
1

Class 20

• Fault localization (cont’d)
• Test-data generation
• Exam review: Nov 3, after class to 7:30

• Responsible for all material up through Nov 3
(through test-data generation)

• Send questions beforehand so all can prepare
• Exam: Nov 10
• Final project presentations: Dec 1, 3; 4:35-6:45
• Assign (see Schedule for links)

• Problem Set 9 discuss
• Readings

Fault Localization Using Tarantula

• What information does Tarantula use to compute
suspicious (and ranking) of statements in the program?

• How is this information used?
• Are there other ways to compute the suspiciousness

using this information?
• What information other than statement coverage could

be used for fault localization?
• Do you think statement coverage would have worked for

tritype?
• How could we use fault localization to identify which

changes are most suspicious after a build?

Improving Fault-localization Efficiency

P
Execute Debug

failed
tests P’

all
tests
passExecute Debug

failed
tests P’’

Pi is
failure-free

Execute …

• Are all failing tests caused by the same fault?• Are all failing tests caused by the same fault?
• Can we associate groups of tests with different

faults?

• Are all failing tests caused by the same fault?
• Can we associate groups of tests with different

faults?
• Can we reduce debugging effort by considering

these groups individually?

• Are all failing tests caused by the same fault?
• Can we associate groups of tests with different

faults?
• Can we reduce debugging effort by considering

these groups individually?
• Can we reduce debugging effort by considering

these groups simultaneously?

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

3,
3,

5
1,

2,
3

3,
2,

2
5,

5,
5

1,
1,

4
5,

3,
4

P P P P F

h
h
h
h

h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h
h

h

h

h
h
h
h

h
h

h

h
h
h
h

h

h

Pass/fail Status

3,
2,

1
2,

1,
3

5,
4,

2
5,

2,
6

h
h
h

h
h
h

h

h
h
h
h

h
h

h

h
h
h
h

h
h

h

h
h
h

h
h
h

h

P P F FF

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Improving Fault-localization Efficiency

3,
3,

5
1,

2,
3

3,
2,

2
5,

5,
5

1,
1,

4
5,

3,
4

P P P P F

h
h
h
h

h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h
h

h

h

h
h
h
h

h
h

h

h
h
h
h

h

h

Pass/fail Status

3,
2,

1
2,

1,
3

5,
4,

2
5,

2,
6

h
h
h

h
h
h

h

h
h
h
h

h
h

h

h
h
h

h
h
h

h

P P F FF

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Improving Fault-localization Efficiency

h
h
h
h

h
h

h

Debugging Process

P
Execute Debug

failed
tests P’

all
tests
passExecute Debug

failed
tests P’’

Pi is
failure-free

Pj is
failure-free

Execute …

P
Execute Debug

some
failed
tests

P’

all
tests
passExecute

some
failed
tests

…

Debugging Process

P
Execute Debug

failed
tests P’

all
tests
passExecute Debug

failed
tests P’’

Pi is
failure-free

Pj is
failure-free

Execute …

P
Execute Debug

some
failed
tests

P’

all
tests
passExecute

some
failed
tests

…

Execute
P

Debug

Debug

P’

all
tests
pass…

Pk is
failure-free

so
m

e
fai

led
tes

ts

somefailedtests

Hierarchy of Bugs

Faults often dominate
each other
Failing test cases are first
caused by a set of initial
faults
Once initial faults are
fixed, other faults
manifest themselves

Time

Fault 1

Fault 2

Fault 3

Fault 4

Fault 5

Fault 6

Fault 7

Fault 8

Pk is
failure-free

Debugging Process

P
Execute Debug

failed
tests P’

all
tests
passExecute Debug

failed
tests P’’

Pi is
failure-free

Pj is
failure-free

Execute …

P
Execute Debug

some
failed
tests

P’

all
tests
passExecute

some
failed
tests

…

Execute
P

Debug

Debug

P’

all
tests
pass…

so
m

e
fai

led
tes

ts

somefailedtests

Potential benefits:
• Reduced time to failure-free

program
• Less “noise” in locating each

fault
• Better utilization of developer

effort

Potential costs
• Overhead to partition test
cases

• Multiple debuggers
(developers)

Debugging Process

P
Execute Debug

failed
tests P’

all
tests
passExecute Debug

failed
tests P’’

