependence
• Problem Set 2: due 9/1/09
Control-dependence Analysis

1. Introduction (motivation, overview)
2. Computation of control-dependence using FOW
3. Computation of control-dependence using dominance frontiers (later)

Introduction

Intuition

- A statement S_1 is control dependent on a statement S_2 if the outcome of S_2 determines whether S_1 is reached in the CFG.
- What are the control dependences for each statement in the CFG at right?
Introduction

Intuition

- A statement S1 is control dependent on a statement S2 if the outcome of S2 determines whether S1 is reached in the CFG.
- What are the control dependences for each statement in the CFG at right?
 - entry, B1, exit – entering code
 - B2 – B1T
 - B3 – B2T
 - B4 – B1F
 - B5 – B2F, B1F
 - B6 – B2F, B1F

Definition (formal)

1. Let G be a CFG, with X and Y nodes in G. Y is control-dependent on X iff
 1. There exists a directed path P from X to Y with any Z in P (excluding X and Y) postdominated by Y and
 2. X is not postdominated by Y.

Definition (informal)

There are two edges out of Y; traversing one edge always leads to X, traversing the other edge the other may not lead to X.
Introduction

Definition (formal)
1. Let G be a CFG, with X and Y nodes in G. Y is control-dependent on X iff
 1. There exists a directed path P from X to Y with any Z in P (excluding X and Y) postdominated by Y and
 2. X is not postdominated by Y

Definition (informal)
There are two edges out of X
• traversing one edge always leads to Y,
• traversing the other edge the other may not lead to Y

Computing Control-dependence Using FOW

1. Augment the CFG by adding a node Start with edge (Start, entry) labeled “T” and edge (Start, exit) labeled “F”; call this AugCFG
Computing Control-dependence Using FOW

1. Augment the CFG by adding a node Start with edge (Start, entry) labeled “T” and edge (Start, exit) labeled “F”; call this AugCFG.

2. Construct the postdominator tree for AugCFG.
Computing Control-dependence Using FOW

2. Construct the postdominor tree for AugCFG

3. Consider edges in AugCFG that are labeled (i.e., those nodes on which another node might be control dependent); call this set S

4. For AugCFG S consists of (Start, En), (1,2), (1,4), (2,3), (2,5) (i.e., those edges (A,B) in the AugCFG for which B is not an ancestor of A in Pdom tree)
5. Consider each edge (A,B) in S, those nodes in the Pdom tree from B to least common ancestor L of A and B
 - Including L if L is A
 - Excluding L if L is not A

<table>
<thead>
<tr>
<th>Edge</th>
<th>L</th>
<th>Nodes</th>
<th>CD on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start, En</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computing Control-dependence Using FOW

Table: Edges and Control Dependence

<table>
<thead>
<tr>
<th>Edge</th>
<th>L</th>
<th>Nodes</th>
<th>CD on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start, En</td>
<td>Ex</td>
<td>En, 1</td>
<td>Start, T</td>
</tr>
<tr>
<td>1, 2</td>
<td>Ex</td>
<td>2</td>
<td>1, T</td>
</tr>
<tr>
<td>1, 4</td>
<td>Ex</td>
<td>4, 5, 6</td>
<td>1, F</td>
</tr>
<tr>
<td>2, 3</td>
<td>Ex</td>
<td>3</td>
<td>2, T</td>
</tr>
<tr>
<td>2, 5</td>
<td>Ex</td>
<td>5, 6</td>
<td>2, F</td>
</tr>
</tbody>
</table>

Diagram: Pdom Tree

- **Start**
- **2**
- **3**
- **6**
- **1**
- **5**
- **En**
- **4**

Computing Control-dependence Using FOW

Table: Edges and Control Dependence

<table>
<thead>
<tr>
<th>Edge</th>
<th>L</th>
<th>Nodes</th>
<th>CD on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start, En</td>
<td>Ex</td>
<td>En, 1</td>
<td>Start, T</td>
</tr>
<tr>
<td>1, 2</td>
<td>Ex</td>
<td>2</td>
<td>1, T</td>
</tr>
<tr>
<td>1, 4</td>
<td>Ex</td>
<td>4, 5, 6</td>
<td>1, F</td>
</tr>
<tr>
<td>2, 3</td>
<td>Ex</td>
<td>3</td>
<td>2, T</td>
</tr>
<tr>
<td>2, 5</td>
<td>Ex</td>
<td>5, 6</td>
<td>2, F</td>
</tr>
</tbody>
</table>

Diagram: Control-dependence graph

- **Start**
- **T**
- **2**
- **F**
- **3**
- **F**
- **6**
- **F**
- **5**
- **4**
Computing Control-dependence Using FOW

7. Add region nodes to CDG

8. Create new regions if necessary
Computing Control-dependence Using FOW

7. Merge region nodes if possible

8. Create new regions if necessary

Program-dependence Graph

- A program dependence graph (PDG) for a program P is the combination of the control-dependence graph for P and the data-dependence graph for P
- A PDG contains nodes representing statements in P, edges representing control dependence between nodes, and edges representing data dependence between nodes
Create PDG for Program

Program-dependence Graph

Completed in class
1. A = 1
2. B = 2
3. C = A + B
4. D = C - A
5. D = B * D
6. D = A + B
7. E = E + 1
8. B = A + B
9. E = C - A
10. A = B * D
11. B = A - D

Completed in class