
1

Symbolic Execution

Saswat Anand
22/09/2009

Limitation of Dataflow Analysis

if(p < 10)

x = 1 i =10

if(p > 10)

x=x+1 j = i+1

Is the DU pair involving
variables I real?

No, because the path
is infeasible.

2

Outline
• Background

– feasible and infeasible program paths
– constraints, and constraint satisfiability

• Symbolic execution
– base idea
– handling of symbolic references

• Overview of compositional symbolic execution
• Overview of implementation of symbolic execution
• Limitations of symbolic execution
• Summary

Feasible and Infeasible Paths

• A path refers to a path in the (inter-
procedural) control-flow graph of the
program.

• A path is feasible if there exists an input I
to the program that covers the path; i.e.,
when program is executed with I as input,
the path is taken.

• A path is infeasible if there exists no input I
that covers the path.

3

Infeasible Paths
• Infeasible path does not imply

dead code; However dead
code implies infeasible path.

• In all real software, a very
large portion of the total no.
of paths are infeasible.

• Automatic test-input
generation does not scale
when there are large no. of
infeasible paths to the target
location that needs to be
covered.

If(sameGoto)
newTarget =

((IfStmt) stmtSeq[5]).getTarget();
else {

newTarget = next;
oldTarget =

((IfStmt) stmtSeq[5]).getTarget();
}
…
If(!sameGoto)

b.getUnits().insertAfter(…);
…

An example of infeasible path from soot.
A path that goes through the then branches
of both conditional stmt.s is infeasible.

Constraints
X > Y Λ Y+X ≤ 10

• X, Y are called free
variables.

• A solution of the
constraint is a set of
assignments, one for
each free variable that
makes the constraint
satisfiable.

• {X = 3, Y=2} is a solution.
• {X = 6, Y=5} is not a

solution.

More types of constraints
1. Linear constraint

• X > Y Λ Y+X ≤ 10
2. Non-linear constraint

• X * Y < 100
• X % 3 Λ Y > 10
• (X >> 3) < Y

3. Use of function symbols
• f(X) > 10 Λ (forall a. f(a) = a

+ 10)

4

Constraints (contd.)

• A decision procedure is a tool that can
decide if a constraint is satisfiable.

• A constraint solver is a tool that finds
satisfying assignments for a constraint, if it
is satisfiable.

• In general, checking constraint satisfiability
is undecidable.

Symbolic Execution
• Symbolic execution refers to execution of program with

symbols as argument.
• Unlike concrete execution, where the taken path is

determined by the input, in symbolic execution the
program can take any feasible path.

• During symbolic execution, program state consists of
– symbolic values for some memory locations
– path condition

• Path condition is a condition on the input symbols such
that if a path is feasible its path-condition is satisfiable.

• Solution of path-condition is an test-input that covers the
respective path.

5

Symbolic Execution

1 int x, y;
2 if(x > y){
3 x = x+y;
4 y = x – y;
5 x = x – y;
6 if(x > y)
7 assert false;
8 }
9 printf(x,y);

inputs that cover else branch
at stmt. 2:

x = ? y = ?

inputs that cover then branch
at 2 and else at 6:

x = ? y = ?

x=A,y=B

x=A+B,y=A
A>B

x=A+B,y=B
A>B

x=B,y=A
A>B

x=A,y=B
A>B

x=B,y=A
A>BΛB≤A

inputs that cover else branch
at stmt. 2:

x = 3 y = 4

One solution of the constraint A>B Λ B≤A is
A = 5, B = 1

inputs that cover then branch
at 2 and else at 6:

x = 5 y = 1

Symbolic Execution

1 int x, y;
2 if(x > y){
3 x = x+y;
4 y = x – y;
5 x = x – y;
6 if(x > y)
7 assert false;
8 }
9 printf(x,y);

inputs that cover else branch
at stmt. 2:

x = ? y = ?

inputs that cover then branch
at 2 and else at 6:

x = 5 y = 1

inputs that cover then branch
at 2 and then at 6:

x = ? y = ?

x=A,y=B

x=A+B,y=A
A>B

x=A+B,y=B
A>B

x=B,y=A
A>B
x=B,y=A
A>BΛB>A
UNSAT!

x=A,y=B
A>B

inputs that cover else branch
at stmt. 2:

x = 3 y = 4

Does not exist!

6

All-paths Symbolic Execution

int x, y;
if(x > y){

x = x+y;
y = x – y;
x = x – y;
if(x > y)

assert false;
}
printf(x,y);

input: x = 4, y = 3

output: 3, 4

input: x = A, y = B

output: A, B

Path-condition: A ≤ B

output: B, A

Path-condition: A>B Λ B ≤ A

Normal execution

Symbolic execution

x=A,y=B
PC: true

x=A,y=B
PC: A≤B

x=A+B,y=A
PC: A>B

x=A+B,y=B
PC: A>B

x=B,y=A
PC: A>B
x=B,y=A
PC: A>BΛB>A
UNSAT!

x=A,y=B
PC: A>B

x=B,y=A
PC: A>BΛB≤A

Handling Symbolic References
1 class Node {
2 int elem;
3 Node next;

4 foo(Node n1, Node n2){

5 if(n1 == null) return;

6 if(n2 == null) return;

7 if (n2.elem == 0)

8 return;

9 if (n1.next != null)
10 n1.next.elem = n1.elem -10;

11 assert(n2.elem != 0);

