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Class 19

• Questions/comments
• DejaVu question
• Efficient path profiling (cont’d)
• Fault localization
• Final project presentations:  Dec 1, 3; 4:35-6:45
• Assign (see Schedule for links) 

• Problem Set 8 discuss
• Readings
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DejaVu Question 

• For TriType, the change in the first if statement 
causes all test cases to be rerun.

• However, only the third condition is changed.
• Can we select test cases based on conditions 

instead of branches?



Acyclic Path Profiling (Notes)

After Step 1 of the algorithm for computing 
Val(e) for each edge e

If a vertex has only one out edge E, VAL(E)=?
If a vertex has two out edges—E1 and E2—what are 
Val(E1), and Val(E2)?

After Step 1 of the algorithm, regardless of the 
order in which vertices V are processed, 
NumPath(V) is the same.  Why?
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Algorithm Step 1 Alternative Assignment 1
1. Assign to each edge e a value Val(e) such that the 

sum along a path is unique and [0,n-1]
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Algorithm Step 1 Alternative Assignment 2
1. Assign to each edge e a value Val(e) such that the 

sum along a path is unique and [0,n-1]
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Algorithm Step 1 Alternative Assignment 3
1. Assign to each edge e a value Val(e) such that the 

sum along a path is unique and [0,n-1]
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Algorithm Step 1 Alternative Assignment 4
1. Assign to each edge e a value Val(e) such that the 

sum along a path is unique and [0,n-1]
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Algorithm Step 1 Alternative Assignment 5
1. Assign to each edge e a value Val(e) such that the 

sum along a path is unique and [0,n-1]
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Algorithm Step 1 Alternative Assignment 6
1. Assign to each edge e a value Val(e) such that the 

sum along a path is unique and [0,n-1]
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Algorithm Step 1 Alternative Assignment 7
1. Assign to each edge e a value Val(e) such that the 

sum along a path is unique and [0,n-1]
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Algorithm Step 1 Alternative Assignment 8
1. Assign to each edge e a value Val(e) such that the 

sum along a path is unique and [0,n-1]
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Algorithm (Step 2 of 4)

A

B C

D

E F

2. Use a spanning tree to select edges 
to instrument and compute the 
appropriate increment for each 
instrumented edge.

Add edge EXIT -> ENTRY
Compute a maximal spanning tree 
(find chords)

The addition of each chord to the 
spanning tree creates a unique cycle 
called the fundamental cycle
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Algorithm Step 2 Fundamental Cycle for A C
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Algorithm Step 2 Fundamental Cycle for B C
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Algorithm Step 2 Fundamental Cycle for B D
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Algorithm Step 2 Fundamental Cycle for B D
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Remember—edges in spanning tree are undirected
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Algorithm (Step 2 of 4)

A

B C
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E F

2. Use a spanning tree to select edges 
to instrument and compute the 
appropriate increment for each 
instrumented edge.

Add edge EXIT -> ENTRY
Compute a maximal spanning tree 
(find chords)
Assign increments: start from Val(e) 
and “propagate” to chord               
[Ball and Larus 94]

To do this, consider each chord and 
its fundamental cycle, along with the 
values assigned in Step 1
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Algorithm Step 2 Assign Increments
2. Use a spanning tree to select edges to instrument and compute 

the appropriate increment for each instrumented edge.
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1 on D F is propagated to A C 
where it is added to 4

The increment on A C is now 5
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Algorithm Step 2 Assign Increments
2. Use a spanning tree to select edges to instrument and compute 

the appropriate increment for each instrumented edge.
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0
With chord A C assigned, consider 
Alternative Assignment 1 and chord B C 

1 on D F is propagated to B C 
where it is added to 0

The increment on B C is now 1

5
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Algorithm Step 2 Assign Increments
2. Use a spanning tree to select edges to instrument and compute 

the appropriate increment for each instrumented edge.