Pi is
failure-free

Pj is
failure-free

Execute …

P
Execute Debug

some
failed
tests

P’

all
tests
passExecute

some
failed
tests

…

Execute
P

Debug

Debug

P’

all
tests
pass…

Pk is
failure-free

so
m

e
fai

led
tes

ts

somefailedtests

Crucial problem:
• Partitioning failed tests into

groups of similar behavior—
focus on different faults

• fault-focusing clusters

Crucial problem:
• Partitioning failed tests into

groups of similar behavior—
focus on different faults

• fault-focusing clusters of failed
test cases

Fault-focusing Clusters—Overview

t06

t07

t09

t08

t10

t08t07

t04

t09

t02

t05

t01 t03

t10

Fault-focusing clusters:
• Clusters of failing test cases
• Clusters failing in similar way
• Each cluster targeting a different fault

Test Cases

Fault-focusing Clusters

t07

t09

t08

t10

t06

t04t02

t05

t01 t03

Test Cases

t06

t04t02

t05

t01 t03

Specialized Test Suites
Specialized test suites:
Fault-focusing clusters
combined with passing

test cases

Fault-focusing Clusters

t07

t09

t08

t10

Specialized Test Suites

Developer

Developer

t06

t04t02

t05

t01 t03

t06

t04t02

t05

t01 t03

Specialized test suites:
Fault-focusing clusters

combined with passing
test cases

Specialized test suites:
Fault-focusing clusters
combined with passing

test cases

• Find faults one at a
using specialized test
suites

Fault-focusing Clusters

t07

t09

t08

t10

t06

t04t02

t05

t01 t03Test Cases

t06

t04t02

t05

t01 t03
Specialized Test Suites

Developer 1

Developer 2

t06

t04t02

t05

t01 t03

t06

t04t02

t05

t01 t03

Specialized test suites:
Fault-focusing clusters
combined with passing

test cases

• Find faults one at a
using specialized test
suites

• Find faults at the same
time (in parallel) using
specialized test suites

Fault-focusing Clusters

Execution
Clustering

Fault
Localization

failed
test cases
execution

information

specialized
test suites

suspiciousness
and ranks

Fault-focusing Clusters

Clustering by behavior models
Dynamic information

• profiles (branch, method-method, …)
• only failed tests

Statistical analysis, machine learning
• generate models for each execution
• cluster models

Fault-localization for stopping point

Execution
Clustering

Fault
Localization

failed
test cases
execution

information

specialized
test suites

suspiciousness
and ranks

t07-09

t07-09-08-10
t08-010

Clustering Behavior Models
• Models: discrete-time Markov chains (DTMCs) from profiles

(branch, method,…)
• Clustering: iterative with two most similar according to Sim1

Sim1: sum of absolute difference between matching
transitions in DTMCs being compared

Most difficult problem of clustering is determining
a good stopping criterion?

t07

t08

t09

t10

Most difficult problem of clustering is determining
a good stopping criterion?

What is a good stopping point for the clustering
for fault-focused clusters?

Fault Localization for Stopping Point

t07-09
t07-09-08-10

t08-10

t07

t08

t09

t10

Fault Localization for Stopping Point

t07-09
t07-09-08-10

t08-10

t07

t08

t09

t10

BA
BA

Sim
U

I
=2

Fault Localization for Stopping Point

t07-09
t07-09-08-10

t08-10

t07

t08

t09

t10

t06 t08t07

t04

t09

t02

t05

t01 t03

t10

t07-09-08-10

BA
BA

Sim
U

I
=2

rank

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}
3,

3,
5

1,
2,

3
3,

2,
2

5,
5,

5
1,

1,
4

5,
3,

4

P P P P F

•
•
•
•

•
•

•

•
•
•
•
•

•

•
•
•

•
•
•

•

•
•
•

•
•

•

•

•
•
•
•

•
•

•

•
•
•
•

•

•

Pass/fail Status

3,
2,

1
2,

1,
3

5,
4,

2
5,

2,
6

•
•
•

•
•
•

•

•
•
•
•

•
•

•

•
•
•
•

•
•

•

•
•
•

•
•
•

•
P P F FF

Tarantula: Fault Localization

//bug

//bug

su
sp

ic
io

us
ne

ss

0.50
0.50
0.50
0.43
0.00
0.50
0.60
0.60
0.60
0.75
0.00
0.00
0.50

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Fault Localization for Stopping Point

