
1

Class 12

• Questions about project
• Assign (see Schedule for links)

• Project proposal
• Initial:  due by e-mail 9/22/09
• Final:  due (written, 2 pages) 9/29/09

2

Complex Data Structures



Complex Data Structures
Arrays, structs, objects
How to handle them in analysis (pointer, data-flow, …)?

Example:
1. struct Bar {
2. int x;
3. int y;
4. };
5. main() {
6. struct Bar b; 
7. b.x = read();
8. print(b.y);
9. }

What is Def(7)?
What is Use(8)?
Depends on how entities 

are considered
As a whole:

Def(7) = {b}
Use(8) = {b}

spurious du pair
Distinguishing fields

Def(7) = {b.x}
Use(8) = {b.y}

Complex Data Structures
Arrays, structs, objects
How to handle them in analysis (pointer, data-flow, …)?

Example:
1. struct Bar {
2. int x;
3. int y;
4. };
5. main() {
6. struct Bar b; 
7. b.x = read();
8. print(b.y);
9. }

What is Def(7)?
What is Use(8)?
Depends on how entities 

are considered
As a whole:

Def(7) = {b}
Use(8) = {b}

spurious du pair
Distinguishing fields

Def(7) = {b.x}
Use(8) = {b.y}



5

Dynamic Analysis

Dynamic Analysis

Definitions
Comparison to static analysis
Need for dynamic analysis
Problems
Examples



Static vs. Dynamic Analysis

Static analyses derives information about a 
product from an overall model of the product 
(without execution)

Results in definitive information about the product 
that holds for all inputs

Dynamic analyses gathers information about the 
product through instrumentation, actual 
execution, or simulated execution

Results in sampling information about the product 
that holds for those inputs sampled

Static vs. Dynamic Analysis

Static analyses 
Intraprocedural

AST, control-flow, control-dependence, data-flow, etc.
Complicating factors

Interprocedural, recursion, pointers
Slicing, demand analysis
Applications 

Dynamic analyses 
Instrumentation, profiling
Dynamic versions of control-flow, assertions, etc.
Applications such as testing, debugging,

Combinations of static and dynamic analyses



Even if Proof of Correctness...

Need to test specifications and assumptions 
about the environment
Need to determine performance in practice 
Need to test for qualities such as usability, 
effectiveness of documentation
Need to simulate the execution of some 
systems (but limited)
Etc.

Thus, dynamic analysis is necessary.

Major Problems

How do you instrument (insert probes) in an efficient 
way so as not to incur “too much” overhead?
How do you make sure that the probes don’t change the 
behavior of the system?
How do you select the inputs (test cases) for the 
analysis?
How do you know if the test cases are “adequate”?
How do you compare dynamic methods?
How do you know when to stop analyzing?



Examples of Dynamic Analysis

Assertions
Error seeding
Coverage criteria
Fault-based testing
Specification-based testing
Object-oriented testing
Regression testing
Invariant detection

12

Testing Basics



What is Testing?

Testing:   To execute a program with a 
sample of the input data
Dynamic technique: program must be executed
Optimistic approximation

The program under test is exercised with a (very 
small) subset of all the possible input data
We assume (hope) that the behavior with any other 
input is consistent with the behavior shown for the 
selected subset of input data
The opposite of conservative (pessimistic) analysis

Goals of Testing

Improve software quality by finding errors
“A test is successful if the program fails”
(Goodeneogh, Gerhart, “Toward a Theory of 
Test Data Selection”, IEEE Transactions on 
Software Engineering, Jan. 85)



Goals of Testing

Improve software quality by finding errors
“A test is successful if the program fails”
(Goodeneogh, Gerhart, “Toward a Theory of 
Test Data Selection”, IEEE Transactions on 
Software Engineering, Jan. 85)

Provide confidence in the dependability of 
the software product

(A software product is dependable if it is 
consistent with its specification.)

Testing Techniques

There exists a number of techniques
Different processes
Different artifacts
Different approaches

There are no perfect techniques
Testing is a best-effort activity

There is no best technique
Different contexts
Complementary strengths and weaknesses
Trade-offs



Verification and Validation

Validation: Are we building the right product?
To what degree the software fulfills its (informal) requirements? 

Verification: Are we building the product right?
To what degree the implementation is consistent with its (formal
or semi-formal) specification?

System

Formal or semi-formal descriptions

Validation
(usability, feedback from users, …)

V e r i f i c a t i o n
(testing, inspections, static analysis, …)

Actual
needs

Dependability

Correctness
Absolute consistency with a specification

Reliability
Likelihood of correct behavior in expected use

Robustness
Ability of software systems to function even in abnormal 

conditions
Safety

Ability of the software to avoid dangerous behaviors



The Problem of Verification

The halting problem is not a purely theoretical 
result

Most interesting properties of programs’ behavior can 
be reduced to the halting problem
Verification is almost always an undecidable problem

We must accept inaccuracy!

But, what if we exhaustively test our program?

Exhaustive Testing?

How long would it take (approximately) to test 
exhaustively the following program?

int sum(int a, int b) {return a + b;}

Assume int is 32 bits, how many tests would you need?



