
1

Class 14

• Questions/comments
• Testing continued
• Assign (see Schedule for links)

• Readings on regression testing, prioritization
• Problem Set 6

Terms

V&V
Failure, error, fault
Coincidental correctness
Oracle
Coverage criteria
Black box, white box testing
Test requirements, test specifications, test case

Software Development Phases and
Testing

Requirements Analysis Phase:

Design Phase:

Implementation Phase:

Integration Phase:

Maintenance Phase:

Develop test plan and system
tests; perform technical
review

Develop integration tests;
perform technical review

Develop and run unit tests;
perform technical review

Run integration tests
Run system tests
Run regression tests

Software Development Phases and
Testing (Graphical View)

Requirements
Analysis

High-Level
Design

Low-Level
Design

Coding

Delivery

Maintenance

System

Integration

Unit

Unit

Acceptance

Regression

White Box vs. Black Box

Black box
Is based on a functional
specification of the
software
Depends on the specific
notation used
Scales because we can
use different techniques
at different granularity
levels (unit, integration,
system)
Cannot reveal errors
depending on the specific
coding of a given
functionality

White box
Is based on the code;
more precisely on
coverage of the control or
data flow
Does not scale (mostly
used at the unit or small-
subsystem level)
Cannot reveal errors due
to missing paths (i.e.,
unimplemented parts of
the specification)

Black Box Testing

Black-Box Testing

Black-box criteria do not consider the control structure
and focus on the domain of the input data
In the presence of formal specifications, it can be
automated (rare exceptions)
In general, it is a human-intensive activity
Different black-box criteria

Category partition method (read paper)
State-based techniques
Combinatorial approach
Catalog based techniques
...

Black-Box Testing: Exercises

Identify five test cases for a program that inputs
an integer and prints its value

Identify five test cases for a program that inputs
a line of text and breaks it into chunks of up to
80 characters

Identify five test cases to test a stack
implementation

Black-Box Testing: Principles

Equivalence partitioning of the input space
Divide the infinite set of possible inputs into a finite
set of classes, with the purpose of picking one or
more test cases from each class

Identification of boundary values
Identify specific values (in the partitions) that may be
handled incorrectly

Use of a systematic approach
Divide the test generation process into elementary
steps

Equivalence Partitioning

Basic idea: to identify test cases that may reveal classes of errors
(e.g., erroneous handling of all inputs > 100)
Partitioning the input domain in classes from which to derive test
cases
A class is a set of data whose components are likely to be treated
homogeneously by the program
Ideal case: all test cases in a class have the same outcome

Identification of Boundary Values

Basic idea: errors tend to occur at the boundaries of the data
domain ⇒ select test cases that exercise such data boundaries
Complementary to equivalence partitioning: after identifying the
equivalence classes, select for each class one or more boundary
values
Example: if one equivalence class consists of the integer values
between 0 and 100, then we may test with inputs –1, 0, 1, 99, 100,
and 101

A Systematic Approach

Deriving test cases from a functional specification is a
complex analytical process
Brute force generation of test cases is generally an
inefficient and ineffective approach
A systematic approach simplifies the overall problem by
dividing the process in elementary steps

Decoupling of different activities
Dividing brain-intensive steps from steps that can be automated
Monitoring of the testing process

A Generic Black-Box Technique

Identify independently-testable features
Defining all the inputs to the features

Identify representative classes of values
Which values of each input can be used to form test cases
(categories, boundary or exceptional values)
A (partial) model may help (e.g., a graph model)

Generate test case specifications
Suitably combining values for all inputs of the feature under test
(subset of the Cartesian product—cost, constraints)

Generate and instantiate test cases

Finite State Machines

Nodes: states of the system
Edges: transitions between states
Edge attributes: events and actions

State0State0

State2State2

State1State1
event1 / action5

event2 /

ev
en

t4
 /

ac
tio

n3

Finite State Machines

Nodes: states of the system
Edges: transitions between states
Edge attributes: events and actions

State0State0

State2State2

State1State1
event1 / action5

event2 /

State2

Event2 Event4Event1

State1State0

State2
State2State1

Table of the states

Table of the output
Event2 Event4Event1

action5State0

State2
action3State1

ev
en

t4
 /

ac
tio

n3

Finite State Machines: Approach

Identify boundaries of the system
Identify inputs to the system
Identify states of the system (trade-off abstraction
level/number of states)
Identify outputs of the system
Build table of the states (state + event -> state)
Build table of the outputs (state + event -> output)
Design tests
Run tests

Finite State Machines: Some
Considerations

Applicability
Menu-driven Software
Object-oriented software
Device driver
Installation software
Device-control software

Limitations
Number of states
Problems in identifying states, mapping
Problem in constructing oracles (What is the state of the
system? How do you check events/actions?)

