
Chapter 6

Dependence and Data
Flow Models

The control flow graph and state machine mode ls introduced in the previous chapter
capture one aspect of the dependencies among parts of a program. The y exp licit ly
represent control flow but deemphasi ze transm ission of information through program
variab les . Data flow mode ls provide a complementary view, emphas izing and making
explicit relations involving transmission of informatio n.

Model s of data flow and dependence in sof tware were originally developed in the
field of com piler construction, where they were (and still are) used to detect opportuni
ties for optimi zation . They also have many applic ations in software engineering, fro m
tes ting to refactoring to revers e engineering. In test and ana lysis , applications range
from selecting test cases based on depende nce inform ation (as described in Chap
ter 13) to detecting anomalous pattern s that indicate probab le programmi ng errors ,
such as uses of potenti ally uninitialized values. Moreover, the basic algorithms used
to construct da ta flow models have even wider application and are of particular interest
becaus e they can often be quite efficient in time and space.

6.1 Definition-Use Pairs

The most fundamental class of data flow model associ ates the point in a progr am where
a value is produc ed (called a "definitio n") with the points at which the value may be
accessed (called a "use"). Associations of definitions and uses funda mentally cap ture
the flow of information through a program, from input to output.

Definitions occur where vari ab les are declared or initialized, assigned values, or
received as para me ters, and in general at all statemen ts that change the value of one or
more variables. Uses occur in expressions, conditional statements, parameter passing ,
return statemen ts, and in general in all statements whose exec ution extracts a value
from a variab le. For example, in the standard greatest common divisor (QCD) algo
rithm of Figur e 6.1, line 1 contains a definition of param eters x and y, line 3 con tains
a use of variable y, line 6 contains a use of variable tmp and a defin ition of variable y,

77

78 Dependence and Data Flow M ode ls

1 public int gcd(int x, int y) { 1* A: def x,y *1
2 int tmp ; /* def tmp 11. *1
3 wh il e (y != 0) { 1* B: use y *1
4 tmp = x % y; /* C: use x,y; de'ltmp *1
5 x =y; /* 0.' use y; def -1j 'I
6 y = tmp; 1* E: use tmp, def y *1
7 }
8 ret urn x; /* F: use x *1
9 }

Figure 6.1: Java implementation of Eucl id 's algorithm f or calcula ting the greates t
common denominato r of two positive integers. Th e lab els A- F eJre p rovided to relate

• ~I ,r, , .• t'.

r . ;"·f• and the return in line 8 is a use of varia ble x. I
Eac h defi nition-use pair assoc ia tes a defin ition of a varia ble I(e .g., the ass ignment

state m ents in the sourc e code to graph nodes in subsequent fi gu r;Js .

,
I'. ,

to y in line 6) with a use of the same variab le (e.g., the exp ress ion y != 0 in line 3) . A
r

~

J

III
!

single definiti on can be paired wi th more than one use, and vi c ~ versa. For example,
the de finit ion of variable y in line 6 is paired w ith a use in line fl (in the loop test), as
well as additional uses in lines 4 and 5. The definitio n of x in lirie 5 is associa ted with

uses in lines 4 and 8. I
'.1 .1. A defini tion -use pair is formed only if there is a program pa h on which the value

ass igned in the defin ition can reach the point of use wit hout bei ng overw ri tten by an

't
-,

~.~.:
~ ~.

" .. .
4.'"

',.

(>, definition-clear
path

(>, kill other value. If there is anothe r assign ment to the same value o ~ the pa th, we sa y that
the first definiti on is killed by the seco nd. For exa mple, the declc\'ration of tmp in line 2
is not paired wit h the use of tmp in line 6 be cause the defini tion ~ I li n e 2 is kill ed by the
definition at line 4 . A definition-clea r path is a pa th from definidon to use on which the

I

definition is no t ki lled by ano the r definit ion of the same variab le. For exa mp le, with

"
,. ... refere nce to the node labe ls in Figur e 6.2, path E ,B ,C,D is a definition- clear path fro m

the definition of y in line 6 (node E of the contro l flow graph) t ~ the use of y in line 5

~ \

~
~.

(node D). Path A, B ,C ,D,E is not a definition-cle ar path with !·bspect to tmp because
of the interve ning definition at no ~e C. II . .

