
1

Class 16

• Questions/comments
• Graders for Problem Set 6 (4); Graders for

Problem set 7 (2) (solutions for all)
• Testing, regression testing
• Assign (see Schedule for links)

• Problem Set 6 discuss
• Readings

Subsumption Hierarchy

Frankl and Weyuker presented a hierarchy of
some criteria that they discussed in their paper

Show their relationship among the following
criteria

All paths
All du-paths
All uses
All defs
All branches
All nodes

Data-Flow Coverage Criteria: Review

Most popular criteria
All uses
All du-paths

Give an example that shows how they differ in
the test requirements and test cases

Mutation Analysis/Testing

Basic idea: Generate a set of programs Π similar to the
program P (mutants) under test and run the test suite T
on P and on all programs in Π
Differentiating (killing) programs:

A test case differentiates two programs if it causes the two
programs to produce different results

Selection criteria: T is selected so that for each
program P’ in Π there exists at least a t in T that
differentiates P from P’
Evaluation criteria: The quality of T is related to the
ability of T to differentiate P from programs in Π

Mutation Analysis/Testing

Based on how Π is generated (P’ more or less similar to
P), we can perform analysis at different levels of detail
The main problem is the generation of mutants

Ideal situation: one mutant for each possible fault in the program
(obviously impractical)
Instead, we limit the cardinality of Π based on:

Application type
Types of faults that are more likely to occur
Programming language

The main advantage is that the technique can be easily
automated

Mutation Analysis/Testing

A mutant operator is a function that, given P, generates one or more
mutants of P
The simplest operators perform simple syntactic modification to the
code that result in semantic changes. There are different classes of
operators:

Operators that work on constants, scalar variables, and arrays by
replacing each occurrence of a variable with all other variables in
scope
Operators that modify the operators in the program (e.g., “>” with “<“
Operators that replace expressions in the program with different
expressions (e.g., constants)
Operator that modify the instructions in the program (e.g., a “while”
transformed in an “if”)
…

The tester decides which operators to use and how many mutants
to generate with the selected operators

Mutation Analysis/Testing: Example

1. read i
2. read j
3. sum = 0
4. while (i > 0) and (i < = 10)

do
5. if (j >0)
6. sum = sum + j
6a. print sum

endif
7. i= i + 1
8. read j

endwhile
9. print sum

Mutate: make a small
syntactic change

Mutation Analysis/Testing: Example

1. read i
2. read j
3. sum = 0
4. while (i > 0) and (i < = 10)

do
5. if (j >0)
6. sum = sum + j
6a. print sum

endif
7. i= i + 1
8. read j

endwhile
9. print sum

Mutate: make a small
syntactic change

Mutation: the changed
statement

Mutation Analysis/Testing: Example

1. read i
2. read j
3. sum = 0
4. while (i > 0) and (i < = 10)

do
5. if (j >0)
6. sum = sum + j
6a. print sum

endif
7. i= i + 1
8. read j

endwhile
9. print sum

1. read i
2. read j
3. sum = 0
4. while (i > 0) and (i < = 10)

do
5. if (j >0)
6. sum = sum - j
6a. print sum

endif
7. i= i + 1
8. read j

endwhile
9. print sum

Mutate: make a small
syntactic change

Mutation: the changed
statement

Mutant: program with a
mutated statement

Mutation Analysis/Testing: Example

1. read i
2. read j
3. sum = 0
4. while (i > 0) and (i < = 10)

do
5. if (j >0)
6. sum = sum + j
6a. print sum

endif
7. i= i + 1
8. read j

endwhile
9. print sum

1. read i
2. read j
3. sum = 0
4. while (i > 0) and (i < 10)

do
5. if (j >0)
6. sum = sum + i
6a. print sum

endif
7. i= i + 1
8. read j

endwhile
9. print sum

Mutate: make a small
syntactic change

Mutation: the changed
statement

Mutant: program with a
mutated statement

Mutation Analysis/Testing: Systems

Mothra Mutation System for Fortran
Jeff Offutt and Rich DeMillo (Georgia Tech)

