
1

Class 19

• Questions/comments
• DejaVu question
• Efficient path profiling (cont’d)
• Fault localization
• Final project presentations: Dec 1, 3; 4:35-6:45
• Assign (see Schedule for links)

• Problem Set 8 discuss
• Readings

2

DejaVu Question

• For TriType, the change in the first if statement
causes all test cases to be rerun.

• However, only the third condition is changed.
• Can we select test cases based on conditions

instead of branches?

Acyclic Path Profiling (Notes)

After Step 1 of the algorithm for computing
Val(e) for each edge e

If a vertex has only one out edge E, VAL(E)=?
If a vertex has two out edges—E1 and E2—what are
Val(E1), and Val(E2)?

After Step 1 of the algorithm, regardless of the
order in which vertices V are processed,
NumPath(V) is the same. Why?

5

Algorithm Step 1 Alternative Assignment 1
1. Assign to each edge e a value Val(e) such that the

sum along a path is unique and [0,n-1]

A

B C

D

E F
10

1

22

2

4

2

0

10

0
0

2

40
6

15ACDF
4ACDEF
3ABDF
2ABDEF
1ABCDF
0ABCDEF

ValuePath

6

Algorithm Step 1 Alternative Assignment 2
1. Assign to each edge e a value Val(e) such that the

sum along a path is unique and [0,n-1]

A

B C

D

E F
10

1

22

2

4

2

0

10

0
0

2

02
6

11ACDF
0ACDEF
5ABDF
4ABDEF
3ABCDF
2ABCDEF

ValuePath

7

Algorithm Step 1 Alternative Assignment 3
1. Assign to each edge e a value Val(e) such that the

sum along a path is unique and [0,n-1]

A

B C

D

E F
10

1

22

2

4

2

0

10

0
2

0

40
6

15ACDF
4ACDEF
1ABDF
0ABDEF
3ABCDF
2ABCDEF

ValuePath

8

Algorithm Step 1 Alternative Assignment 4
1. Assign to each edge e a value Val(e) such that the

sum along a path is unique and [0,n-1]

A

B C

D

E F
10

1

22

2

4

2

0

10

0
2

0

02
6

11ACDF
0ACDEF
3ABDF
2ABDEF
5ABCDF
4ABCDEF

ValuePath

9

Algorithm Step 1 Alternative Assignment 5
1. Assign to each edge e a value Val(e) such that the

sum along a path is unique and [0,n-1]

A

B C

D

E F
10

1

22

2

4

2

0

01

0
0

2

40
6

14ACDF
5ACDEF
2ABDF
3ABDEF
0ABCDF
1ABCDEF

ValuePath

10

Algorithm Step 1 Alternative Assignment 6
1. Assign to each edge e a value Val(e) such that the

sum along a path is unique and [0,n-1]

A

B C

D

E F
10

1

22

2

4

2

0

01

0
0

2

02
6

10ACDF
1ACDEF
4ABDF
5ABDEF
2ABCDF
3ABCDEF

ValuePath

11

Algorithm Step 1 Alternative Assignment 7
1. Assign to each edge e a value Val(e) such that the

sum along a path is unique and [0,n-1]

A

B C

D

E F
10

1

22

2

4

2

0

01

0
2

0

40
6

14ACDF
5ACDEF
0ABDF
1ABDEF
2ABCDF
3ABCDEF

ValuePath

12

Algorithm Step 1 Alternative Assignment 8
1. Assign to each edge e a value Val(e) such that the

sum along a path is unique and [0,n-1]

A

B C

D

E F
10

1

22

2

4

2

0

01

0
2

0

02
6

10ACDF
1ACDEF
2ABDF
3ABDEF
4ABCDF
5ABCDEF

ValuePath

13

Algorithm (Step 2 of 4)

A

B C

D

E F

2. Use a spanning tree to select edges
to instrument and compute the
appropriate increment for each
instrumented edge.

Add edge EXIT -> ENTRY
Compute a maximal spanning tree
(find chords)

