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Class 18

• Questions/comments
• Discussion of academic honesty, GT Honor 

Code
• Efficient path profiling
• Final project presentations:  Dec 1, 3; 4:35-6:45
• Assign (see Schedule for links) 

• Problem Set 7 discuss
• Readings
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Execution Tracing and Profiling    

Gathering dynamic information about programs
Execution coverage 
Execution profiling
Execution tracing

Three main alternatives
Debugging interfaces
Customized runtime systems 
Instrumentation

Post-processing
Online processing
Preprocessing
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Debugging Interfaces

Debugging Interfaces provide hooks into the 
runtime system that allow for collecting various 
dynamic information while the program 
executes.
Examples:

Java Platform Debugger Architecture (JPDA)
JVM Debugging Interface (JVMDI)
JVM Profiling Interface (JVMPI)
Java Virtual Machine Tool Interface (JVMTI) [New]

Valgrind
DynamoRIO
Emulators for embedded systems
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Customized Runtime Systems

Customized Runtime Systems are runtime 
systems modified to collect some specific 
dynamic information.
Examples:

Jalapeño JVM
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Instrumentation Tools
Source-level

EDG parser (AST)
Customized gcc

Binary/bytecode level
Vulcan
BCEL
SOOT

Dynamic
Dyninst
PIN
Valgrind



7

Efficient Path Profiling
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Profiling (recap)

Program profiling counts occurrences of an event during 
a program’s execution

Basic blocks
Control-flow edges
Acyclic path

Application
Performance tuning
Profile-directed compilation
Test coverage



Goal

Goal of paper:  To efficiently collect path profiles 
for a DAG (i.e., acyclic-path profiling)

Why not use existing techniques (existing at the 
time that the paper was written)?
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State of the Art

Edge profiling: 16% overhead
Estimation of path profiles from edge profiles

Correctly estimated only 38% of paths in SPEC
benchmarks)

Explain this 
figure
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Acyclic-Path Profiling

Assume for now—all paths acyclic—no loops 
Subsumes

basic block/statement profiling
edge/branch profiling

Better approximation of intra-procedural path 
frequencies
Stronger coverage criterion for white-box testing
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Goals for Instrumentation

Low time and space overhead
Minimal number of probes
Optimal placement of the probes
Paths represented with a simple integer value
Compact numbering of paths
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Algorithm Overview (i)
Each potential path is represented as a state
Upon entry all paths are possible
Each branch taken narrows the set of possible final states
State reached at the end of the procedure represents the path taken

Example:
P0: 1, 2, 4, 5, 7
P1: 1, 2, 4, 6, 7
P2: 1, 3, 4, 5, 7
P3: 1, 3, 4, 6, 7

1

2 3

4

5 6

7
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Algorithm Overview (i)
Each potential path is represented as a state
Upon entry all paths are possible
Each branch taken narrows the set of possible final states
State reached at the end of the procedure represents the path taken

Example:
P0: 1, 2, 4, 5, 7
P1: 1, 2, 4, 6, 7
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1

2 3

4

5 6

7

K: {P0, P1}K: {P2, P3}

K: {P1, P3} K: {P0, P2}
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Algorithm Overview (i)
Each potential path is represented as a state
Upon entry all paths are possible
Each branch taken narrows the set of possible final states
State reached at the end of the procedure represents the path taken

Example:
P0: 1, 2, 4, 5, 7
P1: 1, 2, 4, 6, 7
P2: 1, 3, 4, 5, 7
P3: 1, 3, 4, 6, 7

{P0, P1, P2, P3}
1

2 3

4

5 6

7

K: {P0, P1}K: {P2, P3}

K: {P1, P3} K: {P0, P2}

{P0, P1}

{P1}

{P1}
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Algorithm Overview (ii)
Final “states” (i.e., paths) are represented by integers in [0, n-1]     
(n == number of paths)
Instrumentation not at every branch
Transitions computed by simple arithmetic operations (no tables)
CFG transformed in acyclic CFGs (DAGs)

Example:
P0: 1, 2, 4, 5, 7
P1: 1, 2, 4, 6, 7
P2: 1, 3, 4, 5, 7
P3: 1, 3, 4, 6, 7

1

2 3

4

5 6

7

r=0

r+=1

r=2

count[r]++
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Algorithm Steps

1. Assign integer values to edges such that no 
two paths compute the same path sum

2. Use a spanning tree to select edges to 
instrument and compute the appropriate 
increment for each instrumented edge

3. Select appropriate instrumentation
4. Derive the executed paths from the collected 

run-time profiles
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Algorithm (Step 1 of 4)
1. Assign to each edge e a value Val(e) such that 

the sum along a path is unique and [0,n-1]

for each vertex v in rev. top. order {
if v is a leaf vertex {
NumPaths(v) = 1;

} else {
NumPaths(v) = 0;
for each edge e = v->w {
Val(e) = NumPaths(v);
NumPaths(v) += NumPaths(w);

}
}

}

A

B C

D

E F
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Topological, Reverse Topological Order

Create a depth-first 
spanning tree
Find topological 
and reverse 
topological orders
Are there other 
orders based on 
other spanning 
trees?

