Class 6

- Review; questions
- Assign (see Schedule for links)
 - Slicing overview (cont'd)
 - Problem Set 3: due 9/8/09

Program Slicing

1

Program Slicing

- 1. Slicing overview
- 2. Types of slices, levels of slices
- 3. Methods for computing slices
- 4. Interprocedural slicing (later)

3

Slicing Overview

Types of slices

- Backward static slice
- Executable slice
- Forward static slice
- Dynamic slice
- Execution slice
- Generic algorithm for static slice

Levels of slices

- Intraprocedural
- Interprocedural

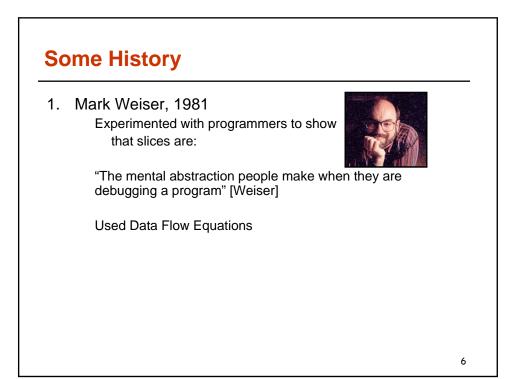
Authors of articles

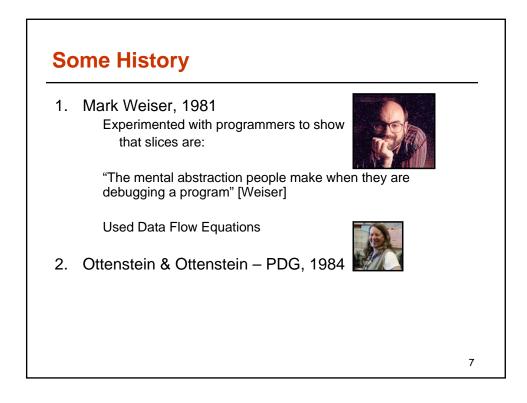
- Program Slicing
- A Survey of Program Slicing Techniques

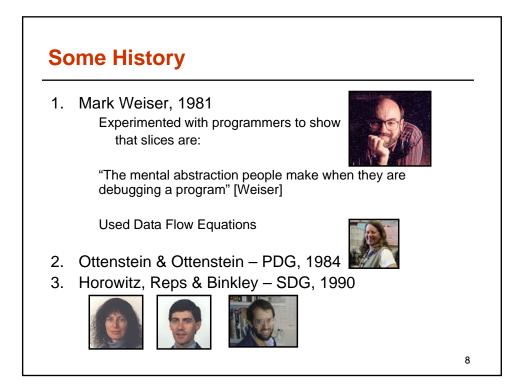
- 1. Agrawal
- 2. Binkley
- 3. Gallagher
- 4. Gupta
- 5. Horgan
- 6. Horwitz
- 7. Korel
- 8. Laski
- 9. K. Ottenstein
- 10. L. Ottenstein
- 11. Reps
- 12. Soffa
- 13. Tip
- 13. HP
- 14. Weiser

Some History

- Who first defined slicing?
- Why?







Applications

- Debugging
- Program Comprehension
- Reverse Engineering
- Program Testing
- Measuring Program—metrics
 - Coverage, Overlap, Clustering
- Refactoring