The addition of each chord to the
spanning tree creates a unique cycle
called the fundamental cycle

14

Algorithm Step 2 Fundamental Cycle for A C

A

B C

D

E F

A

B C

D

E F

Fundamental cycle shown in green

15

Algorithm Step 2 Fundamental Cycle for B C

A

B C

D

E F

A

B C

D

E F

Fundamental cycle shown in green

16

Algorithm Step 2 Fundamental Cycle for B D

A

B C

D

E F

A

B C

D

E F

Fundamental cycle shown in green

17

Algorithm Step 2 Fundamental Cycle for B D

A

B C

D

E F

A

B C

D

E F

Remember—edges in spanning tree are undirected

Fundamental cycle shown in green

18

Algorithm (Step 2 of 4)

A

B C

D

E F

2. Use a spanning tree to select edges
to instrument and compute the
appropriate increment for each
instrumented edge.

Add edge EXIT -> ENTRY
Compute a maximal spanning tree
(find chords)
Assign increments: start from Val(e)
and “propagate” to chord
[Ball and Larus 94]

To do this, consider each chord and
its fundamental cycle, along with the
values assigned in Step 1

19

Algorithm Step 2 Assign Increments
2. Use a spanning tree to select edges to instrument and compute

the appropriate increment for each instrumented edge.

A

B C

D

E F0

10

0
0

2

40
Consider Alternative Assignment 1
and chord A C

1 on D F is propagated to A C
where it is added to 4

The increment on A C is now 5

20

Algorithm Step 2 Assign Increments
2. Use a spanning tree to select edges to instrument and compute

the appropriate increment for each instrumented edge.

A

B C

D

E F0

10

0
0

2

0
With chord A C assigned, consider
Alternative Assignment 1 and chord B C

1 on D F is propagated to B C
where it is added to 0

The increment on B C is now 1

5

21

Algorithm Step 2 Assign Increments
2. Use a spanning tree to select edges to instrument and compute

the appropriate increment for each instrumented edge.

A

B C

D

E F0

10

02

0
With chords A C, B C assigned, consider
Alternative Assignment 1 and chord B D

1 on D F is propagated to B D where
it is added added to 2

The increment on B D is now 3

5

1

22

Algorithm Step 2 Assign Increments
2. Use a spanning tree to select edges to instrument and compute

the appropriate increment for each instrumented edge.

A

B C

D

E F0

10

0

0
With chords A C, B C, B D assigned,
consider Alternative Assignment 1
and chord D E

1 on D F is propagated to D E.
Because the direction of D F in the
fundamental cycle differs from the
direction of the edge in the CFG, the
value on D F is subtracted from the
value on D E

The increment on D E is now -1

5

1
3

23

Algorithm Step 2 Assign Increments
Compare path values using values on all edges and values only
on the increment edges to see that they are the same

A

B C

D

E F

-1

3

5

1

5
4
3
2
1
0

Value
Step 1

5ACDF
4ACDEF
3ABDF
2ABDEF
1ABCDF
0ABCDEF

Value
Step 2

Path

24

Arbitrary Control Flow (loops)

Loop implies the presence of a back-edge
Back-edges instrumented to increment path
counter and reinitialize path register
(count[r]++; r=0)
This is not enough; with loops 4 types of paths
(v->w and x->y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v->w)
w to x (after executing v->w and ending with the
execution of x->y, v->w and x->y can be the same
back-edge)
w to EXIT (after executing v->w)

Need to distinguish them

1

2 3

4

5

6

7

8

25

Arbitrary Control Flow (loops)

Loop implies the presence of a back-edge
Back-edges instrumented to increment path
counter and reinitialize path register
(count[r]++; r=0)
This is not enough; with loops, 4 types of paths
(v w and x y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v w)
w to x (after executing v w and ending with the
execution of x y; v w and x y can be the same
back-edge)
w to EXIT (after executing v w)

Need to distinguish them

1

2 3

4

5

6

7

8

26

Arbitrary Control Flow (loops)

