
1

11

Class 6

• Review; questions
• Assign (see Schedule for links)

• Slicing overview (cont’d)
• Problem Set 3: due 9/8/09

2

Program Slicing

2

3

Program Slicing

1. Slicing overview
2. Types of slices, levels of slices
3. Methods for computing slices
4. Interprocedural slicing (later)

4

Slicing Overview

Types of slices
Backward static slice
Executable slice
Forward static slice
Dynamic slice
Execution slice
Generic algorithm for static slice

Levels of slices
Intraprocedural
Interprocedural

Authors of articles
Program Slicing
A Survey of Program Slicing
Techniques

1. Agrawal
2. Binkley
3. Gallagher
4. Gupta
5. Horgan
6. Horwitz
7. Korel
8. Laski
9. K. Ottenstein
10. L. Ottenstein
11. Reps
12. Soffa
13. Tip
14. Weiser

3

5

Some History

Who first defined slicing?
Why?

6

Some History

1. Mark Weiser, 1981
Experimented with programmers to show

that slices are:

“The mental abstraction people make when they are
debugging a program” [Weiser]

Used Data Flow Equations

4

7

Some History

1. Mark Weiser, 1981
Experimented with programmers to show

that slices are:

“The mental abstraction people make when they are
debugging a program” [Weiser]

Used Data Flow Equations

2. Ottenstein & Ottenstein – PDG, 1984

8

Some History

1. Mark Weiser, 1981
Experimented with programmers to show

that slices are:

“The mental abstraction people make when they are
debugging a program” [Weiser]

Used Data Flow Equations

2. Ottenstein & Ottenstein – PDG, 1984
3. Horowitz, Reps & Binkley – SDG, 1990

5

9

Applications

Debugging
Program Comprehension
Reverse Engineering
Program Testing
Measuring Program—metrics

Coverage, Overlap, Clustering
Refactoring

11

Static VS Dynamic Slicing

Static Slicing
Statically available information only
No assumptions made on input
Computed slice is in general inaccurate
Identifying minimal slices is an undecidable problem
approximations
Results may not be useful

Dynamic Slicing
Computed on a given input
Actual instead of may
Useful for applications such as debugging and testing

6

Example

1. read (n)
2. i := 1
3. sum := 0
4. product := 1
5. while i <= n do
6. sum := sum + i
7. product := product * i
8. i := i + 1
9. write (sum)
10. write (product)

Create CFG for
program to use with
subsequent examples

Types of Slicing (Backward Static)

1. read (n)
2. i := 1
3. sum := 0
4. product := 1
5. while i <= n do
6. sum := sum + i
7. product := product * i
8. i := i + 1
9. write (sum)
10. write (product)

With respect to statement
10 and variable product

7

A backward slice of a program with respect to a
program point p and set of program variables V
consists of all statements and predicates in the
program that may affect the value of variables in
V at p

The program point p and the set of variables V
together form the slicing criterion, usually written
<p, V>

Types of Slicing (Backward Static)

A backward slice of a program with respect to a
program point p and set of program variables V
consists of all statements and predicates in the
program that may affect the value of variables in
V at p

The program point p and the set of variables V
together form the slicing criterion, usually written
<p, V>

Types of Slicing (Backward Static)

8

16

Types of Slicing (Backward Static)

General approach: backward traversal of
program flow

Slicing starts from point p (C = (p , V))
Examines statements that could be executed
before p (not just statements that appear
before p)
Add statements that affect value of V at p or
execution to get to p
Considers transitive dependencies

Types of Slicing (Backward Static)

1. read (n)
2. i := 1
3. sum := 0
4. product := 1
5. while i <= n do
6. sum := sum + i
7. product := product * i
8. i := i + 1
9. write (sum)
10. write (product)

Criterion <10, product>

What is the backward slice?