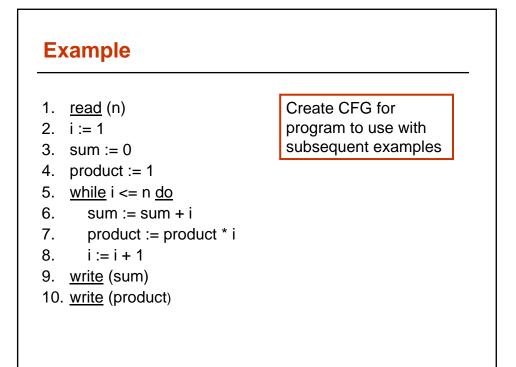
Static VS Dynamic Slicing

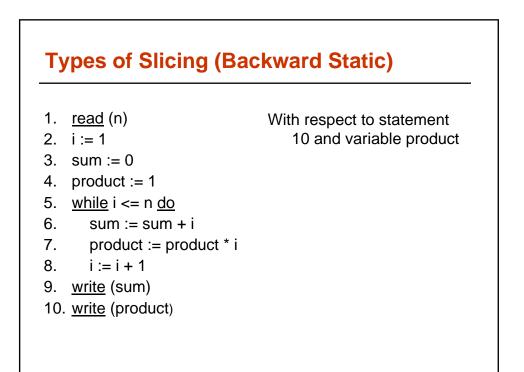
Static Slicing

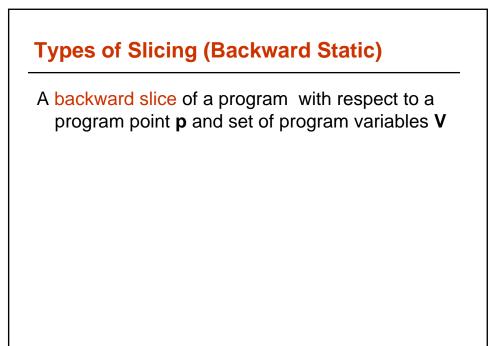
- Statically available information only
- No assumptions made on input
- Computed slice is in general inaccurate
- Identifying minimal slices is an undecidable problem → approximations
- · Results may not be useful

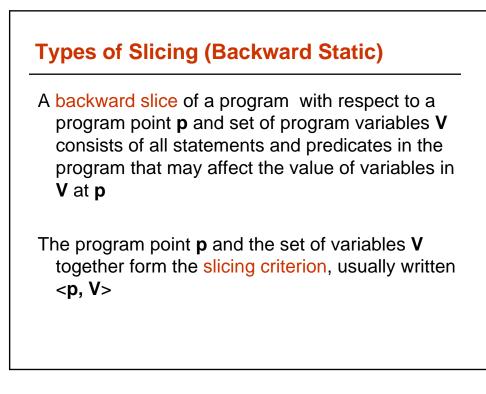
Dynamic Slicing

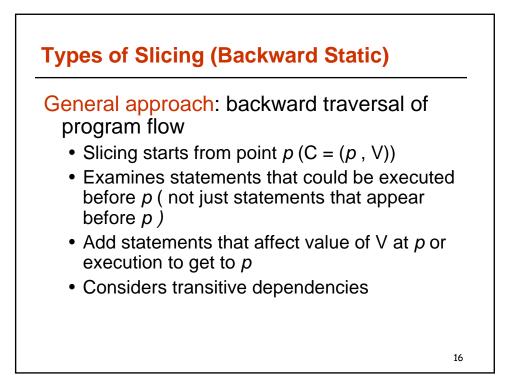
- · Computed on a given input
- Actual instead of may
- · Useful for applications such as debugging and testing