Exhaustive Testing?

How long would it take (approximately) to test 
exhaustively the following program?

int sum(int a, int b) {return a + b;}

232 x 232 = 264 =~ 1019 tests
Assume 1 test per nanosecond (109 tests/second)
we get 1010 seconds…

Assume int is 32 bits, how many tests would you need?

Exhaustive Testing?

How long would it take (approximately) to test 
exhaustively the following program?

int sum(int a, int b) {return a + b;}

232 x 232 = 264 =~ 1019 tests
Assume 1 test per nanosecond (109 tests/second)
we get 1010 seconds…
About 600 years!

Assume int is 32 bits, how many tests would you need?



Exhaustive Testing is Impossible

“Many new testers believe that
they can fully test each program, and
with this complete testing, they can ensure that the 
program works correctly.

On realizing that they cannot achieve this mission, many 
testers become demoralized. [...] After learning they can’t 
do the job right, it takes some testers a while to learn 
how to do the job well.”

(C. Kaner, J. Falk, and H. Nguyen, 
“Testing Computer Software”, 1999)

Failure, Fault, Error

Failure
Observable incorrect behavior of a program. 
Conceptually related to the behavior of the program, 
rather than its code.

Fault (bug)
Related to the code. Necessary (not sufficient!) 
condition for the occurrence of a failure.

Error
Cause of a fault. Usually a human error (conceptual, 
typo, etc.)



Failure, Fault, Error: Example

1. int double(int param) {
2. int result;
3. result = param * param;
4. return(result);
5. }

A call to double(3) returns 9
Result 9 represents a failure
Such failure is due to the fault at line 3
The error is a typo (hopefully)

Coincidental Correctness

IMPORTANT: Faults don’t imply failure - a program 
can be coincidentally correct if it executes a fault but 
does not fail

For example, double(2) returns 4

Function double is coincidentally correct for input 2



Oracle

An oracle predicts the expected results  of a test 
and is used to assess whether a test is 
successful or not.

There are different kinds of oracles:
Human (tedious, error prone)
Automated (expensive)

Granularity Levels

Unit testing: verification of the single modules
Integration testing: verification of the interactions 

among the different modules
System testing: testing of the system as a whole
Acceptance testing: validation of the software 

against the user requirements
Regression testing: testing of new versions of the 

software



Correctness

A program P is a function from a set of data D
(domain) to a set of data R (co-domain)
P(d) denotes the execution of P with input d ∈ D
P is correct iff, ∀ d ∈ D, P(d) = S(d)

d

P

S

RD

Test Suite, Test Set, Test Case

A test suite or test set T for P is a subset of D x R
An element t of T is called a test case
T is an ideal test suite for P iff the correctness of P
for all t in T implies the correctness of P for the 
whole D
In general, it is impossible to define an ideal test 
suite and we try to approximate it by suitably 
defining test selection criteria

P

S

RD

t
T



Test Selection Criteria

Test Selection Criterion C:  a rule for selecting 
the subset of D to place in T
We want a C that gives test suites that 
guarantee correctness
We settle for a C that gives test suites that 
improve confidence
Types of criteria:

black-box: based on a specification
white-box: based on the code Complementary

Test Adequacy Criteria

Test selection criteria are used to guide the 
selection of a test suite T: we select test cases 
that covers some percentage of “coverable”
items (as defined by the criteria).

The same criteria can also be used as test 
adequacy criteria: the adequacy score of T is 
the percentage of “coverable” items (as 
defined by the criteria) that are covered by T



Test Requirements, Test Specifications

Test Requirements: those aspects of the program 
that must be covered according to the 
considered criterion

Test Specification: constraints on the input that 
will cause a test requirement to be satisfied

White Box vs. Black Box

Black box
Is based on a functional 
specification of the 
software
Depends on the specific 
notation used
Scales because we can 
use different techniques 
at different granularity 
levels (unit, integration, 
system)
Cannot reveal errors 
depending on the specific 
coding of a given 
functionality

White box
Is based on the code; 
more precisely on 
coverage of the control or 
data flow
Does not scale (mostly 
used at the unit or small-
subsystem level)
Cannot reveal errors due 
to missing paths (i.e., 
unimplemented parts of 
the specification)



Selection Criteria: Example

Specification: function that inputs an integer param and returns half 
the value of param if param is even, param otherwise.
Implementation
1. int half(int param) {
2. int result;
3. result=param/2;
4. return (result);
5. }

Function half works correctly only for even integers
The fault may be missed by white-box testing (100% coverage with 
any value)
The fault would be easily revealed by black-box testing (typically, 
we would use at least one odd and one even input)

Selection Criteria: Example

Specification: function that inputs an integer and prints it
Implementation:
1. void printit(int param) {
2. if(param < 1024) printf(“%d”, param);
3. else printf(“%d KB”, param/124);
4. }

Function printit contains a typo
From the black-box perspective, integers < 1024 and integers > 
1024 are equivalent, but they are treated differently in the code
The fault may be missed by black-box testing
The fault would be easily revealed by white-box testing (e.g., using 
the statement coverage criterion)