1

2 3

4

5

6

7

8

Loop implies the presence of a back-edge
Back-edges instrumented to increment path
counter and reinitialize path register
(count[r]++; r=0)
This is not enough; with loops, 4 types of paths
(v w and x y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v w)
w to x (after executing v w and ending with the
execution of x y; v w and x y can be the same
back-edge)
w to EXIT (after executing v w)

Need to distinguish them

27

Arbitrary Control Flow (loops)

1

2 3

4

5

6

7

8

Loop implies the presence of a back-edge
Back-edges instrumented to increment path
counter and reinitialize path register
(count[r]++; r=0)
This is not enough; with loops, 4 types of paths
(v w and x y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v w)
w to x (after executing v w and ending with the
execution of x y; v w and x y can be the same
back-edge)
w to EXIT (after executing v w)

Need to distinguish them

28

Arbitrary Control Flow (loops)

1

2 3

4

5

6

7

8

Loop implies the presence of a back-edge
Back-edges instrumented to increment path
counter and reinitialize path register
(count[r]++; r=0)
This is not enough; with loops, 4 types of paths
(v w and x y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v->w)
w to x (after executing v w and ending with the
execution of x y; v w and x y can be the same
back-edge)
w to EXIT (after executing v w)

Need to distinguish them

29

Arbitrary Control Flow (loops)

1

2 3

4

5

6

7

8

Loop implies the presence of a back-edge
Back-edges instrumented to increment path
counter and reinitialize path register
(count[r]++; r=0)
This is not enough; with loops, 4 types of paths
(v w and x y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v w)
w to x (after executing v->w and ending with the
execution of x y; v w and x y can be the same
back-edge)
w to EXIT (after executing v w)

Need to distinguish them

Other Examples with Loops

Show on the board

Fault Localization

Execute

Program
P

Test Suite
T

Add
features

Improve
performance

TT

Assess
adequacy

Assess
outcome

Test, Debug, Fix Cycle

F

Augment T
for untested
adequacy

requirements

Identify
faults

F

Modify
P P’

Select subset
of T to rerun

Execute

Program
P

Test Suite
T

Add
features

Improve
performance

TT

Assess
adequacy

Assess
outcome

Test, Debug, Fix Cycle

F

Augment T
for untested
adequacy

requirements

Identify
faults

F

Modify
P P’

Select subset
of T to rerun

Execute

Program
P

Test Suite
T

Add
features

Improve
performance

TT

Assess
adequacy

Assess
outcome

Test, Debug, Fix Cycle

F

Augment T
for untested
adequacy

requirements

Identify
faults

F

Modify
P P’

Select subset
of T to rerun

Execute

Program
P

Test Suite
T

Add
features

Improve
performance

TT

Assess
adequacy

Assess
outcome

Test, Debug, Fix Cycle

F

Augment T
for untested
adequacy

requirements

Identify
faults

F

Modify
P P’

Select subset
of T to rerun

Usage scenarios
Nightly-build process

Run set of tests (regression, breadth) each night
Report tests that pass and fail
Use fault-localization to identify most likely faulty parts of the
software

Test-driven development
Create and run tests (regression, breadth) after changes
Report tests that pass and fail
Use fault-localization to identify most likely faulty parts of the
software

Regression testing
Run set of tests after changes
Report tests that pass and fail
Use fault-localization to identify most likely faulty parts of the
software

Identify Faults: Fault Localization

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = y;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

What is the intuition behind
the Tarantula approach?

What information does
Tarantula use?

How does the Tarantula
technique work?

