
1

Class 10

• Review; questions
• Questions about project
• Arbitrary interprocedural control flow (cont’d)
• Pointers
• Assign (see Schedule for links)

• Readings on symbolic execution
• Problem Set 5: due 9/22/09
• Project proposal

• Initial: due by e-mail 9/22/09
• Final: due (written, 2 pages) 9/29/09

Complicating Factors

A. Programs with more than one procedure
B. Programs with recursion
C. Programs with arbitrary control flow
D. Programs with pointers
E. Programs with complex data structures

Arbitrary Interprocedural CF

Three ways in which intra-procedural control
dependences can be inaccurate

Entry-dependence effect
Multiple-context effect
Return-dependence effect

Identify potentially non-returning call sites

Construct augmented control-flow graph

Compute partial control dependences
Construct augmented control-dependence graph

Construct interprocedural control-dependence graph
Propagate control dependences

Computation of Interprocedural CD

PNRC Analysis

Step 1: Identifies three sets
DNRPList: Definitely non-returning procedures
UnreachList: Statically unreachable nodes
HNList: Halt statements reachable from entry

Method
Build ICFG
Depth first traversal along realizable paths marking
visited nodes

Unmarked nodes are unreachable
Unmarked exit nodes indicate DNRPs
Marked halt nodes indicate reachable halts

PNRC Analysis

Step 1: Identifies three sets
DNRPList: Definitely non-returning procedures
UnreachList: Statically unreachable nodes
HNList: Halt statements reachable from entry

Method
Build ICFG
Depth first traversal along realizable paths marking
visited nodes

Unmarked nodes are unreachable
Unmarked exit nodes indicate DNRPs
Marked halt nodes indicate reachable halts

PNRC Analysis

10a10a

PNRC Analysis

10a10a

All nodes reached
No DNRPs
One halt node

reached

PNRC Analysis

10a10a

What if we
change program?

PNRC Analysis

10a10a

Some nodes not
reached

B and C are DNRPs

PNRC Analysis

Step 2: Compute partial CD
Identify PNRCList: Possibly non-returning
call-sites
Build ACFGs

Method
Backward traversal of ICFG starting from (1)
halt nodes and (2) calls to DNRPs

Ascending into callers, but not descending into
callees (similar to SDG slicing)

Any call site reached is a PNRC

PNRC Analysis

10a10a

PNRC Analysis

10a10a

Identify potentially non-returning call sites

Construct augmented control-flow graph

Compute partial control dependences
Construct augmented control-dependence graph

Construct interprocedural control-dependence graph
Propagate control dependences

Computation of Interprocedural CD

Augmented Control-Flow Graph
For each procedure,
starting from its CFG

Create super-exit node
For each potentially non-
returning call site

create return-predicate
node
Connect return-predicate
node to potential return
sites
Eliminate edge between
call and return

entry

8 exit

6a

5b

5a

4

3

2

T

F

7

Augmented Control-Flow Graph

6b

For each procedure,
starting from its CFG
• Create super-exit node
• For each potentially non-

returning call site
• Create return-predicate

node
• Connect return-predicate

node to potential return
sites

• Eliminate edge between
call and return

super exit

RP5b

RP6b

T

T

F

F

Identify potentially non-returning call sites

Construct augmented control-flow graph

Compute partial control dependences
Construct augmented control-dependence graph

Construct interprocedural control-dependence graph
Propagate control dependences

Computation of Interprocedural CD

Partial Control Dependences

Partial CD

2,3

5b

4

6b,7,8

5a,6a

8 exit

6a

5b

5a

4

3

2

T

F

7

6b

super exit

RP5b

RP6b

T

T

F

F

entry

Partial Control Dependences

Partial CD

2,3

5b

4

6b,7,8

5a,6a

8 exit

6a

5b

5a

4

3

2

T

F

7

6b

super exit

RP5b

RP6b

T

T

F

F

entry

entry
entry

4
RP5b

RP5b
RP6b

Augmented CDG

Partial CD

2,3

5b

4

6b,7,8

5a,6a

entry
entry

4
RP5b

RP5b
RP6b

Build ACDG
• CDG built from an ACFG
• Replace return-predicate nodes with corresponding return

Identify potentially non-returning call sites

Construct augmented control-flow graph

Compute partial control dependences
Construct augmented control-dependence graph

Construct interprocedural control-dependence graph
Propagate control dependences

Computation of Interprocedural CD

Interprocedural CDGBuild ICDG
• Connect ACDGs with interprocedural control-flow edges
• Replace all dependences to placeholder

• Backward traversal from the placeholders to the first (non-placeholder)
predicate node along each path
=> add control dependence

Interprocedural CDGBuild ICDG
• Connect ACDGs with interprocedural control-flow edges
• Replace all dependences to placeholder

• Backward traversal from the placeholders to the first (non-placeholder)
predicate node along each path
=> add control dependence

Interprocedural CDGBuild ICDG
• Connect ACDGs with interprocedural control-flow edges
• Replace all dependences to placeholder

• Backward traversal from the placeholders to the first (non-placeholder)
predicate node along each path
=> add control dependence

17

Interprocedural CDGBuild ICDG
• Connect ACDGs with interprocedural control-flow edges
• Replace all dependences to placeholder

• Backward traversal from the placeholders to the first (non-placeholder)
predicate node along each path
=> add control dependence

Interprocedural CDG

4

Build ICDG
• Connect ACDGs with interprocedural control-flow edges
• Replace all dependences to placeholder

• Backward traversal from the placeholders to the first (non-placeholder)
predicate node along each path
=> add control dependence

Interprocedural CDGBuild ICDG
• Connect ACDGs with interprocedural control-flow edges
• Replace all dependences to placeholder