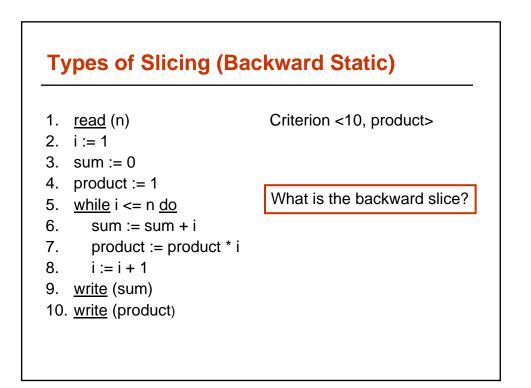


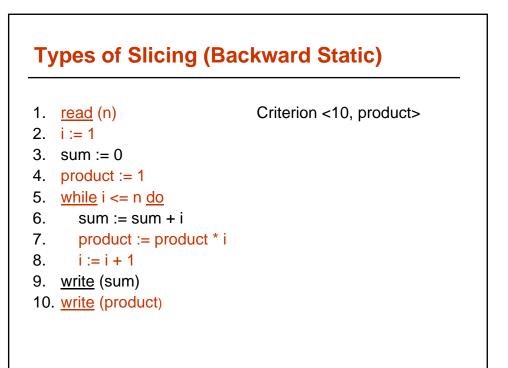


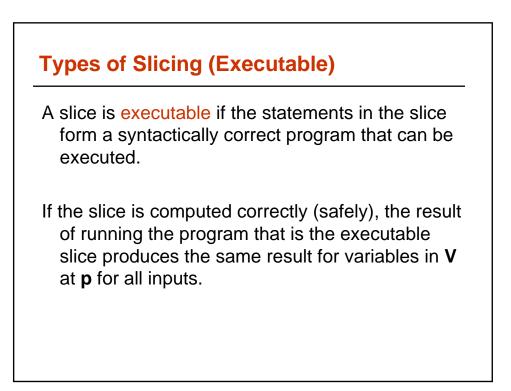


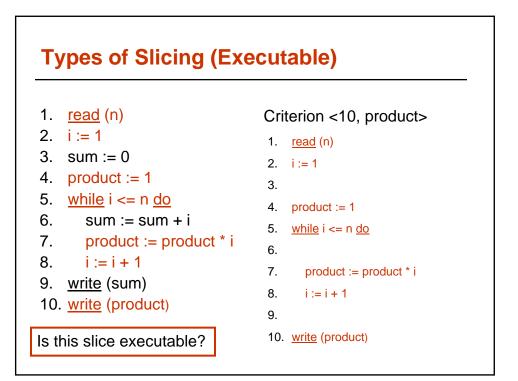


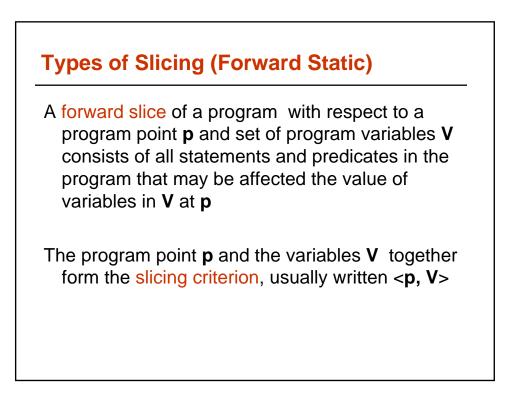


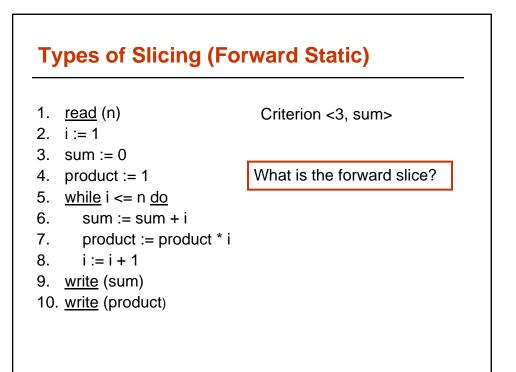


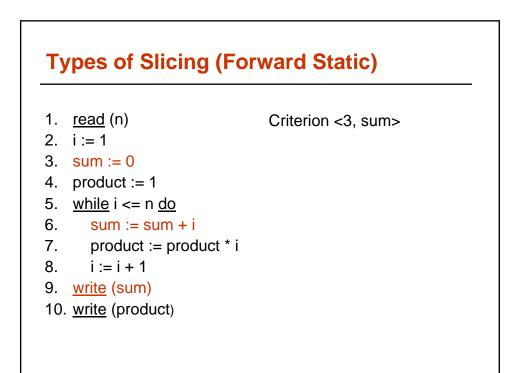


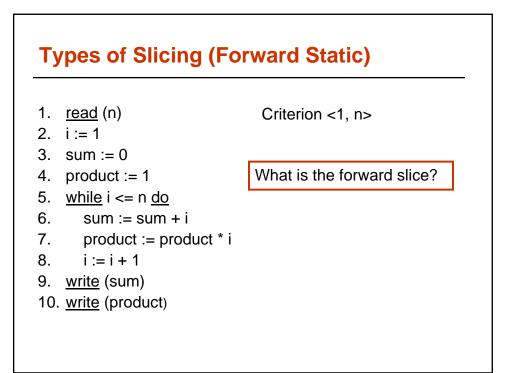


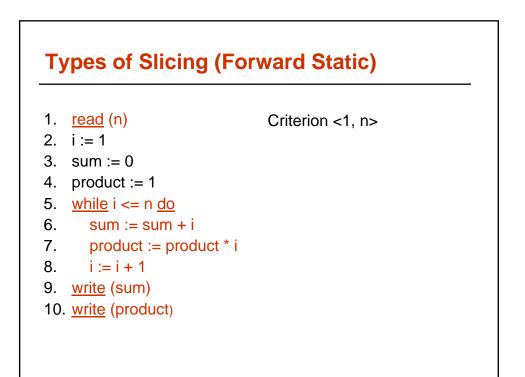






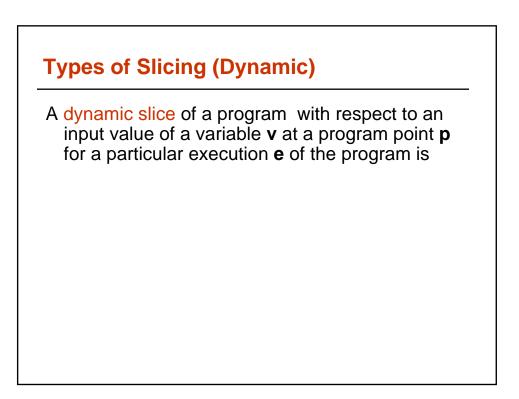


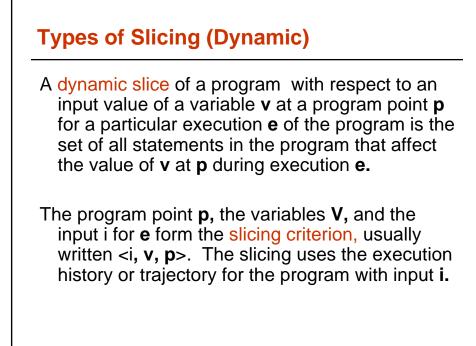


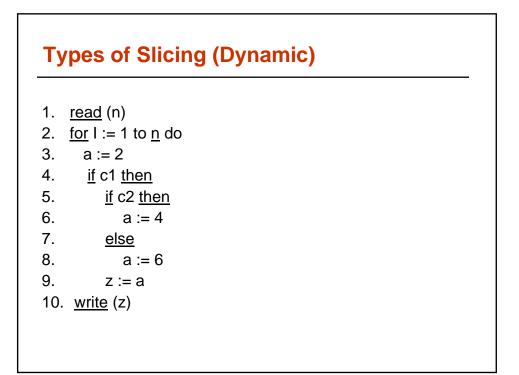


A dynamic slice of a program with respect to an input value of a variable **v** at a program point **p** for a particular execution **e** of the program is the set of all statements in the program that affect the value of **v** at **p**.

The program point **p**, the variables **V**, and the input i for **e** form the slicing criterion, usually written <i, **v**, **p**>. The slicing uses the execution history or trajectory for the program with input **i**.







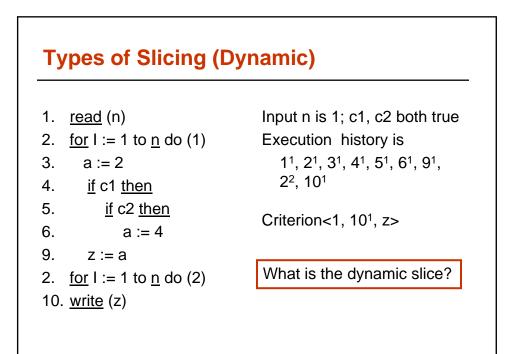
Types of Slicing (Dynamic)