Black-box Testing: Summarizing

Two main approaches
Identification of representative values
Derivation of a model

Most widely used (industry and research)
No general and satisfactory methodologies

Intrinsically difficult
Informal specifications

White-Box Testing

White-Box Testing

Selection of test suite is based on some elements in the
code
Assumption: Executing the faulty element is a necessary
condition for revealing a fault
We’ll consider several examples

Control flow (statement, branch, basis path, path)
Condition (simple, multiple)
Loop
Dataflow (all-uses, all-du-paths)
Fault based (mutation)

Statement Coverage

Test requirements: Statements in program

Cstmts = (number of executed statements)
(number of statements)

Statement Coverage: Example

1. void main() {
2. float x, y;

3. read(x);

4. read(y);
5. if (x!=0)

6. x = x+10;

7. y = y/x;
8. write(x);

9. write(y);

10. }

33

entryentryentry

44

66

77

exitexitexit

X!=0

!(X!=0)

88

99

Identify test cases for
statement coverage

Statement Coverage: Example

Test requirements
Nodes 3, …, 9

Test specification
(x!=0, any y)

Test cases
(x=20, y=30)

Such test does not reveal
the fault at statement 7
To reveal it, we need to
traverse edge 4-7
⇒ branch coverage

1. void main() {
2. float x, y;

3. read(x);

4. read(y);
5. if (x!=0)

6. x = x+10;

7. y = y/x;
8. write(x);

9. write(y);

10. }

33

entryentryentry

44

66

77

exitexitexit

X!=0

!(X!=0)

88

99

Branch Coverage: Example

Test requirements
Edges 4-6 and 4-7

Test specification
(x!=0, any y)
(x=0, any y)

Test cases
(x=20, y=30)
(x=0, y=30)}

1. void main() {
2. float x, y;

3. read(x);

4. read(y);
5. if (x!=0)

6. x = x+10;

7. y = y/x;
8. write(x);

9. write(y);

10. }

33

entryentryentry

44

66

77

exitexitexit

X!=0

!(X!=0)

88

99

Branch Coverage: Example

1. void main() {
2. float x, y;

3. read(x);

4. read(y);
5. if(x==0)||(y>0)

6. y = y/x;

7. else x = y+2;
8. write(x);

9. write(y);

10.}

33

entryentryentry

44

77

88

exitexitexit

X=0 ||
y>0

99

66

!(X=0
||y>0)

Consider test cases
{(x=5,y=5), (x=5, y=-5)}

Branch Coverage: Example

1. void main() {
2. float x, y;

3. read(x);

4. read(y);
5. if(x==0)||(y>0)

6. y = y/x;
7. else x = y+2/x;
8. write(x);

9. write(y);

10.}

33

entryentryentry

44

77

88

exitexitexit

X=0 ||
y>0

99

66

!(X=0
||y>0)

Consider test cases
{(x=5,y=5), (x=5, y=-5)}

The test suite is adequate
for branch coverage, but
does not reveal the fault at
statement 6
Predicate 4 can be true or
false operating on only one
condition

⇒ Basic condition coverage

Basic Condition Coverage

Test requirements: Truth values assumed by
basic conditions

Cbc = (number of boolean values assumed by all basic conditions)
(number of boolean values of all basic conditions)

Basic Condition Coverage: Example

1. void main() {
2. float x, y;

3. read(x);

4. read(y);
5. if(x==0)||(y>0)

6. y = y/x;

7. else x = y+2;
8. write(x);

9. write(y);

10.}

33

entryentryentry

44

77

88

exitexitexit

X=0 ||
y>0

99

66

!(X=0
||y>0)

Consider test cases
{(x=0,y=-5), (x=5, y=5)}

Basic Condition Coverage: Example

1. void main() {
2. float x, y;

3. read(x);

4. read(y);
5. if(x==0)||(y>0)

6. y = y/x;
7. else x = y+2;
8. write(x);

9. write(y);

10.}

33

entryentryentry

44

77

88

exitexitexit

X=0 ||
y>0

99

66

!(X=0
||y>0)

Consider test cases
{(x=0,y=-5), (x=5, y=5)}

The test suite is adequate
for basic condition
coverage, but it does not
reveal the fault at
statement 6
The test suite is not
adequate for branch
coverage.

⇒Branch and condition
coverage

Branch and Condition Coverage

Test requirements: Branches and truth values
assumed by basic conditions

if ((a || b) && c) { … }

F

T

Outcome

FFF

TTT

cba

Compound Condition Coverage

Test requirements: All possible combinations of
basic conditions

Very thorough, but also very expensive for non-
trivial programs.

Compound Condition Coverage:
Example

How many test requirements?
((((a || b) && c) || d) && e)

Compound Condition Coverage:
Example

((((a || b) && c) || d) && e)

-False-FalseFalse13

-FalseFalseTrueFalse12

-FalseFalse-True11

FalseTrue-FalseFalse10

FalseTrueFalseTrueFalse9

FalseTrueFalse-True8

False-TrueTrueFalse7

False-True-True6

TrueTrue-FalseFalse5

TrueTrueFalseTrueFalse4

TrueTrueFalse-True3

True-TrueTrueFalse2

True-True-True1

edcbaTest case

Compound Condition Coverage

Advantage for short-circuit operator is that it
requires very thorough testing without
considering all the combinations
Disadvantage is to determine the minimum
number of test cases required

The number of test cases required for complex
conditions can be substantial (2n in the worst
case!)

Modified Condition/Decision Coverage
(MC/DC)

MC/DC criterion requires that each basic
condition be shown to independently affect the
outcome of each decision.
For each basic condition C, there are two test
cases in which the truth values of all conditions
except C are the same, and the compound
condition as a whole evaluates to True for one
of those test cases and False for the other

