
1

Class 17

• Questions/comments
• Graders for Problem Set 6 (4); Graders for

Problem set 7 (2-3) (solutions for all); will be
posted on T-square

• Regression testing, Instrumentation
• Final project presentations: Dec 1, 3; 4:35-6:45
• Assign (see Schedule for links)

• Problem Set 7 discuss
• Readings

Discussion

Mutation analysis and testing
Mutant operator
Mutate
Mutant
Killing mutants
Mutation adequacy
Equivalent mutants

Discussion

Regression testing
What is it?
What are scenarios in which it is used?
Test selection

DejaVu algorithm?
Safety?
Precision?
Fault-revealing test cases?
Modification-revealing test cases?

DejaVu Algorithm

Algorithm can be used at various levels
Branches in CFG
Methods, procedures in program
Classes
UML diagrams
Other representations of program

1. Construct representation
G for P

if()

doBdoA

G
1 2

T F

General Test Selection with DejaVu

G can be
low level—e.g., code
higher level—e.g., UML diagrams, state-transition
diagrams, architectural diagrams
other information—e.g., CVS repository

P can be
procedural
object-oriented
database
Web-based
other

1. Construct representation
G for P

if()

doBdoA

G
1 2

T F

2. Associate test cases in
T with entities in G

X

t3

Xe2

Xe1

t2t1TC
edgeM

General Test Selection with DejaVu

G G’
Dangerous

edge

3. Build G’ and compare G and
G’ to find dangerous entities

doCdoB
1 2 1 2

1. Construct representation
G for P

if()

doBdoA

G
1 2

T F

2. Associate test cases in
T with entities in G

X

t3

Xe2

Xe1

t2t1TC
edgeM

General Test Selection with DejaVu

G G’
Dangerous

edge

3. Build G’ and compare G and
G’ to find dangerous entities

doCdoB
1 2 1 2

1. Construct representation
G for P

if()

doBdoA

G
1 2

T F

2. Associate test cases in
T with entities in G

X

t3

Xe2

Xe1

t2t1TC
edgeM

4. Select test cases based
on dangerous entities

X

t3

Xe2

Xe1

t2t1TC
edgeM

General Test Selection with DejaVu

Execute

Program
P

Test Suite
T

Add
features

Improve
performance

TT

Assess
adequacy

Assess
outcome

Select Subset of T to Rerun

F

Augment T
for untested
adequacy

requirements

Identify
faults

F

Modify
P P’

Select subset
of T to rerun

P’ Version
of P

Program
P T

T-T’

T’T’

T’

Test-Suite Prioritization Problem

P’ Version
of P

Program
P T

T-T’

T’T’

T’

Test-Suite Prioritization Problem
What if

• T’ has too many test
cases for allotted time?

• want to run most
important test cases
in T’ first?

P’ Version
of P

Program
P T

T-T’

T’T’

What if
• T’ has too many test

cases for allotted time?
• want to run most

important test cases
in T’ first?

Solution
Order (prioritize) T’

• find faults earlier
• get coverage earlier
• etc.

T’

Test-Suite Prioritization Problem

P’ Version
of P

Program
P

What if
• T’ has too many test

cases for allotted time?
• want to run most

important test cases
in T’ first?

Solution
Order (prioritize) T’

• find faults earlier
• get coverage earlier
• etc.

T’t1, t2,…,tn

Test-Suite Prioritization Problem

P’ Version
of P

Program
P

What if
• T’ has too many test

cases for allotted time?
• want to run most

important test cases
in T’ first?

Solution
Order (prioritize) T’

• find faults earlier
• get coverage earlier
• etc.

Test-Suite Prioritization Problem

T’t1, t2,…,tnt1, t2,…,tn

t1, t3,…,tn
. . .

t2, t1,…,tn
. . .

P’ Version
of P

Program
P

Test-Suite Prioritization Problem

T’t1, t2,…,tnt1, t2,…,tn

t1, t3,…,tn
. . .

t2, t1,…,tn
. . .

What if
• T’ has too many test

cases for allotted time?
• want to run most

important test cases
in T’ first?

Solution
Order (prioritize) T’

• find faults earlier
• get coverage earlier
• etc.

Exponential:
best ordering

P’ Version
of P

Program
P

Test-Suite Prioritization Problem

T’t1, t2,…,tnt1, t2,…,tn

t1, t3,…,tn
. . .

t2, t1,…,tn
. . .

What if
• T’ has too many test

cases for allotted time?
• want to run most

important test cases
in T’ first?

Solution
Order (prioritize) T’

• find faults earlier
• get coverage earlier
• etc.

Exponential:
best ordering

Heuristics:
good ordering

Test-Suite Prioritization Problem

GivenGiven
T, a test suite
PT, the set of permutations of T (prioritizationsprioritizations)
f: PT Reals (f yields prioritization award valueaward value)

ProblemProblem
Find T’ in PT such that for all T’’ in PT where T’’ does not

equal T’, f(T’) > f(T’’) (i.e., find the best prioritization)

Increase likelihood of revealing faults earlier in
regression testing
Increase likelihood of revealing high-risk faults
earlier in regression testing
Increase likelihood of revealing regression
errors for specific code changes
Increase code coverage earlier in regression
testing

Objectives for Test-suite Prioritization

Increase likelihood of revealing faults earlier in
regression testing
Increase likelihood of revealing high-risk faults
earlier in regression testing
Increase likelihood of revealing regression
errors for specific code changes
Increase code coverage earlier in regression
testing