A

B C

D

E F
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Algorithm (Step 1 of 4)
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n
Val(i)
NumPaths(n)

i

A

B C

D

E F
1
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Not necessarily the best placement
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Algorithm (Step 2 of 4)

2. Use a spanning tree to select edges 
to instrument and compute the 
appropriate increment for each 
instrumented edge. A

B C

D

E F

35

Begin
Side Discussion of Probe Placement
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Probe placement

Knuth published efficient algorithms for finding the 
minimum number of edge counters for edge profiling
Algorithm

Compute spanning tree T of CFG; edges in the 
spanning tree are bidirectional
Chords of spanning tree are edges E in CFG minus 
edges in T
Instrumenting only the chords is sufficient to deduce 
execution of remaining edges
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Example

Show several spanning trees for the 
graph, and determine where probes 
should be placed
(complete on board) A

B C

D

E F
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Optimal Placement of Probes

Several spanning trees may be possible on a 
CFG
A maximum spanning tree is a spanning tree of 
maximum weight on its edges (why do we want 
maximum spanning tree?)
Weight is defined as the execution frequency of 
the edge (how can this be done?)
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Edge Execution Frequency

Program can be profiled to gather edge 
execution frequency
Edge execution frequency can be approximated 
statically—static approximation heuristic       
[Ball and Larus 94]
Generally impractical for purposes of profiling 
paths (why?)
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End
Side Discussion of Probe Placement
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Algorithm (Step 2 of 4)

2. Use a spanning tree to select edges 
to instrument and compute the 
appropriate increment for each 
instrumented edge. A

B C

D

E F
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Algorithm (Step 2 of 4)

2. Use a spanning tree to select edges 
to instrument and compute the 
appropriate increment for each 
instrumented edge.

Add edge EXIT -> ENTRY
A

B C

D

E F
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Algorithm (Step 2 of 4)

2. Use a spanning tree to select edges 
to instrument and compute the 
appropriate increment for each 
instrumented edge.

Add edge EXIT -> ENTRY
Compute a maximal spanning tree 
(find chords)

A

B C

D

E F
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Algorithm (Step 2 of 4)
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Algorithm (Step 2 of 4)

2. Use a spanning tree to select edges 
to instrument and compute the 
appropriate increment for each 
instrumented edge.
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Compute a maximal spanning tree 
(find chords)
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Algorithm (Step 2 of 4)

A

B C

D

E F0

01

0
0

2

02

2. Use a spanning tree to select edges 
to instrument and compute the 
appropriate increment for each 
instrumented edge.

Add edge EXIT -> ENTRY
Compute a maximal spanning tree 
(find chords)
Assign increments: start from Val(e) 
and “propagate” to chord               
[Ball and Larus 94]
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Algorithm (Step 2 of 4)

A

B C

D

E F

1

2
4

0

2. Use a spanning tree to select edges 
to instrument and compute the 
appropriate increment for each 
instrumented edge.

Add edge EXIT -> ENTRY
Compute a maximal spanning tree 
(find chords)
Assign increments: start from Val(e) 
and “propagate” to chord               
[Ball and Larus 94]
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A

B C

D

E F

1

2
4

0

Algorithm (Step 3 of 4)

3. Select appropriate instrumentation
Initialize path register (r=0)
Update r in chords (r += inc)
Increment path’s counter at
EXIT (count[r]++)
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Algorithm (Step 3 of 4)

3. Select appropriate instrumentation
Initialize path register (r=0)
Update r in chords (r += inc)
Increment path’s counter at
EXIT (count[r]++)
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Algorithm (Step 3 of 4)

3. Select appropriate instrumentation
Initialize path register (r=0)
Update r in chords (r += inc)
Increment path’s counter at
EXIT (count[r]++)

A

B C

D

E F

r += 4

r += 1

r += 2

r += 0

count[r]++

r = 0
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Algorithm (Step 3 of 4)

3. Select appropriate instrumentation
Initialize path register (r=0)
Update r in chords (r += inc)
Increment path’s counter at
EXIT (count[r]++)
Optimize