A

B C

D

E F0

10

02

0
With chords A C, B C assigned, consider 
Alternative Assignment 1 and chord B D 

1 on D F is propagated to B D where 
it is added added to 2

The increment on B D is now 3

5

1



22

Algorithm Step 2 Assign Increments
2. Use a spanning tree to select edges to instrument and compute 

the appropriate increment for each instrumented edge.
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consider Alternative Assignment 1 
and chord D E 

1 on D F is propagated to D E.  
Because the direction of D F in the
fundamental cycle differs from the 
direction of the edge in the CFG, the
value on D F is subtracted from the 
value on D E 

The increment on D E is now -1
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Algorithm Step 2 Assign Increments
Compare path values using values on all edges and values only
on the increment edges to see that they are the same
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Arbitrary Control Flow (loops)

Loop implies the presence of a back-edge
Back-edges instrumented to increment path 
counter and reinitialize path register      
(count[r]++; r=0)
This is not enough; with loops 4 types of paths    
(v->w and x->y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v->w)
w to x (after executing v->w and ending with the 
execution of x->y, v->w and x->y can be the same 
back-edge)
w to EXIT (after executing v->w) 

Need to distinguish them

1

2 3

4

5

6

7

8

25

Arbitrary Control Flow (loops)

Loop implies the presence of a back-edge
Back-edges instrumented to increment path 
counter and reinitialize path register      
(count[r]++; r=0)
This is not enough; with loops, 4 types of paths    
(v w and x y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v w)
w to x (after executing v w and ending with the 
execution of x y; v w and x y can be the same 
back-edge)
w to EXIT (after executing v w) 

Need to distinguish them

1
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7

8
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Arbitrary Control Flow (loops)
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Loop implies the presence of a back-edge
Back-edges instrumented to increment path 
counter and reinitialize path register      
(count[r]++; r=0)
This is not enough; with loops, 4 types of paths    
(v w and x y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v w)
w to x (after executing v w and ending with the 
execution of x y; v w and x y can be the same 
back-edge)
w to EXIT (after executing v w) 

Need to distinguish them
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Arbitrary Control Flow (loops)
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Loop implies the presence of a back-edge
Back-edges instrumented to increment path 
counter and reinitialize path register      
(count[r]++; r=0)
This is not enough; with loops, 4 types of paths    
(v w and x y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v w)
w to x (after executing v w and ending with the 
execution of x y; v w and x y can be the same 
back-edge)
w to EXIT (after executing v w) 

Need to distinguish them
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Arbitrary Control Flow (loops)
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Loop implies the presence of a back-edge
Back-edges instrumented to increment path 
counter and reinitialize path register      
(count[r]++; r=0)
This is not enough; with loops, 4 types of paths    
(v w and x y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v->w)
w to x (after executing v w and ending with the 
execution of x y; v w and x y can be the same 
back-edge)
w to EXIT (after executing v w) 

Need to distinguish them
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Arbitrary Control Flow (loops)
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Loop implies the presence of a back-edge
Back-edges instrumented to increment path 
counter and reinitialize path register      
(count[r]++; r=0)
This is not enough; with loops, 4 types of paths    
(v w and x y are back-edges)

ENTRY to EXIT
ENTRY to v (ending with execution of v w)
w to x (after executing v->w and ending with the 
execution of x y; v w and x y can be the same 
back-edge)
w to EXIT (after executing v w) 

Need to distinguish them



Other Examples with Loops

Show on the board

Fault Localization
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Usage scenarios
Nightly-build process

Run set of tests (regression, breadth) each night
Report tests that pass and fail
Use fault-localization to identify most likely faulty parts of the 
software

Test-driven development
Create and run tests (regression, breadth) after changes  
Report tests that pass and fail
Use fault-localization to identify most likely faulty parts of the 
software

Regression testing
Run set of tests after changes
Report tests that pass and fail
Use fault-localization to identify most likely faulty parts of the 
software

Identify Faults:  Fault Localization

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4:   if (x<y)
5: m = y;
6:   else if (x<z)
7: m = y;
8:else
9:   if (x>y)
10: m = y;
11:   else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

What is the intuition behind 
the Tarantula approach?

What information does 
Tarantula use?

How does the Tarantula
technique work?