t07-09
t07-09-08-10

t08-10

t07

t08

t09

t10

t06 t08t07

t04

t09

t02

t05

t01 t03

t10

t07-09-08-10

10
9
8
7

t06 t07

t04

t09

t02

t05

t01 t03

t07-09

BA
BA

Sim
U

I
=2

rank rank

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}
3,

3,
5

1,
2,

3
3,

2,
2

5,
5,

5
1,

1,
4

5,
3,

4

P P P P

•
•
•
•

•
•

•

•
•
•
•
•

•

•
•
•

•
•
•

•

•
•
•

•
•

•

•

•
•
•
•

•
•

•

•
•
•
•

•

•

Pass/fail Status

3,
2,

1

5,
4,

2

•
•
•
•

•
•
•

•

•
•
•

•
•
•

•
P P F F

Fault-focusing Cluster 1

//bug

//bug

su
sp

ic
io

us
ne

ss

0.50
0.50
0.50
0.00
0.00
0.00
0.00
0.75
0.75
0.86
0.00
0.00
0.50

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Fault Localization for Stopping Point

t07-09
t07-09-08-10

t08-10

t07

t08

t09

t10

t06 t08t07

t04

t09

t02

t05

t01 t03

t10

t07-09-08-10

10
9
8
7

t06 t07

t04

t09

t02

t05

t01 t03

t07-09

10
9
8
1

BA
BA

Sim
U

I
=2

5
32 =Sim

rank rank

.60

Fault Localization for Stopping Point

t07-09
t07-09-08-10

t08-10

t07

t08

t09

t10

t06 t08t07

t04

t09

t02

t05

t01 t03

t10

t07-09-08-10

10
9
8
7

t06 t08

t04

t10

t02

t05

t01 t03

t08-10

BA
BA

Sim
U

I
=2

rank rank

.60

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

3,
3,

5
1,

2,
3

3,
2,

2
5,

5,
5

1,
1,

4
5,

3,
4

P P P P F

•
•
•
•

•
•

•

•
•
•
•
•

•

•
•
•

•
•
•

•

•
•
•

•
•

•

•

•
•
•
•

•
•

•

•
•
•
•

•

•

Pass/fail Status

2,
1,

3

5,
2,

6

•
•
•
•

•
•

•

•
•
•
•

•
•

•
P P F

//bug

//bug

su
sp

ic
io

us
ne

ss

0.50
0.50
0.50
0.60
0.00
0.67
0.75
0.00
0.00
0.00
0.00
0.00
0.50

Fault-focusing Cluster 2

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Fault Localization for Stopping Point

t07-09
t07-09-08-10

t08-10

t07

t08

t09

t10

t06

t04

t10

t02

t05

t01 t03

t08-10

7
6
4
1

BA
BA

Sim
U

I
=2

7
12 =Simt06 t08t07

t04

t09

t02

t05

t01 t03

t10

t07-09-08-10

10
9
8
7

rank rank

.14

.60

t08

Fault Localization for Stopping Point

t07-09
t07-09-08-10

t08-10

t07

t08

t09

t10

BA
BA

Sim
U

I
=2

.14

.60

7
6
4
1

rank

t06

t04

t10

t02

t05

t01 t03

t08-10

t08t06

t04t02

t05

t01 t03

t08

7
6
4
1

rank

t08

Fault Localization for Stopping Point

t07-09
t07-09-08-10

t08-10

t07

t08

t09

t10

BA
BA

Sim
U

I
=2

.14

.60

7
6
4
1

rank

t06

t04

t10

t02

t05

t01 t03

t08-10

t08

Fault Localization for Stopping Point

t07-09
t07-09-08-10

t08-10

t07

t08

t09

t10

BA
BA

Sim
U

I
=2

4
42 =Sim

.14

.60
1.00

7
6
4
1

rank

t06

t04

t10

t02

t05

t01 t03

t08-10

t08

rank

t06

t04t02

t05

t01 t03

t08

7
6
4
1

rank

t08

Fault Localization for Stopping Point

t07-09
t07-09-08-10

t08-10

t07

t08

t09

t10

BA
BA

Sim
U

I
=2

4
42 =Sim

.14

.60
1.00

7
6
4
1

rank

t06

t04

t10

t02

t05

t01 t03

t08-10

t08

rank

t06

t04t02

t05

t01 t03

t10

7
6
4
1

rank

t10

1.00

Fault Localization for Stopping Point

t07-09
t07-09-08-10

t08-10

t07

t08

t09

t10 .14

.60

1.00

1.00

• Composite is similar (above threshold) to
both of its constituents so clustering
stops at this level

