
1

Class 18

• Questions/comments
• Discussion of academic honesty, GT Honor

Code
• Efficient path profiling
• Final project presentations: Dec 1, 3; 4:35-6:45
• Assign (see Schedule for links)

• Problem Set 7 discuss
• Readings

2

Execution Tracing and Profiling

Gathering dynamic information about programs
Execution coverage
Execution profiling
Execution tracing

Three main alternatives
Debugging interfaces
Customized runtime systems
Instrumentation

Post-processing
Online processing
Preprocessing

3

Execution Tracing and Profiling

Gathering dynamic information about programs
Execution coverage
Execution profiling
Execution tracing

Three main alternatives
Debugging interfaces
Customized runtime systems
Instrumentation

Post-processing
Online processing
Preprocessing

4

Debugging Interfaces

Debugging Interfaces provide hooks into the
runtime system that allow for collecting various
dynamic information while the program
executes.
Examples:

Java Platform Debugger Architecture (JPDA)
JVM Debugging Interface (JVMDI)
JVM Profiling Interface (JVMPI)
Java Virtual Machine Tool Interface (JVMTI) [New]

Valgrind
DynamoRIO
Emulators for embedded systems

5

Customized Runtime Systems

Customized Runtime Systems are runtime
systems modified to collect some specific
dynamic information.
Examples:

Jalapeño JVM

6

Instrumentation Tools
Source-level

EDG parser (AST)
Customized gcc

Binary/bytecode level
Vulcan
BCEL
SOOT

Dynamic
Dyninst
PIN
Valgrind

7

Efficient Path Profiling

8

Profiling (recap)

Program profiling counts occurrences of an event during
a program’s execution

Basic blocks
Control-flow edges
Acyclic path

Application
Performance tuning
Profile-directed compilation
Test coverage

Goal

Goal of paper: To efficiently collect path profiles
for a DAG (i.e., acyclic-path profiling)

Why not use existing techniques (existing at the
time that the paper was written)?

11

State of the Art

Edge profiling: 16% overhead
Estimation of path profiles from edge profiles

Correctly estimated only 38% of paths in SPEC
benchmarks)

Explain this
figure

12

Acyclic-Path Profiling

Assume for now—all paths acyclic—no loops
Subsumes

basic block/statement profiling
edge/branch profiling

Better approximation of intra-procedural path
frequencies
Stronger coverage criterion for white-box testing

13

Goals for Instrumentation

Low time and space overhead
Minimal number of probes
Optimal placement of the probes
Paths represented with a simple integer value
Compact numbering of paths

14

Algorithm Overview (i)
Each potential path is represented as a state
Upon entry all paths are possible
Each branch taken narrows the set of possible final states
State reached at the end of the procedure represents the path taken

Example:
P0: 1, 2, 4, 5, 7
P1: 1, 2, 4, 6, 7
P2: 1, 3, 4, 5, 7
P3: 1, 3, 4, 6, 7

1

2 3

4

5 6

7

15

Algorithm Overview (i)
Each potential path is represented as a state
Upon entry all paths are possible
Each branch taken narrows the set of possible final states
State reached at the end of the procedure represents the path taken

Example:
P0: 1, 2, 4, 5, 7
P1: 1, 2, 4, 6, 7
P2: 1, 3, 4, 5, 7
P3: 1, 3, 4, 6, 7

1

2 3

4

5 6

7

K: {P0, P1}K: {P2, P3}

K: {P1, P3} K: {P0, P2}

16

Algorithm Overview (i)
Each potential path is represented as a state
Upon entry all paths are possible
Each branch taken narrows the set of possible final states
State reached at the end of the procedure represents the path taken

Example:
P0: 1, 2, 4, 5, 7
P1: 1, 2, 4, 6, 7
P2: 1, 3, 4, 5, 7
P3: 1, 3, 4, 6, 7

{P0, P1, P2, P3}
1

2 3

4

5 6

7

K: {P0, P1}K: {P2, P3}

K: {P1, P3} K: {P0, P2}

{P0, P1}

{P1}

{P1}

17

Algorithm Overview (ii)
Final “states” (i.e., paths) are represented by integers in [0, n-1]
(n == number of paths)
Instrumentation not at every branch
Transitions computed by simple arithmetic operations (no tables)
CFG transformed in acyclic CFGs (DAGs)