12 }

7

Handling Symbolic References

• setElem(H,n,e) – updates the elem field of node n in
heap H to value e; returns the updated heap

• getElem(H,n) – returns the value of elem field of
node n in heap H

• setNext(H,n,e), getNext(H,n) – likewise for next field

forall H, n. getElem(setElem(H,n,v),n) = v

forall H, n. getNext(setNext(H,n,v),n) = v

Invariants:

Handling Symbolic References

1 class Node {
2 int elem;
3 Node next;

4 foo(Node n1, Node n2){

5 if(n1 == null) return;

6 if(n2 == null) return;

7 if (n2.elem == 0)

8 return;

9 if (n1.next != null)
10 n1.next.elem = n1.elem -10;

11 assert(n2.elem != 0);

12 }

n1 ≠ null Λ
n2 ≠ null Λ
getElem(H1,n2) ≠ 0 Λ
getNext(H1,n1) ≠ null Λ
H2 = setElem(H1,

getNext(H1,n1),
getElem(H1,n1)-10) Λ

getElem(H2,n2) = 0

Path condition for the path
4-5-6-7-9-10-11

8

Compositional Symbolic Execution
• Goal: generate an input that

covers leads to execution of
error()

• No. of paths to error() = 250

• Symbolically executing each
path and checking its
feasibility does not scale!

• Key idea: compute function
summaries to be used at all
call-sites of the function

int abs(int x){
if(x >= 0)

return x;
else

return –x;
}

int sumAbs(int[] a){
int sum = 0;
for(int i = 0; i < 50; i++)

sum += abs(a[i]);
if(sum == 13)

error();
return sum;

}

Compositional Symbolic Execution
(contd.)

• Symbolically execute all
paths of callee function (e.g.,
abs) and compute a function
summary.

• For each path in a function,
the summary encodes path-
condition of each path and
the value returned on the
path.

• When symbolically executing
paths in caller function (e.g.,
sumAbs) reuse the summary
of the callee instead of
symbolically executing paths
in callee repeatedly.

int abs(int x){
if(x >= 0)

return x;
else

return –x;
}

int sumAbs(int[] a){
int sum = 0;
for(int i = 0; i < 50; i++)

sum += abs(a[i]);
if(sum == 13)

error();
return sum;

}

9

Compositional Symbolic Execution
(contd.)

int abs(int x){
if(x >= 0)

return x;
else

return –x;
}

int sumAbs(int[] a){
int sum = 0;
for(int i = 0; i < 50; i++)

sum += abs(a[i]);
if(sum == 13)

error();
return sum;

}

forall x. (x ≥ 0 Λ abs(x) = x) V
(x < 0 Λ abs(x) = -x)

summary of abs function:
2 paths to
symbolically
execute

No. of paths that lead to error() without
descending into abs function = 1

abs(a[0]) + abs(a[1]) + …+ abs(a[49]) = 13
Λ forall x. (x ≥ 0 Λ abs(x) = x) V

(x < 0 Λ abs(x) = -x)

path-condition of path leading to error

Implementation of Symbolic
Execution

• Transformation approach
– transform the program to another program that operates on

symbolic values such that execution of the transformed program
is equivalent to symbolic execution of the original program

– difficult to implement, portable solution, suitable for Java, .NET
• Instrumentation approach

– callback hooks are inserted in the program such that symbolic
execution is done in background during normal execution of
program

– easy to implement for C
• Customized runtime approach

– Customize the runtime (e.g., JVM) to support symbolic execution
– Applicable to Java, .NET, difficult to implement, flexible, not

portable

10

Implementation of Symbolic
Execution for Java (contd.)

void foo(int x, int y){
if(x > y){

x = x + y;
y = x – y;
x = x – y;
if(x > y)

assert false;
}

}

void foo(Expression x, Expression y){
if(_GT(x, y)){

x = _ADD(x, y);
y = _SUB(x, y);
x = _SUB(x, y);
if(_GT(x,y))

assert false;
}

}

original program transformed program

class Expression{
int concreteValue;
Operator op;
Expression leftOp;
Expression rightOp;
…

}

Applications of Symbolic Execution

• Test-input generation
• Bug finding
• Program verification
• Determining functional equivalence
• Worst case execution time estimation for

real-time software

11

Limitations of Symbolic Execution

• Limited by the power of constraint solver
– cannot handle non-linear and very complex

constraints
• Does not scale when number of infeasible

paths are large. (subject of ongoing
research in this area)

• Source code, or equivalent (e.g., Java
class files) is required for precise symbolic
execution

Path Explosion Problem

public void main(string s){

bool a = contains(s, "Hello");

bool b = contains(s, "World");

bool c = contains(s, " at ");

bool d = contains(s, “GeorgiaTech");

if (a && b && c && d)

throw new Exception("found it");

}

static bool contains(string s, string t){
if (s == null || t == null) return false;
for (int i = 0; i < s.Length-t.Length+1; i++)

if (containsAt(s, i, t)) return true;
return false;

}

static bool containsAt(string s, int i, string t){
for (int j = 0; j < t.Length; j++)

if (t[j] != s[i + j]) return false;
return true;

}

Complex problem for string‐length of 30 characters:

1630 possible inputs1630 possible inputs 383 million execution paths383 million execution paths

12

Summary

• Symbolic execution is a technique for
checking feasibility of program paths.

• Feasibility of path is determined by
computing path-condition of the path and
checking its satisfiability.

• Useful for test-input generation, bug
finding, program verification, etc.