General Technique—Tarantula

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = y;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

Technique uses
Dynamic information

• statements executed
• outcome (pass/fail)

Statistical analysis
• computes suspiciousness
of each statement

General Technique—Tarantula

Intuition: Statements primarily
executed by failed test cases
are more suspicious than
statements primarily executed
by passed test cases

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

3,
3,

5
1,

2,
3

3,
2,

2
5,

5,
5

1,
1,

4
5,

3,
4

P P P P F

h
h
h
h

h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h
h

h

h

h
h
h
h

h
h

h

h
h
h
h

h

h

Pass/fail Status

3,
2,

1
2,

1,
3

5,
4,

2
5,

2,
6

h
h
h

h
h
h

h

h
h
h
h

h
h

h

h
h
h
h

h
h

h

h
h
h

h
h
h

h

P P F FF

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

General Technique—Tarantula

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}
3,

3,
5

1,
2,

3
3,

2,
2

5,
5,

5
1,

1,
4

5,
3,

4

P P P P F

h
h
h
h

h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h
h

h

h

h
h
h
h

h
h

h

h
h
h
h

h

h

Pass/fail Status

3,
2,

1
2,

1,
3

5,
4,

2
5,

2,
6

h
h
h

h
h
h

h

h
h
h
h

h
h

h

h
h
h
h

h
h

h

h
h
h

h
h
h

h

P P F FF

su
sp

ic
io

us
ne

ss

General Technique—Tarantula

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

3,
3,

5
1,

2,
3

3,
2,

2
5,

5,
5

1,
1,

4
5,

3,
4

P P P P F

h
h
h
h

h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h
h

h

h

h
h
h
h

h
h

h

h
h
h
h

h

h

Pass/fail Status

3,
2,

1
2,

1,
3

5,
4,

2
5,

2,
6

h
h
h

h
h
h

h

h
h
h
h

h
h

h

h
h
h
h

h
h

h

h
h
h

h
h
h

h

P P F FF

su
sp

ic
io

us
ne

ss
General Technique—Tarantula

What is the
Suspiciousness of
statement 1?

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}
3,

3,
5

1,
2,

3
3,

2,
2

5,
5,

5
1,

1,
4

5,
3,

4

P P P P F

h
h
h
h

h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h
h

h

h

h
h
h
h

h
h

h

h
h
h
h

h

h

Pass/fail Status

3,
2,

1
2,

1,
3

5,
4,

2
5,

2,
6

h
h
h

h
h
h

h

h
h
h
h

h
h

h

h
h
h
h

h
h

h

h
h
h

h
h
h

h

P P F FF

su
sp

ic
io

us
ne

ss

0.50

General Technique—Tarantula

What is the
Suspiciousness of
statement 7?