Example:
P0: 1, 2, 4, 5, 7
P1: 1, 2, 4, 6, 7
P2: 1, 3, 4, 5, 7
P3: 1, 3, 4, 6, 7

1

2 3

4

5 6

7

r=0

r+=1

r=2

count[r]++

18

Algorithm Steps

1. Assign integer values to edges such that no
two paths compute the same path sum

2. Use a spanning tree to select edges to
instrument and compute the appropriate
increment for each instrumented edge

3. Select appropriate instrumentation
4. Derive the executed paths from the collected

run-time profiles

19

Algorithm (Step 1 of 4)
1. Assign to each edge e a value Val(e) such that

the sum along a path is unique and [0,n-1]

for each vertex v in rev. top. order {
if v is a leaf vertex {
NumPaths(v) = 1;

} else {
NumPaths(v) = 0;
for each edge e = v->w {
Val(e) = NumPaths(v);
NumPaths(v) += NumPaths(w);

}
}

}

A

B C

D

E F

20

Topological, Reverse Topological Order

Create a depth-first
spanning tree
Find topological
and reverse
topological orders
Are there other
orders based on
other spanning
trees?

A

B C

D

E F

21

Algorithm (Step 1 of 4)
1. Assign to each edge e a value Val(e) such that

the sum along a path is unique and [0,n-1]

for each vertex v in rev. top. order {
if v is a leaf vertex {
NumPaths(v) = 1;

} else {
NumPaths(v) = 0;
for each edge e = v->w {
Val(e) = NumPaths(v);
NumPaths(v) += NumPaths(w);

}
}

}

A

B C

D

E F

22

Algorithm (Step 1 of 4)
1. Assign to each edge e a value Val(e) such that

the sum along a path is unique and [0,n-1]

for each vertex v in rev. top. order {
if v is a leaf vertex {
NumPaths(v) = 1;

} else {
NumPaths(v) = 0;
for each edge e = v->w {
Val(e) = NumPaths(v);
NumPaths(v) += NumPaths(w);

}
}

}

n
Val(i)
NumPaths(n)

i

A

B C

D

E F
1

23

Algorithm (Step 1 of 4)
1. Assign to each edge e a value Val(e) such that

the sum along a path is unique and [0,n-1]

for each vertex v in rev. top. order {
if v is a leaf vertex {
NumPaths(v) = 1;

} else {
NumPaths(v) = 0;
for each edge e = v->w {
Val(e) = NumPaths(v);
NumPaths(v) += NumPaths(w);

}
}

}

n
Val(i)
NumPaths(n)

i

A

B C

D

E F
101

24

Algorithm (Step 1 of 4)
1. Assign to each edge e a value Val(e) such that

the sum along a path is unique and [0,n-1]

for each vertex v in rev. top. order {
if v is a leaf vertex {
NumPaths(v) = 1;

} else {
NumPaths(v) = 0;
for each edge e = v->w {
Val(e) = NumPaths(v);
NumPaths(v) += NumPaths(w);

}
}

}

n
Val(i)
NumPaths(n)

i

A

B C

D

E F
101

1
0

25

Algorithm (Step 1 of 4)
1. Assign to each edge e a value Val(e) such that

the sum along a path is unique and [0,n-1]

for each vertex v in rev. top. order {
if v is a leaf vertex {
NumPaths(v) = 1;

} else {
NumPaths(v) = 0;
for each edge e = v->w {
Val(e) = NumPaths(v);
NumPaths(v) += NumPaths(w);

}
}

}

n
Val(i)
NumPaths(n)

i

A

B C

D

E F
101

2
01

26

Algorithm (Step 1 of 4)
1. Assign to each edge e a value Val(e) such that

the sum along a path is unique and [0,n-1]

for each vertex v in rev. top. order {
if v is a leaf vertex {
NumPaths(v) = 1;

} else {
NumPaths(v) = 0;
for each edge e = v->w {
Val(e) = NumPaths(v);
NumPaths(v) += NumPaths(w);

}
}

}

n
Val(i)
NumPaths(n)

i

A

B C

D

E F
101

2
01

2
0

27

Algorithm (Step 1 of 4)
1. Assign to each edge e a value Val(e) such that

the sum along a path is unique and [0,n-1]

for each vertex v in rev. top. order {
if v is a leaf vertex {
NumPaths(v) = 1;