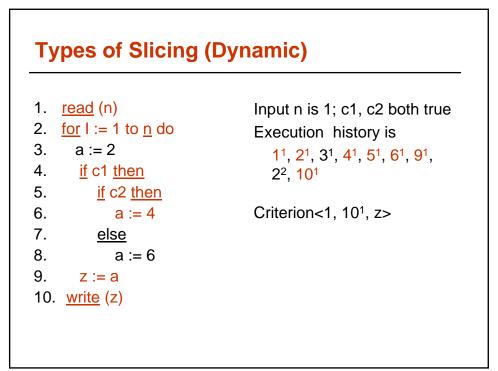
```
1. <u>read</u> (n)
2. for I := 1 to <u>n</u> do
3.
        a := 2
4.
         <u>if</u> c1 <u>then</u>
             <u>if</u> c2 <u>then</u>
5.
                 a := 4
6.
7.
             else
8.
                 a := 6
9.
             z := a
10. <u>write</u> (z)
```

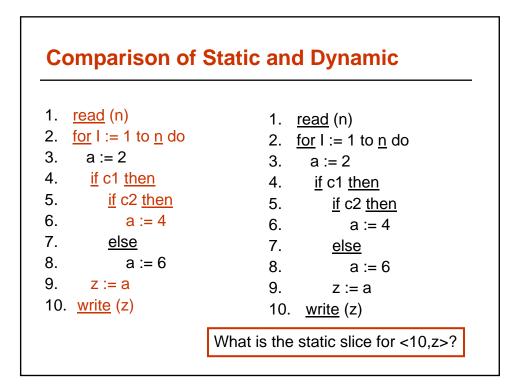
Input n is 1; c1, c2 both true Execution history is 1¹, 2¹, 3¹, 4¹, 5¹, 6¹, 9¹, 2², 10¹

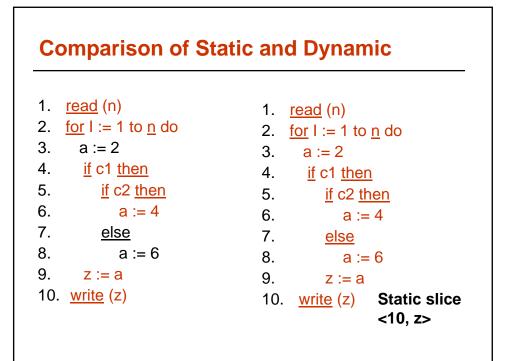
Criterion<1, 10¹, z>

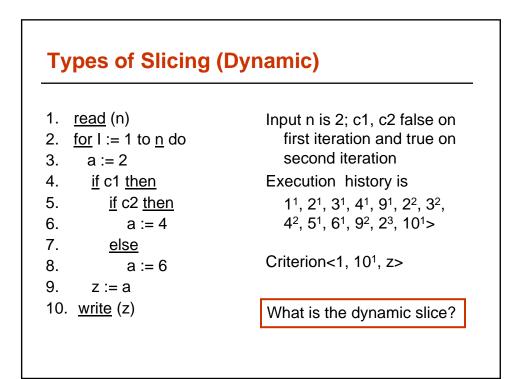
What is the dynamic slice?