9

1. read (n)
2. i := 1
3. sum := 0
4. product := 1
5. while i <= n do
6. sum := sum + i
7. product := product * i
8. i := i + 1
9. write (sum)
10. write (product)

Types of Slicing (Backward Static)

Criterion <10, product>

A slice is executable if the statements in the slice
form a syntactically correct program that can be
executed.

If the slice is computed correctly (safely), the result
of running the program that is the executable
slice produces the same result for variables in V
at p for all inputs.

Types of Slicing (Executable)

10

1. read (n)
2. i := 1
3. sum := 0
4. product := 1
5. while i <= n do
6. sum := sum + i
7. product := product * i
8. i := i + 1
9. write (sum)
10. write (product)

Criterion <10, product>
1. read (n)

2. i := 1

3.

4. product := 1

5. while i <= n do

6.

7. product := product * i

8. i := i + 1

9.

10. write (product)

Types of Slicing (Executable)

Is this slice executable?

A forward slice of a program with respect to a
program point p and set of program variables V
consists of all statements and predicates in the
program that may be affected the value of
variables in V at p

The program point p and the variables V together
form the slicing criterion, usually written <p, V>

Types of Slicing (Forward Static)

11

1. read (n)
2. i := 1
3. sum := 0
4. product := 1
5. while i <= n do
6. sum := sum + i
7. product := product * i
8. i := i + 1
9. write (sum)
10. write (product)

Types of Slicing (Forward Static)

Criterion <3, sum>

What is the forward slice?

1. read (n)
2. i := 1
3. sum := 0
4. product := 1
5. while i <= n do
6. sum := sum + i
7. product := product * i
8. i := i + 1
9. write (sum)
10. write (product)

Types of Slicing (Forward Static)

Criterion <3, sum>

12

1. read (n)
2. i := 1
3. sum := 0
4. product := 1
5. while i <= n do
6. sum := sum + i
7. product := product * i
8. i := i + 1
9. write (sum)
10. write (product)

Types of Slicing (Forward Static)

Criterion <1, n>

What is the forward slice?

1. read (n)
2. i := 1
3. sum := 0
4. product := 1
5. while i <= n do
6. sum := sum + i
7. product := product * i
8. i := i + 1
9. write (sum)
10. write (product)

Types of Slicing (Forward Static)

Criterion <1, n>

13

A dynamic slice of a program with respect to an
input value of a variable v at a program point p
for a particular execution e of the program is the
set of all statements in the program that affect
the value of v at p.

The program point p, the variables V, and the
input i for e form the slicing criterion, usually
written <i, v, p>. The slicing uses the execution
history or trajectory for the program with input i.

Types of Slicing (Dynamic)

A dynamic slice of a program with respect to an
input value of a variable v at a program point p
for a particular execution e of the program is the
set of all statements in the program that affect
the value of v at p.

The program point p, the variables V, and the
input i for e form the slicing criterion, usually
written <i, v, p>. The slicing uses the execution
history or trajectory for the program with input i.

Types of Slicing (Dynamic)

14

A dynamic slice of a program with respect to an
input value of a variable v at a program point p
for a particular execution e of the program is the
set of all statements in the program that affect
the value of v at p during execution e.

The program point p, the variables V, and the
input i for e form the slicing criterion, usually
written <i, v, p>. The slicing uses the execution
history or trajectory for the program with input i.

Types of Slicing (Dynamic)

1. read (n)
2. for I := 1 to n do
3. a := 2
4. if c1 then
5. if c2 then
6. a := 4
7. else
8. a := 6
9. z := a
10. write (z)

Types of Slicing (Dynamic)

15

1. read (n)
2. for I := 1 to n do
3. a := 2
4. if c1 then
5. if c2 then
6. a := 4
7. else
8. a := 6
9. z := a
10. write (z)

Types of Slicing (Dynamic)

Input n is 1; c1, c2 both true
Execution history is

11, 21, 31, 41, 51, 61, 91,
22, 101

Criterion<1, 101, z>

What is the dynamic slice?