MuJava Mutation system for Java
http://www.ise.gmu.edu/~offutt/mujava/

Mutation Testing Online Resources
http://www.mutationtest.net/twiki/bin/view/Resourc

es/WebHome

Regression Testing:
Selection, Prioritization,

Reduction, and Augmentation

Therac-25 Medical Accelerator

Therac-25 (1985-87): Deaths
Ariane 5 Explosion (1996): $7B cost,

10 years development, $5M payload

Mars Rover (2004):
Unknown cost

High Cost of Software Failure

High Cost of Software Failure
Airplane entertainment system (2008)

Failed for me and most passengers
16 hour flight—Atlanta to Mumbai

Collaborations
Boeing Aerospace
Borden Chemical
Data General Corp (now part
of EMC)
Lucent Technologies
Microsoft
NASA
Reflective Corporation

• Tata Consultancy Services
(TCS)

• Worldspan

Kinds of software
Accounting
Banking
Financial
Healthcare
Insurance
Airplane
Automotive
Medical devices
Spacecraft
Operating systems
Telecommunications
Web services

Collaboration With Industry
Common Problem
• Changes require rapid modification and testing for

quick release (time to market pressures)
• Causing released software to have many defects

Approach
• Concentrate testing around the changes
• Automate (if possible) the regression testing process

Research Question
How can we test well to gain confidence in the
changes in an efficient way before release of
changed software?

Execute

Program
P

Test Suite
T

Add
features

Improve
performance

TT

Assess
adequacy

Assess
outcome

Testing Evolving Software

F

Augment T
for untested
adequacy

requirements

Identify
faults

F

Modify
P P’

Select subset
of T to rerun

Execute

Program
P

Test Suite
T

Add
features

Improve
performance

TT

Assess
adequacy

Assess
outcome

Select Subset of T to Rerun

F

Augment T
for untested
adequacy

requirements

Identify
faults

F

Modify
P P’

Select subset
of T to rerun

P’ Version
of P

Program
P T

Which test cases in T
should be rerun to test
P’?

Select Subset of T to Rerun

P’ Version
of P

Program
P T

T-T’

T’

T’T’

Which test cases in T
should be rerun to test
P’?

Solution
Partition T into two
subsets

• run one on P’
• don’t run the other

Select Subset of T to Rerun

P’ Version
of P

Program
P T

T-T’

T’

T’T’

Which test cases in T
should be rerun to test
P’?

Solution
Partition T into two
subsets

• run one on P’
• don’t run the other

Select Subset of T to Rerun

Time to rerun T

time

Analysis Time Time to rerun T’ Savings

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0)
S5 return(error)

else
S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

S1enter

S2

S3

S8

S9

exitS10

TF

S5
S4

S6

S7

FT

Regression Test Selection: Create Graph
Representation

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0)
S5 return(error)

else
S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

test input output
t1 empty file 0

Regression Test Selection: Gather
Execution Information

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0)
S5 return(error)

else
S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

S1enter

S2

S3

S8

S9

exitS10

TF

S5
S4

S6

S7

FT

t1t1

t1

t1

Regression Test Selection: Gather Test
History Information

test input output
t1 empty file 0
t2 -1 error
t3 1 2 3 2

t1,t2,t3

t2
t2,t3

t3

t3

t3

t1,t3

t1,t3 t1,t3

t3t2

S1enter

S2

S3

S8

S9

exitS10

S5

S4

S6

S7

Regression Test Selection: Gather Test
History Information

Regression Test Selection: Consider P
and P’

Procedure Avg
S1 count = 0
S2 fread(fptr,n)
S3 while (not EOF) do
S4 if (n<0)

S5 return(error)
else

S6 nums[count] = n
S7 count++

endif
S8 fread(fptr,n)

endwhile
S9 avg = mean(nums,count)
S10 return(avg)