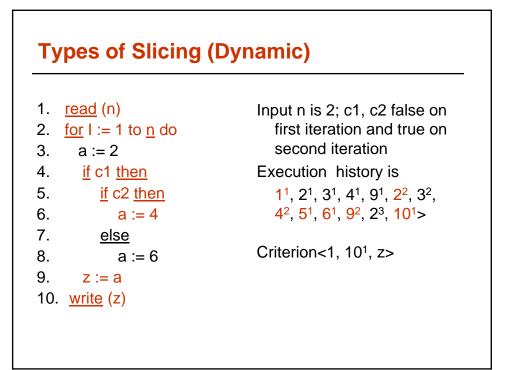


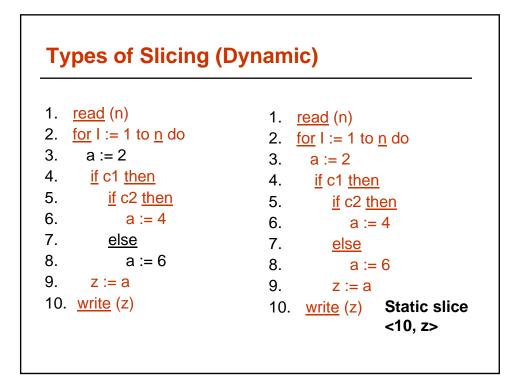


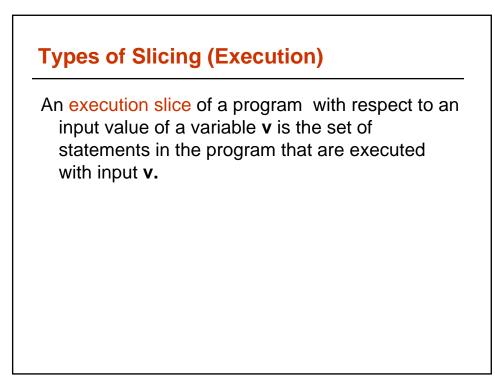


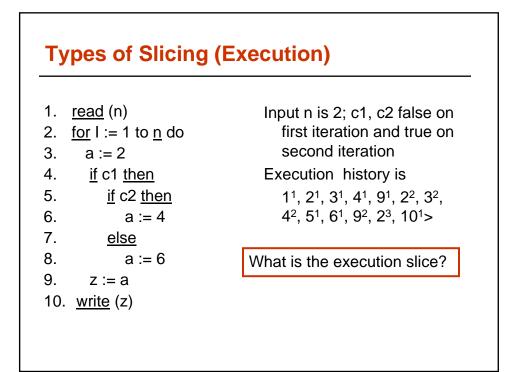


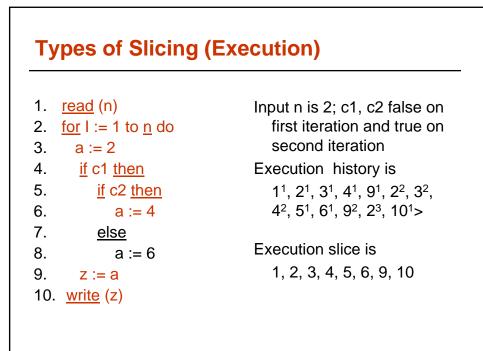


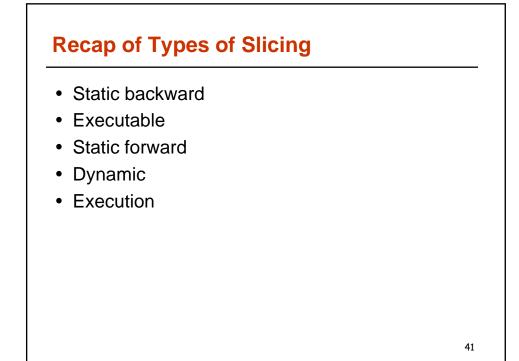


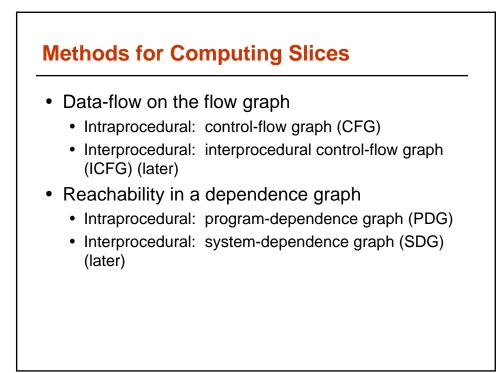


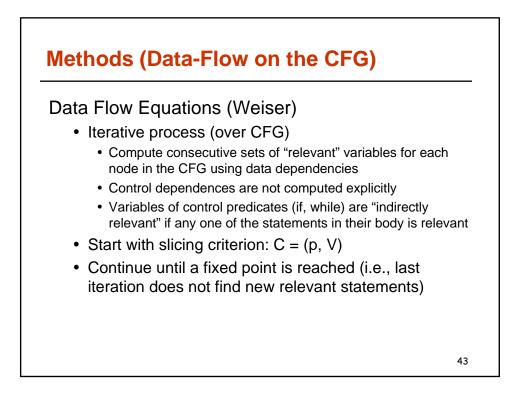


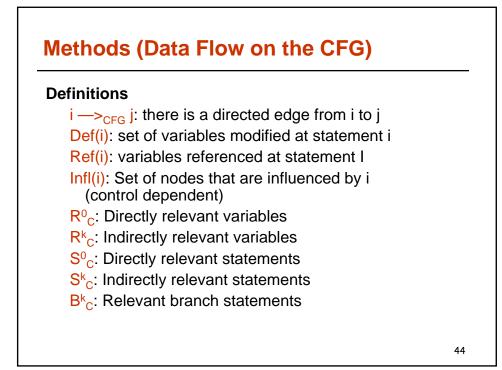


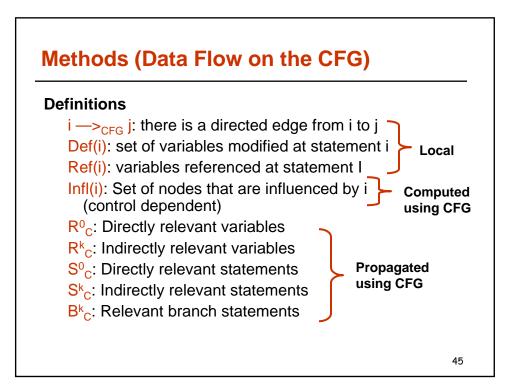


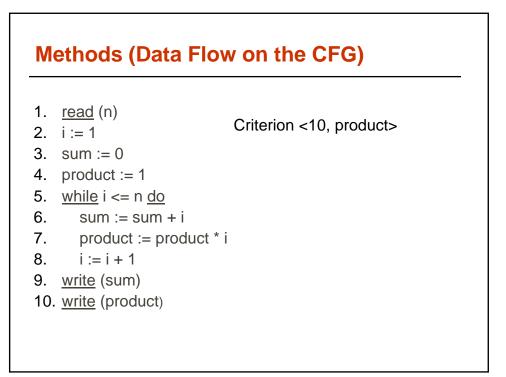


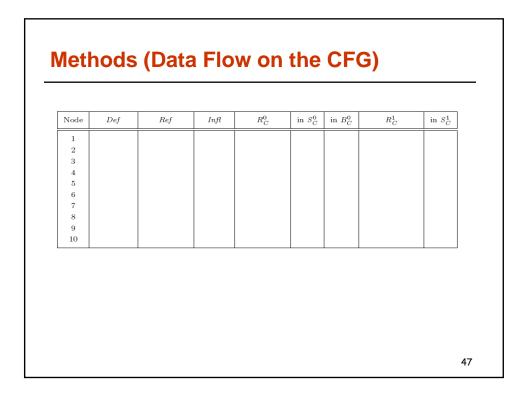