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

3,
3,

5
1,

2,
3

3,
2,

2
5,

5,
5

1,
1,

4
5,

3,
4

P P P P F

h
h
h
h

h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h
h

h

h

h
h
h
h

h
h

h

h
h
h
h

h

h

Pass/fail Status

3,
2,

1
2,

1,
3

5,
4,

2
5,

2,
6

h
h
h

h
h
h

h

h
h
h
h

h
h

h

h
h
h
h

h
h

h

h
h
h

h
h
h

h

P P F FF

su
sp

ic
io

us
ne

ss

0.50

General Technique—Tarantula

What is the
Suspiciousness of
statement 7? 0.60

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}
3,

3,
5

1,
2,

3
3,

2,
2

5,
5,

5
1,

1,
4

5,
3,

4

P P P P F

h
h
h
h

h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h
h

h

h

h
h
h
h

h
h

h

h
h
h
h

h

h

Pass/fail Status

3,
2,

1
2,

1,
3

5,
4,

2
5,

2,
6

h
h
h

h
h
h

h

h
h
h
h

h
h

h

h
h
h
h

h
h

h

h
h
h

h
h
h

h

P P F FF

su
sp

ic
io

us
ne

ss

0.50

General Technique—Tarantula

0.50
0.50
0.43
0.00
0.50

0.60
0.60
0.75
0.00
0.00
0.50

0.60

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

3,
3,

5
1,

2,
3

3,
2,

2
5,

5,
5

1,
1,

4
5,

3,
4

P P P P F

h
h
h
h

h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h
h

h

h

h
h
h
h

h
h

h

h
h
h
h

h

h

Pass/fail Status

3,
2,

1
2,

1,
3

5,
4,

2
5,

2,
6

h
h
h

h
h
h

h

h
h
h
h

h
h

h

h
h
h
h

h
h

h

h
h
h

h
h
h

h

P P F FF

su
sp

ic
io

us
ne

ss

0.60

0.50
0.50
0.43
0.00
0.50

0.60
0.60
0.75
0.00
0.00
0.50

0.50

ra
nk

5
5
5

10
11

5
2
2
2
1

11
11

5

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

General Technique—Tarantula

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

3,
3,

5
1,

2,
3

3,
2,

2
5,

5,
5

1,
1,

4
5,

3,
4

P P P P F

h
h
h
h

h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h
h

h

h

h
h
h
h

h
h

h

h
h
h
h

h

h

Pass/fail Status

3,
2,

1
2,

1,
3

5,
4,

2
5,

2,
6

h
h
h

h
h
h

h

h
h
h
h

h
h

h

h
h
h
h

h
h

h

h
h
h

h
h
h

h

P P F FF

su
sp

ic
io

us
ne

ss

0.60

0.50
0.50
0.43
0.00
0.50

0.60
0.60
0.75
0.00
0.00
0.50

0.50

ra
nkmid() {

int x,y,z,m;
1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

//bug;correct m=y

5
5
5

10
11

5
2
2
2
1

11
11

5

General Technique—Tarantula

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = y;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

3,
3,

5
1,

2,
3

3,
2,

2
5,

5,
5

1,
1,

4
5,

3,
4

P P P P F

h
h
h
h

h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h
h

h

h

h
h
h
h

h
h

h

h
h
h
h

h

h

Pass/fail Status

3,
2,

1
2,

1,
3

5,
4,

2
5,

2,
6

h
h
h

h
h
h

h

h
h
h
h

h
h

h

h
h
h
h

h
h

h

h
h
h

h
h
h

h

P P P FP

//fixed

su
sp

ic
io

us
ne

ss

ra
nk

General Technique—Tarantula

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = y;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}
3,

3,
5

1,
2,

3
3,

2,
2

5,
5,

5
1,

1,
4

5,
3,

4

P P P P F

h
h
h
h

h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h
h

h

h

h
h
h
h

h
h

h

h
h
h
h

h

h

Pass/fail Status

3,
2,

1
2,

1,
3

5,
4,

2
5,

2,
6

h
h
h

h
h
h

h

h
h
h
h

h
h

h

h
h
h
h

h
h

h

h
h
h

h
h
h

h

P P P FP

//bug;correct:m=x;

//fixed

su
sp

ic
io

us
ne

ss

0.50
0.50
0.50
0.67
0.00
0.73
0.80
0.00
0.00
0.00
0.00
0.00
0.50

ra
nk

4
4
4
3
8
2
1
8
8
8
8
8
4

General Technique—Tarantula

h
h
h
h

h
h

h

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = x;
8:else
9: if (x>y)
10: m = y;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

3,
3,

5
1,

2,
3

3,
2,

2
5,

5,
5

1,
1,

4
5,

3,
4

P P P P P

h
h
h
h

h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h
h

h

h

h
h
h
h

h
h

h

h
h
h
h

h

h

Pass/fail Status

3,
2,

1
2,

1,
3

5,
4,

2
5,

2,
6

h
h
h

h
h
h

h

h
h
h

h
h
h

h

P P P PP

//fixed

//fixed

su
sp

ic
io

us
ne

ss

ra
nk

h
h
h
h

h
h

h

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

General Technique—Tarantula

Measure
Percentage of program to be examined to find fault

Subjects

Empirical Study

105423440Tot_info

13585336000Space

141

301

292

512

399

472

LOC

157841Tcas

268010Schedule_2

26509Schedule

554232Replace

407110Print_tokens_2

40567Print_tokens

Test
Cases

Faulty
Versions

(single fault)

Program

Siemens
Suite

Method
• For each program and test suite, compute

suspiciousness of each statement using Tarantula
• Compute percentage of program examined to find

fault, using suspiciousness to order search
• Use results of published studies on same subjects