• Result is two clusters: {t07, t09}, {t08, t10}

Fault Localization for Stopping Point

t07-09
t07-09-08-10

t08-10

t07

t08

t09

t10 .14

.60

1.00

1.00

• Composite is similar (above threshold) to
both of its constituents so clustering
stops at this level

• Result is two clusters: {t07, t09}, {t08, t10}

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}

3,
3,

5
1,

2,
3

3,
2,

2
5,

5,
5

1,
1,

4
5,

3,
4

P P P P

•
•
•
•

•
•

•

•
•
•
•
•

•

•
•
•

•
•
•

•

•
•
•

•
•

•

•

•
•
•
•

•
•

•

•
•
•
•

•

•

Pass/fail Status

3,
2,

1

5,
4,

2

•
•
•

•
•
•

•

•
•
•

•
•
•

•
P P F F

Fault-focusing Cluster 1

//bug

//bug

su
sp

ic
io

us
ne

ss

0.50
0.50
0.50
0.00
0.00
0.00
0.00
0.75
0.75
0.86
0.00
0.00
0.50

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”,x,y,z);
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”, m);

}
3,

3,
5

1,
2,

3
3,

2,
2

5,
5,

5
1,

1,
4

5,
3,

4

P P P P F

•
•
•
•

•
•

•

•
•
•
•
•

•

•
•
•

•
•
•

•

•
•
•

•
•

•

•

•
•
•
•

•
•

•

•
•
•
•

•

•

Pass/fail Status

2,
1,

3

5,
2,

6

•
•
•
•

•
•

•

•
•
•
•

•
•

•
P P F

//bug

//bug

su
sp

ic
io

us
ne

ss

0.50
0.50
0.50
0.60
0.00
0.67
0.75
0.00
0.00
0.00
0.00
0.00
0.50

Fault-focusing Cluster 2

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”…
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”…

}

//bug

//bug

Visualization of Specialized Test Suites

mid() {
int x,y,z,m;

1:read(“Enter 3 integers:”…
2:m = z;
3:if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:else
9: if (x>y)
10: m = z;
11: else if (x>z)
12: m = x;
13:print(“Middle number is:”…

}

//bug

//bug

Cluster 1 Cluster 2

Empirical Study

Variables
NSTS: Finding faults using non-specialized test suites
STS-S: Finding faults using specialized test suites
STS-P: Finding faults using specialized test suites in parallel

Measures
D: total developer effort
FF: total effort to failure-free program

Subject
SPACE

6000 LOC
100 8-fault versions; > 1000 derivative versions)

Method
For each of 100 8-fault versions, debug until failure-free, using

Non specialized test suite
Specialized test suite both sequential and parallel

D: Total Developer Effort

• Using specialized test suites based on fault-focusing
cluster is less expensive, on average, than not using
specialized test suites

• Benefit holds when performing
• fault localization sequentially (one developer)
• fault localization in parallel (multiple developers)

FF: Total Effort to Failure-free

Sample
Source

Sample
mean

Sample
standard
deviation

99%
confidence
interval lower
bound

99%
confidence
interval upper
bound

FFNSTS 36.26 22.86 30.83 41.69

FFSTS-S 26.16 22.58 20.80 31.53

FFSTS-P 18.29 14.00 14.96 21.62

Using specialized test suites and performing the fault
localization sequential or in parallel can provide
significant savings over using non specialized test suites

Summary of Results

For SPACE
Using specialized test suites is usually less
expensive than using non-specialized test suites
• Total developer effort is reduced for both sequential

and parallel modes
• Time to a failure-free program is reduced without

negatively affecting the total developer effort

41

Automatic Test Data Generation

42

Test Data Generation

Ferguson and Korel described three categories of
test-data generation
What are they?

43

Test Data Generation

Ferguson and Korel described three categories of
test-data generation
1. Random—randomly select from universe of inputs
2. Goal-oriented—select test data to execute a given

entity (e.g., statement, branch, def-use pair)
irrespective of the path taken

3. Path-oriented—select a program path and
generate test data that will execute that path; path
can be selected automatically or selected by the
user