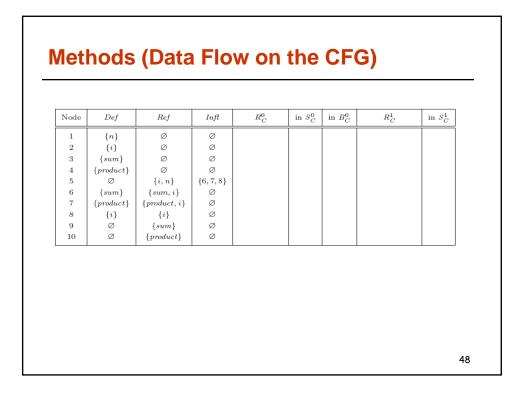










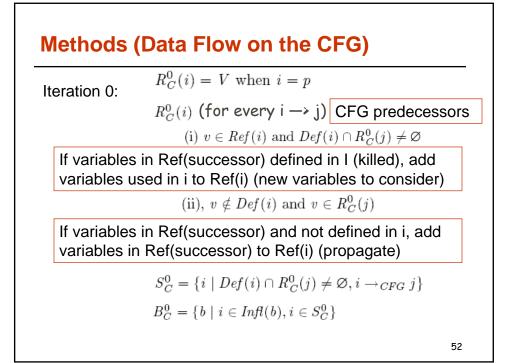


Iteration 0:	$R_C^0(i) = V$ when $i = p$
	Variables used at criterion point are added; looking for definitions that affect these uses
	$R_C^0(i)$ (for every i -> j)
	(i) $v \in Ref(i)$ and $Def(i) \cap R^0_C(j) \neq \emptyset$
	(ii), $v \notin Def(i)$ and $v \in R^0_C(j)$
	$S_C^0 = \{i \mid Def(i) \cap R_C^0(j) \neq \emptyset, i \to_{CFG} j\}$
	$B^0_C = \{b \mid i \in \mathit{Infl}(b), i \in S^0_C\}$