Techniques compared
• Tarantula [Jones, Harrold, Stasko, ICSE02,ASE05]
• Set-based, Nearest Neighbor [Renieris, Reiss, ASE03]
• Cause Transitions [Cleve, Zeller, ICSE05]
• Statistical [Liblit et al., PLDI05]

Empirical Study

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

3,
3,

5
1,

2,
3

3,
2,

2
5,

5,
5

1,
1,

4
5,

3,
4

P P P P F

h
h
h
h

h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h
h

h

h

h
h
h
h

h
h

h

h
h
h
h

h

h

Pass/fail Status

3,
2,

1
2,

1,
3

5,
4,

2
5,

2,
6

h
h
h

h
h
h

h

h
h
h
h

h
h

h

h
h
h
h

h
h

h

h
h
h

h
h
h

h

P P F FF

su
sp

ic
io

us
ne

ss

0.60

0.50
0.50
0.43
0.00
0.50

0.60
0.60
0.75
0.00
0.00
0.50

0.50

%
 p

ro
gr

am
 e

xa
m

in
ed

70
70
70
80

100
70
30
30
30
10

100
100

70

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

General Technique—Tarantula

Method
• For each program and test suite, compute

suspiciousness of each statement using Tarantula
• Compute percentage of program examined to find

fault, using suspiciousness to order search
• Use results of published studies on same subjects

Techniques compared
• Tarantula [Jones, Harrold, Stasko, ICSE02,ASE05]
• Set-based, Nearest Neighbor [Renieris, Reiss, ASE03]
• Cause Transitions [Cleve, Zeller, ICSE05]
• Statistical [Liblit et al., PLDI05]

Empirical Study

0 20 40 60 80 100

% of program to be examined to find fault

%
 o

f f
au

lty
 v

er
si

on
s

0

20

40

60

80

100 Ideal technique

Worst technique

Reporting Technique

What would
be the ideal
technique?

What would
be the worst
technique?

0 20 40 60 80 100

%
 o

f f
au

lty
 v

er
si

on
s

0

20

40

60

80

100

Nearest Neighbor (1)
Nearest Neighbor (2)

Cause Transitions

Tarantula

Statistical

Set based

Results on Siemens

0 20 40 60 80 100

% of program to be examined to find fault

Generalization

0 20 40 60 80 100
% of program examined to find fault

%
 o

f f
au

lty
 v

er
si

on
s

0

20

40

60

80

100
Tarantula on Siemens
Tarantula on Space

Threats to Validity

Visualization

Hue (color)
summarizes pass/fail results of test
cases that executed s

For statement s:

Least suspicious Most suspicious

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

3,
3,

5
1,

2,
3

3,
2,

2
5,

5,
5

1,
1,

4
5,

3,
4

P P P P F

h
h
h
h

h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h
h

h

h

h
h
h
h

h
h

h

h
h
h
h

h

h

3,
2,

1
2,

1,
3

5,
4,

2
5,

2,
6

h
h
h

h
h
h

h

h
h
h
h

h
h

h

h
h
h
h

h
h

h

h
h
h

h
h
h

h

P P F FF

su
sp

ic
io

us
ne

ss

0.60

0.50
0.50
0.43
0.00
0.50

0.60
0.60
0.75
0.00
0.00
0.50

0.50 9
9
9

10
13

9
4
4
4
1

13
13

9

Coloring Statements

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

SeeSoft view
each pixel represents a character in the source

File-level View

P

mid() {
int x,y,z,m;

read(“Enter 3 integers:”,x,y,z);
m = z;
if (y<z)

if (x<y)
m = y;

else if (x<z)
m = y;

else
if (x>y)

m = z;
else if (x>z)

m = x;
print(“Middle number is:”, m);

File-level View
SeeSoft view

each pixel represents a character in the source

System-level View

TreeMap view
each node

represents a file
is divided into blocks representing color of
statements

Tarantula