} else {
NumPaths(v) = 0;
for each edge e = v->w {
Val(e) = NumPaths(v);
NumPaths(v) += NumPaths(w);

}
}

}

n
Val(i)
NumPaths(n)

i

A

B C

D

E F
101

2
01

2
0

2 0

28

Algorithm (Step 1 of 4)
1. Assign to each edge e a value Val(e) such that

the sum along a path is unique and [0,n-1]

for each vertex v in rev. top. order {
if v is a leaf vertex {
NumPaths(v) = 1;

} else {
NumPaths(v) = 0;
for each edge e = v->w {
Val(e) = NumPaths(v);
NumPaths(v) += NumPaths(w);

}
}

}

n
Val(i)
NumPaths(n)

i

A

B C

D

E F
101

2
01

2
0

4 0
2

29

Algorithm (Step 1 of 4)
1. Assign to each edge e a value Val(e) such that

the sum along a path is unique and [0,n-1]

for each vertex v in rev. top. order {
if v is a leaf vertex {
NumPaths(v) = 1;

} else {
NumPaths(v) = 0;
for each edge e = v->w {
Val(e) = NumPaths(v);
NumPaths(v) += NumPaths(w);

}
}

}

n
Val(i)
NumPaths(n)

i

A

B C

D

E F
101

2
01

2
0

4 0
2

0
2

30

Algorithm (Step 1 of 4)
1. Assign to each edge e a value Val(e) such that

the sum along a path is unique and [0,n-1]

for each vertex v in rev. top. order {
if v is a leaf vertex {
NumPaths(v) = 1;

} else {
NumPaths(v) = 0;
for each edge e = v->w {
Val(e) = NumPaths(v);
NumPaths(v) += NumPaths(w);

}
}

}

A

B C

D

E F
10

1

22

2

4

2

0

01

0
0

2

02
6

1

n
Val(i)
NumPaths(n)

i

32

Algorithm (Step 1 of 4)
1. Assign to each edge e a value Val(e) such that

the sum along a path is unique and [0,n-1]

for each vertex v in rev. top. order {
if v is a leaf vertex {
NumPaths(v) = 1;

} else {
NumPaths(v) = 0;
for each edge e = v->w {
Val(e) = NumPaths(v);
NumPaths(v) += NumPaths(w);

}
}

}

A

B C

D

E F
10

1

22

2

4

2

0

01

0
0

2

02
6

1

Not necessarily the best placement

34

Algorithm (Step 2 of 4)

2. Use a spanning tree to select edges
to instrument and compute the
appropriate increment for each
instrumented edge. A

B C

D

E F

35

Begin
Side Discussion of Probe Placement

36

Probe placement

Knuth published efficient algorithms for finding the
minimum number of edge counters for edge profiling
Algorithm

Compute spanning tree T of CFG; edges in the
spanning tree are bidirectional
Chords of spanning tree are edges E in CFG minus
edges in T
Instrumenting only the chords is sufficient to deduce
execution of remaining edges

37

Example

Show several spanning trees for the
graph, and determine where probes
should be placed
(complete on board) A

B C

D

E F

38

Optimal Placement of Probes

Several spanning trees may be possible on a
CFG
A maximum spanning tree is a spanning tree of
maximum weight on its edges (why do we want
maximum spanning tree?)
Weight is defined as the execution frequency of
the edge (how can this be done?)

39

Edge Execution Frequency

Program can be profiled to gather edge
execution frequency
Edge execution frequency can be approximated
statically—static approximation heuristic
[Ball and Larus 94]
Generally impractical for purposes of profiling
paths (why?)