1. read (n)
2. for I := 1 to n do (1)
3. a := 2
4. if c1 then
5. if c2 then
6. a := 4
9. z := a
2. for I := 1 to n do (2)
10. write (z)

Types of Slicing (Dynamic)

Input n is 1; c1, c2 both true
Execution history is

11, 21, 31, 41, 51, 61, 91,
22, 101

Criterion<1, 101, z>

What is the dynamic slice?

16

1. read (n)
2. for I := 1 to n do
3. a := 2
4. if c1 then
5. if c2 then
6. a := 4
7. else
8. a := 6
9. z := a
10. write (z)

Types of Slicing (Dynamic)

Input n is 1; c1, c2 both true
Execution history is

11, 21, 31, 41, 51, 61, 91,
22, 101

Criterion<1, 101, z>

1. read (n)
2. for I := 1 to n do
3. a := 2
4. if c1 then
5. if c2 then
6. a := 4
7. else
8. a := 6
9. z := a
10. write (z)

Comparison of Static and Dynamic

1. read (n)
2. for I := 1 to n do
3. a := 2
4. if c1 then
5. if c2 then
6. a := 4
7. else
8. a := 6
9. z := a
10. write (z)

What is the static slice for <10,z>?

17

1. read (n)
2. for I := 1 to n do
3. a := 2
4. if c1 then
5. if c2 then
6. a := 4
7. else
8. a := 6
9. z := a
10. write (z)

Comparison of Static and Dynamic

1. read (n)
2. for I := 1 to n do
3. a := 2
4. if c1 then
5. if c2 then
6. a := 4
7. else
8. a := 6
9. z := a
10. write (z) Static slice

<10, z>

1. read (n)
2. for I := 1 to n do
3. a := 2
4. if c1 then
5. if c2 then
6. a := 4
7. else
8. a := 6
9. z := a
10. write (z)

Types of Slicing (Dynamic)

Input n is 2; c1, c2 false on
first iteration and true on
second iteration

Execution history is
11, 21, 31, 41, 91, 22, 32,
42, 51, 61, 92, 23, 101>

Criterion<1, 101, z>

What is the dynamic slice?

18

1. read (n)
2. for I := 1 to n do
3. a := 2
4. if c1 then
5. if c2 then
6. a := 4
7. else
8. a := 6
9. z := a
10. write (z)

Types of Slicing (Dynamic)

Input n is 2; c1, c2 false on
first iteration and true on
second iteration

Execution history is
11, 21, 31, 41, 91, 22, 32,
42, 51, 61, 92, 23, 101>

Criterion<1, 101, z>

1. read (n)
2. for I := 1 to n do
3. a := 2
4. if c1 then
5. if c2 then
6. a := 4
7. else
8. a := 6
9. z := a
10. write (z)

Types of Slicing (Dynamic)

1. read (n)
2. for I := 1 to n do
3. a := 2
4. if c1 then
5. if c2 then
6. a := 4
7. else
8. a := 6
9. z := a
10. write (z) Static slice

<10, z>

19

An execution slice of a program with respect to an
input value of a variable v is the set of
statements in the program that are executed
with input v.

Types of Slicing (Execution)

1. read (n)
2. for I := 1 to n do
3. a := 2
4. if c1 then
5. if c2 then
6. a := 4
7. else
8. a := 6
9. z := a
10. write (z)

Types of Slicing (Execution)

Input n is 2; c1, c2 false on
first iteration and true on
second iteration

Execution history is
11, 21, 31, 41, 91, 22, 32,
42, 51, 61, 92, 23, 101>

What is the execution slice?