Procedure Avg’
S1’ count = 0
S2’ fread(fptr,n)
S3’ while (not EOF) do
S4’ if (n<=0)
S5a print(“input error”)
S5’ return(error)

else
S6’ nums[count] = n

endif
S8’ fread(fptr,n)

endwhile
S9’ avg = mean(nums,count)
S10’ return(avg)

S1enter

S2

S3

S5

S4

S6

S7

S8

S9

exitS10

FT

TF

S1’enter’

S2’

S3’

S5a
S4’

S6’

S5’

S8’

S9’

exit’S10’

FT

TF

t1,t2,t3

t3
t2

t2,t3

Regression Test Selection: Consider
CFGs for P and P’

S1enter

S2

S3

S5
S4

S6

S7

S8

S9

exitS10

FT

TF

S1’enter’

S2’

S3’

S5a
S4’

S6’

S5’

S8’

S9’

exit’S10’

FT

TF

t1,t2,t3

t3
t2

t2,t3

enter enter’S1 S1’

S3 S3’
t2,t3

exit exit’S10 S10’

S2 S2’

Regression Test Selection: Consider
CFGs for P and P’

S1enter

S2

S3

S5

S4

S6

S7

S8

S9

exitS10

FT

TF

S1’enter’

S2’

S3’

S5a
S4’

S6’

S5’

S8’

S9’

exit’S10’

FT

TF

t1,t2,t3

t3
t2

t2,t3

enter enter’S1 S1’

S3 S3’
t2,t3

exit exit’S10 S10’

S2 S2’

Regression Test Selection: Traverse
CFGs for P and P’

S1enter

S2

S3

S5
S4

S6

S7

S8

S9

exitS10

FT

TF

S1’enter’

S2’

S3’

S5a
S4’

S6’

S5’

S8’

S9’

exit’S10’

FT

TF

t1,t2,t3

t3
t2

t2,t3

enter enter’S1 S1’

S3 S3’
t2,t3

exit exit’S10 S10’

S2 S2’

Regression Test Selection: Traverse
CFGs for P and P’

S1enter

S2

S3

S5

S4

S6

S7

S8

S9

exitS10

FT

TF

S1’enter’

S2’

S3’

S5a
S4’

S6’

S5’

S8’

S9’

exit’S10’

FT

TF

t1,t2,t3

t3
t2

t2,t3

enter enter’S1 S1’

S3 S3’
t2,t3

exit exit’S10 S10’

S2 S2’

Regression Test Selection: Traverse
CFGs for P and P’

S1enter

S2

S3

S5
S4

S6

S7

S8

S9

exitS10

FT

TF

S1’enter’

S2’

S3’

S5a
S4’

S6’

S5’

S8’

S9’

exit’S10’

FT

TF

t1,t2,t3

t3
t2

t2,t3

enter enter’S1 S1’

S3 S3’
t2,t3

exit exit’S10 S10’

S2 S2’

Regression Test Selection: Traverse
CFGs for P and P’

S1enter

S2

S3

S5

S4

S6

S7

S8

S9

exitS10

FT

TF

S1’enter’

S2’

S3’

S5a
S4’

S6’

S5’

S8’

S9’

exit’S10’

FT

TF

t1,t2,t3

t3
t2

t2,t3

enter enter’S1 S1’

S3 S3’
t2,t3

exit exit’S10 S10’

S2 S2’

Regression Test Selection: Traverse
CFGs for P and P’

S1enter

S2

S3

S5
S4

S6

S7

S8

S9

exitS10

FT

TF

S1’enter’

S2’

S3’

S5a
S4’

S6’

S5’

S8’

S9’

exit’S10’

FT

TF

t1,t2,t3

t3
t2

t2,t3

enter enter’S1 S1’

S3 S3’
t2,t3

exit exit’S10 S10’

S2 S2’Dangerous
Edge

Regression Test Selection: Traverse
CFGs for P and P’

S1enter

S2

S3

S5

S4

S6

S7

S8

S9

exitS10

FT

TF

S1’enter’

S2’

S3’

S5a
S4’

S6’

S5’

S8’

S9’

exit’S10’