General Technique—Tarantula



mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4:   if (x<y)
5: m = y;
6:   else if (x<z)
7: m = y;
8:else
9:   if (x>y)
10: m = y;
11:   else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

Technique uses
Dynamic information

• statements executed
• outcome (pass/fail)

Statistical analysis
• computes suspiciousness
of each statement

General Technique—Tarantula

Intuition: Statements primarily 
executed by failed test cases 
are more suspicious than 
statements primarily executed 
by passed test cases

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4:   if (x<y)
5: m = y;
6:   else if (x<z)
7: m = y;
8:else
9:   if (x>y)
10: m = z;
11:   else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);
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t1  t2  t3  t4  t5  t6  t7  t8  t9 t10

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4:   if (x<y)
5: m = y;
6:   else if (x<z)
7: m = y;
8:else
9:   if (x>y)
10: m = z;
11:   else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);
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General Technique—Tarantula
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mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4:   if (x<y)
5: m = y;
6:   else if (x<z)
7: m = y;
8:else
9:   if (x>y)
10: m = z;
11:   else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);
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mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4:   if (x<y)
5: m = y;
6:   else if (x<z)
7: m = y;
8:else
9:   if (x>y)
10: m = z;
11:   else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);
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General Technique—Tarantula

What is the 
Suspiciousness of
statement 7?
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mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4:   if (x<y)
5: m = y;
6:   else if (x<z)
7: m = y;
8:else
9:   if (x>y)
10: m = z;
11:   else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}
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General Technique—Tarantula

What is the 
Suspiciousness of
statement 7? 0.60
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mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4:   if (x<y)
5: m = y;
6:   else if (x<z)
7: m = y;
8:else
9:   if (x>y)
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11:   else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);
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General Technique—Tarantula
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mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4:   if (x<y)
5: m = y;
6:   else if (x<z)
7: m = y;
8:else
9:   if (x>y)
10: m = z;
11:   else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

General Technique—Tarantula
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int x,y,z,m;
1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4:   if (x<y)
5: m = y;
6:   else if (x<z)
7: m = y;
8:else
9:   if (x>y)
10: m = z;
11:   else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

//bug;correct m=y
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mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4:   if (x<y)
5: m = y;
6:   else if (x<z)
7: m = y;
8:else
9:   if (x>y)
10: m = y;
11:   else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}
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mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4:   if (x<y)
5: m = y;
6:   else if (x<z)
7: m = y;
8:else
9:   if (x>y)
10: m = y;
11:   else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}
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mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4:   if (x<y)
5: m = y;
6:   else if (x<z)
7: m = x;
8:else
9:   if (x>y)
10: m = y;
11:   else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}
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Percentage of program to be examined to find fault 
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Empirical Study
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Method
• For each program and test suite, compute 

suspiciousness of each statement using Tarantula
• Compute percentage of program examined to find 

fault, using suspiciousness to order search
• Use results of published studies on same subjects

Techniques compared
• Tarantula [Jones, Harrold, Stasko, ICSE02,ASE05]
• Set-based, Nearest Neighbor [Renieris, Reiss, ASE03]
• Cause Transitions [Cleve, Zeller, ICSE05]
• Statistical [Liblit et al., PLDI05]

Empirical Study
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mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4:   if (x<y)
5: m = y;
6:   else if (x<z)
7: m = y;
8:else
9:   if (x>y)
10: m = z;
11:   else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}
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Method
• For each program and test suite, compute 

suspiciousness of each statement using Tarantula
• Compute percentage of program examined to find 

fault, using suspiciousness to order search
• Use results of published studies on same subjects

Techniques compared
• Tarantula [Jones, Harrold, Stasko, ICSE02,ASE05]
• Set-based, Nearest Neighbor [Renieris, Reiss, ASE03]
• Cause Transitions [Cleve, Zeller, ICSE05]
• Statistical [Liblit et al., PLDI05]

Empirical Study
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Coloring Statements

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

SeeSoft view
each pixel represents a character in the source

File-level View

P

mid() {
int x,y,z,m;

read(“Enter 3 integers:”,x,y,z);
m = z;
if (y<z)

if (x<y)
m = y;

else if (x<z)
m = y;

else
if (x>y)

m = z;
else if (x>z)

m = x;
print(“Middle number is:”, m);



File-level View
SeeSoft view

each pixel represents a character in the source  

System-level View

TreeMap view
each node

represents a file
is divided into blocks representing color of 
statements
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