40

End
Side Discussion of Probe Placement

41

Algorithm (Step 2 of 4)

2. Use a spanning tree to select edges
to instrument and compute the
appropriate increment for each
instrumented edge. A

B C

D

E F

42

Algorithm (Step 2 of 4)

2. Use a spanning tree to select edges
to instrument and compute the
appropriate increment for each
instrumented edge.

Add edge EXIT -> ENTRY
A

B C

D

E F

43

Algorithm (Step 2 of 4)

2. Use a spanning tree to select edges
to instrument and compute the
appropriate increment for each
instrumented edge.

Add edge EXIT -> ENTRY
Compute a maximal spanning tree
(find chords)

A

B C

D

E F

44

Algorithm (Step 2 of 4)

2. Use a spanning tree to select edges
to instrument and compute the
appropriate increment for each
instrumented edge.

Add edge EXIT -> ENTRY
Compute a maximal spanning tree
(find chords)

A

B C

D

E F

45

Algorithm (Step 2 of 4)

2. Use a spanning tree to select edges
to instrument and compute the
appropriate increment for each
instrumented edge.

Add edge EXIT -> ENTRY
Compute a maximal spanning tree
(find chords)

A

B C

D

E F

46

Algorithm (Step 2 of 4)

A

B C

D

E F0

01

0
0

2

02

2. Use a spanning tree to select edges
to instrument and compute the
appropriate increment for each
instrumented edge.

Add edge EXIT -> ENTRY
Compute a maximal spanning tree
(find chords)
Assign increments: start from Val(e)
and “propagate” to chord
[Ball and Larus 94]

47

Algorithm (Step 2 of 4)

A

B C

D

E F

1

2
4

0

2. Use a spanning tree to select edges
to instrument and compute the
appropriate increment for each
instrumented edge.

Add edge EXIT -> ENTRY
Compute a maximal spanning tree
(find chords)
Assign increments: start from Val(e)
and “propagate” to chord
[Ball and Larus 94]

48

A

B C

D

E F

1

2
4

0

Algorithm (Step 3 of 4)

3. Select appropriate instrumentation
Initialize path register (r=0)
Update r in chords (r += inc)
Increment path’s counter at
EXIT (count[r]++)

49

Algorithm (Step 3 of 4)

3. Select appropriate instrumentation
Initialize path register (r=0)
Update r in chords (r += inc)
Increment path’s counter at
EXIT (count[r]++)

50

Algorithm (Step 3 of 4)

3. Select appropriate instrumentation
Initialize path register (r=0)
Update r in chords (r += inc)
Increment path’s counter at
EXIT (count[r]++)

A

B C

D

E F

r += 4

r += 1

r += 2

r += 0

count[r]++

r = 0

51

Algorithm (Step 3 of 4)

3. Select appropriate instrumentation
Initialize path register (r=0)
Update r in chords (r += inc)
Increment path’s counter at
EXIT (count[r]++)
Optimize

Initializations
(first chord on paths)
Path’s counter increment
(last chord on paths)

A

B C

D

E F

r += 4

r += 1

r += 2

r += 0

count[r]++

r = 0

52

Algorithm (Step 3 of 4)

3. Select appropriate instrumentation
Initialize path register (r=0)
Update r in chords (r += inc)
Increment path’s counter at
EXIT (count[r]++)
Optimize

Initializations
(first chord on paths)
Path’s counter increment
(last chord on paths)

53

Algorithm (Step 3 of 4)

3. Select appropriate instrumentation
Initialize path register (r=0)
Update r in chords (r += inc)
Increment path’s counter at
EXIT (count[r]++)
Optimize

Initializations
(first chord on paths)
Path’s counter increment
(last chord on paths)

r=4

count[r+1]++

r=2

r=0
A

B C

D

E F

count[r]++

54

Algorithm (Step 4 of 4)

4. Regenerating a path after
collecting a profile

Start at ENTRY
Let r be the path value
Select which edge to follow by
finding the edge with the largest
value Val(e) <= r
Traverse edge e and
r = r – Val(e)

A

B C

D

E F0

01

0
0

2

02

55

Algorithm (Step 4 of 4)

4. Regenerating a path after
collecting a profile

Start at ENTRY
Let r be the path value
Select which edge to follow by
finding the edge with the largest
value Val(e) <= r
Traverse edge e and
r = r – Val(e)

A

B C

D

E F0

01

0
0

2

02

Generate path for 5
Generate path for 3

56

Acyclic Paths

All paths are intra-procedural (later extension to
interprocedural)
No cycles (to avoid infinite number of paths)
Different kinds of loops and representations of
loops (we’ll see in what follows)

57

Arbitrary Control Flow (loops)

Loop implies the presence of a back-edge
Back-edges instrumented to increment path
counter and reinitialize path register
(count[r]++; r=0)
This is not enough; with loops 4 types of paths
(v->w and x->y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v->w)
w to x (after executing v->w and ending with the
execution of x->y, v->w and x->y can be the same
back-edge)
w to EXIT (after executing v->w)