FT

TF

t1,t2,t3

t3
t2

t2,t3

enter enter’S1 S1’

S3 S3’
t2,t3

exit exit’S10 S10’

S2 S2’Dangerous
Edge

T’ = {t2, t3}
Regression Test Selection: Traverse
CFGs for P and P’

Input: P, P’, T Output: T’
1. Build CFGs G and G’ for P and P’
2. Compare(G.EntryNode,G’.EntryNode)

3. Compare(N,N’)
4. mark N “N’-visited”; initialize DangerousEdges to empty
5. for each pair of successors C and C’ of N and N’
6. on equivalently labeled edges do
7. if C is not marked “C’-visited”
8. if C and C’ are not lexically identical
9. Add (C,C’) to DangerousEdges

10. else
11. Compare(C,C’)

Algorithm DejaVu

CFG construction: linear in program size
Graph walk (graph sizes n, n’; test set size t):

O (t ∗ n ∗ n’)
(with multiply-visited nodes)

O (t ∗ min(n,n’))
(with no multiply-visited nodes)

Algorithm Efficiency

T

Fault
Revealing

Precision and Safety

T

Fault
Revealing

Precision and Safety

Selecting only fault-
revealing test cases from T
is undecidable

T

Traversing
Modification

Fault
Revealing

Precision and Safety

T’

T

Precision and Safety

Traversing
Modification

Fault
Revealing

Imprecision

T’

T

Precision and Safety

Fault
Revealing

T

Precision and Safety

Fault
Revealing

T’

T

Precision and Safety

Fault
Revealing

T’

Unsafety

Fault
Revealing

DejaVu Algorithm

Algorithm needs
Graph representation for original P and changed P’
Way to associate test cases in T with entities in P
Way to differentiate P and P’

Algorithm is language independent
For C, used CFGs and ICFGs
For Ada, used CFGs and ICFGs (for Boeing)
For Java, used JIG (Java Interclass graph) and
graphs that represent library interactions, exceptions,
polymorphism, etc (got new name DejaVOO)

DejaVu Algorithm

Algorithm can be used at various levels
Branches in CFG
Methods, procedures in program
Classes
UML diagrams
Other representations of program

Evidence of Effectiveness

Empirical studies
Empire (C program)
Coarse vs fine grained (C programs)
Three Java programs

Study 1: Empire

Program Procs LOC Vers Tests
 server 766 49316 5 1033

 Version
Functions
 Modified

 LOC
 Modified

 1 3 114
 2 2 55
 3 11 726
 4 11 62
 5 42 221

0

20

40

60

80

100

1 2 3 4 5

Version Number

% Tests
Selected

Study 1: Test Selection Percentages

Study 1: Cost Effectiveness

0:00

1:00
2:00

3:00
4:00

5:00
6:00

7:00

1 2 3 4 5

Version Number

Time
(Hours)

Retest All
Dejavu

0

20

40

60

80

100

1 2 3 4 5

Version Number

% Tests
Selected

Testtube
Dejavu

Study 3: Coarse vs Fine Selection

Study 4: Three Large Java Programs

639
200
707

Test
Cases

32 min1,0002,4035Jboss
74 min1678245Daikon
54 min705255Jaba

Retest
TimeKLOCClassesVersionsProgram

Study 4: Savings

0%

20%

40%

60%

80%

100%

120%

v2 v3 v4 v5 v2 v3 v4 v5 v2 v3 v4 v5

Jaba Daikon Jboss

Re
te

st
in
g

Ti
m
e

(p
er

ce
nt

ag
e)

RetestAll DejaVOO

Study 4: Savings

0%

20%

40%

60%

80%

100%

120%

v2 v3 v4 v5 v2 v3 v4 v5 v2 v3 v4 v5

Jaba Daikon Jboss

Re
te

st
in
g

Ti
m
e

(p
er

ce
nt

ag
e)

RetestAll DejaVOO

Savings in Regression
Testing Time:

DejaVOO vs. RetestAll
Jaba:19%

Daikon:36%
Jboss: 63%