Objectives for Test-suite Prioritization

Prioritizations We Used

T1 unordered
T2 random
T3 optimal
T4 branch-total
T5 branch-additional
T6 FEP-total
T7 FEP-additional
T8 statement-total
T9 statement-additional

Prioritizations We Used

T1 unordered
T2 random
T3 optimal
T4 branch-total
T5 branch-additional
T6 FEP-total
T7 FEP-additional
T8 statement-total
T9 statement-additional

Fault Exposing Potential (FEP)

The fault-exposing potential (FEP) for a statement
s in a program P is the probability that, when P
is executed with a test, a fault at s will cause P
to fail

Fault Exposing Potential

Voas developed the PIEPIE model for P and input distribution
D as a measure of FEP
E -- the probability that s will be executed by d, a

random selection from D
I -- the probability that the state at s will be changed by

d
P -- the probability that the modified state will propagate

to output (cause a failure)

Approximating FEP

We use mutation analysismutation analysis to approximate FEP
In mutation analysismutation analysis, we create many versions of a

program, each containing one syntactic change
and try to “kill” the mutants with the test suite

The mutation scoremutation score is the percentage of mutants
“killed” by the test suite

Average Percentage of Fault Detection
(APFD)

Want to measure how rapidly a prioritized test
suite detects faults
We use a weighted average of the percentage
of faults detected over the life of the test suite --
average percentage of fault detectionaverage percentage of fault detection (APFD)
We think that higher APFD means a faster
(better) fault detection rate

Example

FaultTest
1 2 3 4 5 6 7 8 9 10

X X

X X X X

X X X X X X X

X

X X X

A

D

B

C

E

Test Order: A-B-C-D-E

A 20%

B 40%

C 70%

D 70%

E 100%

Test Order: C-E-B-A-D

C 70%

E 100%

B 100%

A 100%

D 100%

Study: Relative Effectiveness Of
Prioritization Techniques

Siemens: Seven C programs (300LOC),
Siemens Labs, 7-42 versions, 1000-5000 tests

(same subjects we used in Studies 1 & 2)

Results of Prioritization Study

0
10
20
30
40
50
60
70
80
90

100

T1 T2 T3 T4 T5 T6 T7 T8 T9

Prioritization Techniques

A
PF

D

Results of Our Experiments

Test prioritization can substantially improve the
rate of fault detection of test suites. This result
is true for all heuristics we studied
Overall, additional FEP prioritization
outperformed all prioritization techniques but not
significantly (this was contrary to our initial belief
about FEP)

Results of Our Experiments

Total branch (T4) outperforms additional
branch (T5) and total statement (T8)
outperforms additional statement (T9)
Many of the heuristics performed the same
statistically and even for those that differ, the
difference is not great

In 2002 OOPSLA talk, Bill Gates
in-house tool—selects and prioritizes
regression tests
“the impact had been very dramatic."

In 2004 talk at Georgia Tech, Jim Gray
prioritizing regression tests used at MS
significant impact

Test Selection, Prioritization in Industry

P’ Version
of P

Program
P T

Which test cases in T
are redundant according
to some criteria?

Test-suite Reduction

P’ Version
of P

Program
P T

Which test cases in T
are redundant according
to some criteria?

Solution:
Identify and remove
redundant test cases
from T

Test-suite Reduction

Test-suite Reduction

Test cases:
T1: 1,2,4,5,6,7,4,5,6,7,4,8
T2: 1,2,4,5,6,7,4,5,7,4,8
T3: 1,2,4,8
T4: 1,3,4,8
T5: 1,3,4,5,6,7,4,5,6,7,4,8

Rest on board

1

2 3

4

8

5

6

7

Execution Tracing and Profiling

Execution Tracing and Profiling

Gathering dynamic information about programs
Execution tracing
Execution profiling
Execution coverage

Instrumenting for tracing, profiling, coverage
Postprocessing
Online processing
Preprocessing

Execution Tracing

Execution Tracing records, as the program
executes with a test case (an input to the
program), some sequence of events that
occur. For example:

the sequence of statements executed when a
program is run with a test case
the sequence of program states associated with
statements executed when a program is run with a
test case

Execution Profiling

Execution Profiling records, as the program
executes with a test case, some number
of times that an event occurs. For
example:

the number of times a statement is executed when a
program is run with test case
the number of times a variable is changed when the
program is run with a test case

Execution Coverage

Execution Coverage records, as the
program executes with a test case,
whether an event occurs. For example:

whether a statement is executed when a program is
run with test case
whether a branch is taken when the program is run
with a test case
whether a variable is changed when the program is
run with a test case

S1

S2

S3

S4

S5 S6

S7

S8

S9

S10

entry

exit

T

T F

F

Execution Profiling/Tracing: Example

Suppose program executes
entry, S1, S2, S3, S4, S6,
S7, S8, S3, S4, S5, exit

Coverage?

Profile?

Trace?

Uses of Coverage, Profiling, Tracing

Instrumentation

Instrumentation is the process of adding
code to a program (called probes) such
that when the program is executed, it
records information about its execution

The program with the probes is called an
instrumented program

Instrumentation

Types of instrumentation
Preprocessing
Online processing
Postprocessing

Instrumentation Process

Instrumentation - statement coverage:

1

2 3

4 5

6

78

Ex

En

Instrumentation Process

Instrumentation – edge coverage:

1

2 3

4 5

6

78

Ex

En

Instrumentation Process

Instrumentation – path coverage:

1

2 3

4 5

6

78

Ex

En