• Backward traversal from the placeholders to the first (non-placeholder)
predicate node along each path
=> add control dependence

Interprocedural CDG

17

Build ICDG
• Connect ACDGs with interprocedural control-flow edges
• Replace all dependences to placeholder

• Backward traversal from the placeholders to the first (non-placeholder)
predicate node along each path
=> add control dependence

Interprocedural CDG

17

Build ICDG
• Connect ACDGs with interprocedural control-flow edges
• Replace all dependences to placeholder

• Backward traversal from the placeholders to the first (non-placeholder)
predicate node along each path
=> add control dependence

Interprocedural CDG
Partial CD

2,3

7,8

4

5,6

entry
entry

4
17

17

Applications of Interprocedural CD

Computing interprocedural slices
Identifying conditions associated with
statements/procedures
Computing control coupling
…

Complicating Factors

Programs with more than one procedure
Recursion
Programs with pointers
Programs with complex data structures
Programs with arbitrary control flow

Complicating Factors (pointers)

Aliasing: different names reference the same
memory location

1 main() {
2 int*p, x, y;
3 x = 0;
4 p = &x;
5 *p = *p+1;
6 y = x;
7 }

*p is an alias for x
=> x = x+1;

• Alias information conveniently represented
with points-to sets (e.g., *p -> {x})

• Typically, MAY information

Complicating Factors (pointers)

Pointers complicate
data-flow

Consider an example

S1. x = read()

S2. y = read()

S4. p = &yS3. p = &x

S5. *p = read()

S6. print(*p)

S7. print(x)

What is Def(S5)?
Can we simply “plug-in”

alias information?

Complicating Factors (pointers)

Extending def-use concepts
DDEF: Definite Definition
PDEF: Possible Definition
DUSE: Definite Use
PUSE: Possible Use

Extending algorithms
Both possible and definite info in GEN
Only definite info in KILL

Complicating Factors (pointers)

S1. x = read()

S2. y = read()

S3. p = &x

S5. *p = read()

S6. print(*p)

S7. print(x)

Pointers complicate
data-flow

Consider an example

Are we in better shape in
this case?
(p* -> {x})

Pointer/Alias Analysis

Control flow
analysis

Alias
Analysis

Control
dependence

Data
dependence

Slicing
Constant
propagation

Live-variable
analysis

Development
tools

Testing
tools

Maintenance
tools

Optimization
tools

Goal: determine memory locations accessed through
pointer dereferences Importance:

Alias Analysis (AA)

Must alias information indicates that the alias
occurs on all paths in the CFG

May alias information indicates that the alias
occurs on some path in the CFG

Flow-sensitive (flow-insensitive) aliasing
information depends (does not depend) on the
control flow in a procedure

Context-sensitive (context-insensitive) aliasing
information obeys (does not obey) the calling
context when propagating

Introduction, Motivation

Precise alias analysis is undecidable
Approximation algorithms

Flow-sensitive (FS) vs flow-insensitive (FI)
Context-sensitive (CS) vs context-insensitive (CI)

P() {
p=&x;
*p=0;
…
p=&y;

}

x=0

{x,y}=0

FI

FS

Introduction, Motivation

Precise alias analysis is undecidable
Approximation algorithms

Flow-sensitive (FS) vs flow-insensitive (FI)
Context-sensitive (CS) vs context-insensitive (CI)

P() {
p=&x;
*p=0;
…
p=&y;

}

x=0

{x,y}=0

FI

FS P1() {
p=&x;
…
Q()
…

}

P2() {
p=&y;
…
Q()
*p=0;

}

Q() {
…
…

}

y=0{x,y}=0 CSCI

Precise alias analysis is undecidable
Approximation algorithms

Flow-sensitive (FS) vs flow-insensitive (FI)
Context-sensitive (CS) vs context-insensitive (CI)

precision
cost

flow-insensitive flow-sensitive

context-insensitive context-sensitive

Introduction, Motivation

Steendgaard’s

Existing Approaches

p = &x;
q = &y;
r = q;

p = &z;

p = &y;

proc1

proc2

p

x

q

y

r

Program-specific points-to graph

Steendgaard’s

Existing Approaches

p = &x;
q = &y;
r = q;

p = &z;

p = &y;

proc1

proc2

p

x,z

q

y

r

Program-specific points-to graph

Steendgaard’s

Existing Approaches

p = &x;
q = &y;
r = q;

p = &z;

p = &y;

proc1

proc2

p q

y,x,z

r

Program-specific points-to graph

Landi and Ryder’s

Existing Approaches

p = &x;
q = &y;
r = q;

p = &z;

p = &y;

proc1

proc2

p

x

Point-specific points-to graph

Landi and Ryder’s

Existing Approaches

p = &x;
q = &y;
r = q;

p = &z;

p = &y;

proc1

proc2

p

x

q

y

Point-specific points-to graph

Landi and Ryder’s

Existing Approaches

p = &x;
q = &y;
r = q;

p = &z;

p = &y;

proc1

proc2

p

x

q

y

r

Point-specific points-to graph

Landi and Ryder’s

Existing Approaches

p = &x;
q = &y;
r = q;

p = &z;

p = &y;

proc1

proc2

p

z

q

y

r

Point-specific points-to graph

Landi and Ryder’s

Existing Approaches

p = &x;
q = &y;
r = q;

p = &z;

p = &y;

proc1

proc2

p

y

Point-specific points-to graph

Program Analysis w/ Pointers

• Step 1: Perform alias analysis
• Step 2: Resolve pointer dereferences
• Step 3: Perform whole-program analysis

Time for alias analysis

Time for whole-
program analysis

Steensgaard’s

Landi and Ryder’s

Precision

Time for alias analysis

Steensgaard’s

Landi and Ryder’s