20

1. read (n)
2. for I := 1 to n do
3. a := 2
4. if c1 then
5. if c2 then
6. a := 4
7. else
8. a := 6
9. z := a
10. write (z)

Types of Slicing (Execution)

Input n is 2; c1, c2 false on
first iteration and true on
second iteration

Execution history is
11, 21, 31, 41, 91, 22, 32,
42, 51, 61, 92, 23, 101>

Execution slice is
1, 2, 3, 4, 5, 6, 9, 10

41

Recap of Types of Slicing

Static backward
Executable
Static forward
Dynamic
Execution

21

Methods for Computing Slices

Data-flow on the flow graph
Intraprocedural: control-flow graph (CFG)
Interprocedural: interprocedural control-flow graph
(ICFG) (later)

Reachability in a dependence graph
Intraprocedural: program-dependence graph (PDG)
Interprocedural: system-dependence graph (SDG)
(later)

43

Methods (Data-Flow on the CFG)

Data Flow Equations (Weiser)
Iterative process (over CFG)

Compute consecutive sets of “relevant” variables for each
node in the CFG using data dependencies
Control dependences are not computed explicitly
Variables of control predicates (if, while) are “indirectly
relevant” if any one of the statements in their body is relevant

Start with slicing criterion: C = (p, V)
Continue until a fixed point is reached (i.e., last
iteration does not find new relevant statements)

22

44

Definitions
i —>CFG j: there is a directed edge from i to j
Def(i): set of variables modified at statement i
Ref(i): variables referenced at statement I
Infl(i): Set of nodes that are influenced by i

(control dependent)
R0

C: Directly relevant variables
Rk

C: Indirectly relevant variables
S0

C: Directly relevant statements
Sk

C: Indirectly relevant statements
Bk

C: Relevant branch statements

Methods (Data Flow on the CFG)

45

Definitions
i —>CFG j: there is a directed edge from i to j
Def(i): set of variables modified at statement i
Ref(i): variables referenced at statement I
Infl(i): Set of nodes that are influenced by i

(control dependent)
R0

C: Directly relevant variables
Rk

C: Indirectly relevant variables
S0

C: Directly relevant statements
Sk

C: Indirectly relevant statements
Bk

C: Relevant branch statements

Methods (Data Flow on the CFG)

Local

Computed
using CFG

Propagated
using CFG

23

Criterion <10, product>

Methods (Data Flow on the CFG)

1. read (n)
2. i := 1
3. sum := 0
4. product := 1
5. while i <= n do
6. sum := sum + i
7. product := product * i
8. i := i + 1
9. write (sum)
10. write (product)

47

Methods (Data Flow on the CFG)

24

48

Methods (Data Flow on the CFG)

49

Methods (Data Flow on the CFG)

Iteration 0:

(for every i —> j)

Variables used at criterion point are added;
looking for definitions that affect these uses

25

50

Methods (Data Flow on the CFG)

Iteration 0:
(for every i —> j) CFG predecessors

51

Methods (Data Flow on the CFG)

Iteration 0:
(for every i —> j) CFG predecessors

If variables in Ref(successor) defined in I (killed), add
variables used in i to Ref(i) (new variables to consider)

26

52

Methods (Data Flow on the CFG)

Iteration 0:
(for every i —> j) CFG predecessors

If variables in Ref(successor) defined in I (killed), add
variables used in i to Ref(i) (new variables to consider)

If variables in Ref(successor) and not defined in i, add
variables in Ref(successor) to Ref(i) (propagate)

53

Methods (Data Flow on the CFG)

Iteration 0:
(for every i —> j)

If i defined a variable in R of successor, then add to S
(this is the slice) because it has influence on variable

27

54

Methods (Data Flow on the CFG)

Iteration 0:
(for every i —> j)

If i has an influence (control dependence), it is in this
set.

55

Methods (Data Flow on the CFG)

Iteration 0:

Iteration k+1:

(for every i —>CFG j)

28

56

Methods (Data Flow on the CFG)

57

Methods (Data Flow on the CFG)

Note: You may not get these results for first iteration if
propagation is done in a different order.