Methods (Data Flow on the CFG)

Iteration 0:	$R_C^0(i) = V$ when $i = p$
	$R_C^0(i)$ (for every i —> j) CFG predecessors
	(i) $v \in Ref(i)$ and $Def(i) \cap R^0_C(j) \neq \emptyset$
	(ii), $v \notin Def(i)$ and $v \in R^0_C(j)$
	$S^0_C = \{i \mid Def(i) \cap R^0_C(j) \neq \emptyset, i \rightarrow_{CFG} j\}$
	$B_C^0 = \{ b \mid i \in Infl(b), i \in S_C^0 \}$

$R_C^0(i)$ (for every i \rightarrow , (i) $v \in Ref(i)$ and De	j) CFG predecessors
(i) $v \in Ref(i)$ and De	UF 1
(1) 0 0 1005 (0) 4114 20	$f(\overline{i}) \cap R^0_C(j) \neq \emptyset$
If variables in Ref(successor) defined variables used in i to Ref(i) (new var	iables to consider)
(ii), $v \notin Def(i)$ and v	$v \in R^{o}_C(j)$
$S_C^0 = \{i \mid Def(i) \cap R_C^0(j)$	$\neq \varnothing, i \rightarrow_{CFG} j \}$
$B^0_C = \{ b \mid i \in Infl(b), i \in S$	S^0_C }



teration 0:	$R_C^0(i) = V$ when $i = p$
	$R^0_C(i)$ (for every i —> j)
	(i) $v \in Ref(i)$ and $Def(i) \cap R^0_C(j) \neq \emptyset$
	(ii), $v \notin Def(i)$ and $v \in R^0_C(j)$
	$S_C^0 = \{i \mid Def(i) \cap R_C^0(j) \neq \emptyset, i \to_{CFG} j\}$
	a variable in R of successor, then add to S slice) because it has influence on variable
	$B_C^0 = \{ b \mid i \in Infl(b), i \in S_C^0 \}$

Methods (Data Flow on the CFG)

Iteration 0:

 $\begin{aligned} R^0_C(i) &= V \text{ when } i = p \\ R^0_C(i) \text{ (for every i } \rightarrow j\text{)} \\ \text{(i) } v \in Ref(i) \text{ and } Def(i) \cap R^0_C(j) \neq \emptyset \\ \text{(ii), } v \notin Def(i) \text{ and } v \in R^0_C(j) \\ S^0_C &= \{i \mid Def(i) \cap R^0_C(j) \neq \emptyset, i \rightarrow_{CFG} j\} \\ B^0_C &= \{b \mid i \in Infl(b), i \in S^0_C\} \end{aligned}$

If i has an influence (control dependence), it is in this set.

Iteration 0:	$R_C^0(i) = V$ when $i = p$
	$R^0_C(i)$ (for every i —> _{CFG} j)
	(i) $v \in Ref(i)$ and $Def(i) \cap R^0_C(j) \neq \emptyset$
	(ii), $v \notin Def(i)$ and $v \in R^0_C(j)$
	$S^0_C = \{i \mid Def(i) \cap R^0_C(j) \neq \varnothing, i \rightarrow_{CFG} j\}$
	$B^0_C = \{b \mid i \in \mathit{Infl}(b), i \in S^0_C\}$
Iteration k+1:	
	$R_C^{k+1}(i) = R_C^k(i) \cup \bigcup_{b \in B_C^k} R_{(b, \operatorname{Ref}(b))}^0(i)$
	$S_C^{k+1} = \{i \mid Def(i) \cap R_C^{k+1}(j) \neq \emptyset, i \rightarrow_{CFG} j\} \cup B_C^k$
	$B_{C}^{k+1} = \{b \mid i \in Infl(b), i \in S_{C}^{k+1}\}$

