Class 16

- Questions/comments
- Graders for Problem Set 6 (4); Graders for Problem set 7 (2) (solutions for all)
- Testing, regression testing
- Assign (see Schedule for links)
 - Problem Set 6 discuss
 - Readings

Subsumption Hierarchy

Frankl and Weyuker presented a hierarchy of some criteria that they discussed in their paper Show their relationship among the following criteria

1

- All paths
- All du-paths
- All uses
- All defs
- All branches
- All nodes

Mutation Analysis/Testing

- Based on how Π is generated (P' more or less similar to P), we can perform analysis at different levels of detail
- The main problem is the generation of mutants
 - Ideal situation: one mutant for each possible fault in the program (obviously impractical)
 - Instead, we limit the cardinality of Π based on:
 - · Application type
 - Types of faults that are more likely to occur
 - Programming language
- The main advantage is that the technique can be easily automated

- Operator that modify the instructions in the program (e.g., a "while" transformed in an "if")
- ...
- The tester decides which operators to use and how many mutants to generate with the selected operators

Regression Test Selection: Consider P and P'

Procedure Avg

- S1 count = 0
- S2 fread(fptr,n)
- S3 while (not EOF) do
- S4 if (n<0)
- S5 return(error) else
- S6 nums[count] = n
- S7 count++
 - endif
- S8 fread(fptr,n) endwhile
- S9 avg = mean(nums,count)
- S10 return(avg)

Procedure Avg'

- S1' count = 0
- S2' fread(fptr,n)
- S3' while (not EOF) do
- S4' if (n<=0)
- S5a print("input error")
- S5' return(error)
- else
- S6' nums[count] = n
- contractory
 - endif
- S8' fread(fptr,n)
- endwhile
- S9' avg = mean(nums,count)
- S10' return(avg)

DejaVu Algorithm

- · Algorithm can be used at various levels
 - Branches in CFG
 - Methods, procedures in program
 - Classes
 - UML diagrams
 - Other representations of program

Evidence of Effectiveness

Empirical studies

- Empire (C program)
- Coarse vs fine grained (C programs)
- Three Java programs

Program	Procs	LOC	Vers	Tests	
server	766	49316	5	1033	
Versio	n Mo	Modified		Modified	
Versio			IVI		
2		2		55	
2		11		726	
4		11		62	
5		42		221	

Study 4: Three Large Java Programs

Program	Versions	Classes	KLOC	Test Cases	Retest Time
Jaba	5	525	70	707	54 min
Daikon	5	824	167	200	74 min
Jboss	5	2,403	1,000	639	32 min