Initializations
(first chord on paths)
Path’s counter increment
(last chord on paths)

A

B C

D

E F

r += 4

r += 1

r += 2

r += 0

count[r]++

r = 0
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Algorithm (Step 3 of 4)

3. Select appropriate instrumentation
Initialize path register (r=0)
Update r in chords (r += inc)
Increment path’s counter at
EXIT (count[r]++)
Optimize

Initializations
(first chord on paths)
Path’s counter increment
(last chord on paths)
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Algorithm (Step 3 of 4)

3. Select appropriate instrumentation
Initialize path register (r=0)
Update r in chords (r += inc)
Increment path’s counter at
EXIT (count[r]++)
Optimize

Initializations
(first chord on paths)
Path’s counter increment
(last chord on paths)

r=4

count[r+1]++

r=2

r=0
A

B C

D

E F

count[r]++
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Algorithm (Step 4 of 4)

4. Regenerating a path after 
collecting a profile

Start at ENTRY
Let r be the path value
Select which edge to follow by 
finding the edge with the largest 
value Val(e) <= r
Traverse edge e and
r = r – Val(e)

A

B C

D

E F0

01

0
0

2

02
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Algorithm (Step 4 of 4)

4. Regenerating a path after 
collecting a profile

Start at ENTRY
Let r be the path value
Select which edge to follow by 
finding the edge with the largest 
value Val(e) <= r
Traverse edge e and
r = r – Val(e)

A

B C

D

E F0

01

0
0

2

02

Generate path for 5
Generate path for 3
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Acyclic Paths

All paths are intra-procedural (later extension to 
interprocedural)
No cycles (to avoid infinite number of paths)
Different kinds of loops and representations of 
loops (we’ll see in what follows)
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Arbitrary Control Flow (loops)

Loop implies the presence of a back-edge
Back-edges instrumented to increment path 
counter and reinitialize path register      
(count[r]++; r=0)
This is not enough; with loops 4 types of paths    
(v->w and x->y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v->w)
w to x (after executing v->w and ending with the 
execution of x->y, v->w and x->y can be the same 
back-edge)
w to EXIT (after executing v->w) 

Need to distinguish them

1

2 3

4

5

6

7

8
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2 3
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5

6

7

8
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1

2 3

4

5

6

7
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Arbitrary Control Flow (loops)
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Arbitrary Control Flow (loops)

1
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Loop implies the presence of a back-edge
Back-edges instrumented to increment path 
counter and reinitialize path register      
(count[r]++; r=0)
This is not enough; with loops, 4 types of paths    
(v->w and x->y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v->w)
w to x (after executing v->w and ending with the 
execution of x->y, v->w and x->y can be the same 
back-edge)
w to EXIT (after executing v->w) 

Need to distinguish them
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Convert Arbitrary CFGs to DAGs
Eliminate back-edges before computation of edge 
values and chord increments
Remove a loop back-edge
Add two edges

(1) ENTRY -> Target of back-edge
(2) Source of back-edge -> EXIT

The dummy edges create extra paths ENTRY-EXIT 
that the value assignment algorithm takes into 
account

Edge (1) represents reinitializing along the back-edge
Edge (2) represents incrementing along the back-edge
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1

2 3

4

5

6

7

8

Convert Arbitrary CFGs to DAGs
Eliminate back-edges before computation of edge 
values and chord increments
Remove a loop back-edge
Add two edges

(1) ENTRY -> Target of back-edge
(2) Source of back-edge -> EXIT

The dummy edges create extra paths ENTRY-EXIT 
that the value assignment algorithm takes into 
account

Edge (1) represents reinitializing along the back-edge
Edge (2) represents incrementing along the back-edge
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Implementation

Implemented in a tool called PP
PP instruments SPARC binaries
Built on top of EEL (binary instrumenter)
Uses a register to store r
Replaces array of counters with hash table if 
number of paths too large
Plus some other optimizations
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Experimental Results (i)

Used SPEC95 benchmark programs and test suites
Edge profiling average overhead=16.1% (2.6%-52.8%) 
Path profiling average overhead=30.9% (5.5%-96.9%) 
When hashing is used performance is hurt
Using no hashing, overhead is comparable or lower than 
edge profiling
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Algorithm Evolution

Ball & Larus, “Optimally Profiling and Tracing Programs”
Focuses on edge and vertex profiling
Optimal placement of probes

Ball, “Efficiently Counting Program Events with Support 
for On-line Queries”

Developed the technique for edge profiling with one 
register (instead of a counter for each edge)