Need to distinguish them

1

2 3

4

5

6

7

8

58

Arbitrary Control Flow (loops)

Loop implies the presence of a back-edge
Back-edges instrumented to increment path
counter and reinitialize path register
(count[r]++; r=0)
This is not enough; with loops, 4 types of paths
(v->w and x->y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v->w)
w to x (after executing v->w and ending with the
execution of x->y, v->w and x->y can be the same
back-edge)
w to EXIT (after executing v->w)

Need to distinguish them

1

2 3

4

5

6

7

8

59

Arbitrary Control Flow (loops)

1

2 3

4

5

6

7

8

Loop implies the presence of a back-edge
Back-edges instrumented to increment path
counter and reinitialize path register
(count[r]++; r=0)
This is not enough; with loops, 4 types of paths
(v->w and x->y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v->w)
w to x (after executing v->w and ending with the
execution of x->y, v->w and x->y can be the same
back-edge)
w to EXIT (after executing v->w)

Need to distinguish them

60

Arbitrary Control Flow (loops)

1

2 3

4

5

6

7

8

Loop implies the presence of a back-edge
Back-edges instrumented to increment path
counter and reinitialize path register
(count[r]++; r=0)
This is not enough; with loops, 4 types of paths
(v->w and x->y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v->w)
w to x (after executing v->w and ending with the
execution of x->y, v->w and x->y can be the same
back-edge)
w to EXIT (after executing v->w)

Need to distinguish them

61

Arbitrary Control Flow (loops)

1

2 3

4

5

6

7

8

Loop implies the presence of a back-edge
Back-edges instrumented to increment path
counter and reinitialize path register
(count[r]++; r=0)
This is not enough; with loops, 4 types of paths
(v->w and x->y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v->w)
w to x (after executing v->w and ending with the
execution of x->y, v->w and x->y can be the same
back-edge)
w to EXIT (after executing v->w)

Need to distinguish them

62

Arbitrary Control Flow (loops)

1

2 3

4

5

6

7

8

Loop implies the presence of a back-edge
Back-edges instrumented to increment path
counter and reinitialize path register
(count[r]++; r=0)
This is not enough; with loops, 4 types of paths
(v->w and x->y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v->w)
w to x (after executing v->w and ending with the
execution of x->y, v->w and x->y can be the same
back-edge)
w to EXIT (after executing v->w)

Need to distinguish them

63

Convert Arbitrary CFGs to DAGs
Eliminate back-edges before computation of edge
values and chord increments
Remove a loop back-edge
Add two edges

(1) ENTRY -> Target of back-edge
(2) Source of back-edge -> EXIT

The dummy edges create extra paths ENTRY-EXIT
that the value assignment algorithm takes into
account

Edge (1) represents reinitializing along the back-edge
Edge (2) represents incrementing along the back-edge

64

1

2 3

4

5

6

7

8

Convert Arbitrary CFGs to DAGs
Eliminate back-edges before computation of edge
values and chord increments
Remove a loop back-edge
Add two edges

(1) ENTRY -> Target of back-edge
(2) Source of back-edge -> EXIT

The dummy edges create extra paths ENTRY-EXIT
that the value assignment algorithm takes into
account

Edge (1) represents reinitializing along the back-edge
Edge (2) represents incrementing along the back-edge

65

Implementation

Implemented in a tool called PP
PP instruments SPARC binaries
Built on top of EEL (binary instrumenter)
Uses a register to store r
Replaces array of counters with hash table if
number of paths too large
Plus some other optimizations

66

Experimental Results (i)

Used SPEC95 benchmark programs and test suites
Edge profiling average overhead=16.1% (2.6%-52.8%)
Path profiling average overhead=30.9% (5.5%-96.9%)
When hashing is used performance is hurt
Using no hashing, overhead is comparable or lower than
edge profiling

69

Algorithm Evolution

Ball & Larus, “Optimally Profiling and Tracing Programs”
Focuses on edge and vertex profiling
Optimal placement of probes

Ball, “Efficiently Counting Program Events with Support
for On-line Queries”

Developed the technique for edge profiling with one
register (instead of a counter for each edge)