Definition-use pans rec ord a kind of pro gram dependence, sometimes called dire ct

,', (>, direc t dat a data dependenc e. These dependencies can be represented in th ~ form of a graph, with
~ dependence a directed edge for each definition-use pair. The data dependence graph repres entation

~ of the OCD method is illustrated in Figure 6.3 with nodes that a:{e program sta teme nts. - Different levels of gra nularity are possibl e . For use in testin g, nodes are typically bas ic

..
,', '.

~ ."
.0;;-., ~,

to

.' .

block s. Comp ilers often use a finer-grained da ta dependence l repres entati on, at the
level of indiv idual expressi ons and operations, to detect opp ortu nities for perfo rma nce
improvin g transform at ions. I

~~ . The data dependence graph in Figure 6.3 captures on ly depend ence throu gh flow
I""~

" of data. Depende nce of the bod y of the loop on the predi cate g ~v ern i ng the loop is not
repre sented by data dependenc e alon e. Control depend ence can also be represent ed

'f with a graph, as in Figure 6.5, which show s the control depe ndenc ies for the OCD

...
,.

'II. ~
"..

"

(Ii

I
I
::\'

I

ii.

'''l
",t'

'.

., ,

.~~

.-i

"',

..

~I.,'

,-J. .
" ~

.~ "

. ..~

Q ..

.....
~ t .,~

~,

,
. (.,

---'.1.

. \.
\, - -

,1

.~ '

'i
> ' ~

4,.~ V~l-

) .• :'4

-~_. ~ :<:-~.~

..'· .. 1

,.' <"-'I';'
,,-;' ; i: 4

••

... ':. I
~ <. ~- ., .~,

.'.jJ

., ,~

'. :::;.:,<':,~' ~ ~"": ;;~:,:::" ~:~~l~t. ..' ~ J
, ' :r, /, -it~ . •. -' . -: '" .'lIt. ' . •

,.i,' , ; i ... ' <, 7, ,~) :>',j !~~\' .. ;
,'-+ ' ".' " " ",...' . ~., ,. i' ,.~ • ., ":""~' 4\ .. ,"',"'" ,:0 " ." .,

\" ~ . ~\I\."" ~ .;!. .~ . ." • 'll) . , _. _ . ..' .I." .". .,.\ .• ' ,~li" i ·to~ ~~ " .,. ~._ ," .. '~.:: ~~l . ,

I j;.~'

'.~ ..

~.,

~ .,
,.

~l~, ..

'." .

; .

,~~" ,~.\" .. __ :~ -.l."
." ~ ";1"4.' r....

.'

:.1."
~ ...

Definition-Use Pairs 'I 79

public int gcd

(
y

public int gcd(int x, int y) { ~ I
int tmp; def = {x, y, Imp}

use ={}

while (y != 0) ~
{ Idef= 0

), use ={y} fi ;-False
True I

I
I

C'
tmp =x % y; "

'-- - - - - - - - - ---,,-. def = {Imp }

use ={x, y}

x =y; ~
def ={x}
use ={y}

~ = tmp ; ~
~ d'f = (Y} I JLuse ~ {Im~} __ __

---..,
F '
Jl~~~_

def= 0
use ={x}

Figure 6.2: Corurol fi ow graph of GCD method in Figure 6.1 .

80 Dependence and Data Flow Models

public int gcd(int x, in! y) {
inttmp;

, X I I- -y- - - - , y
, / --'!

,I
I

I
I '; tmp ,- - y'
I \

I

I

I

I /

I I

I I _

(While (y != 0) L-T ~ /~ =y;

,,(,, x.. __
\ ,

'~e t u rn x; II ~

I
Figure 6.3: Data dependen ce graph of GCD method in Figu re 6.1f with nodes fo r
sta tements corresponding to the con trol flow graph in Figu re 6.2. EJch direc ted edge
rep resents a dire ct data depende nce, and the edg e label indi cate s I!he variable that
transmits a valu e f rom the defin ition at the head of the edge to the us~ at the tail of the
edg e.

meth od . The control dep end enc e grap h shows direct control dep endencies, that is,
where execution of one statement controls whether another is executf d. For example,
execution of the bod y of a loop or if statement depends on the result Ma predicate.

Control depend ence differs from the sequencing information capt ~red in the control
flow graph. Th e control flow graph imp oses a definite order on exegution even when
two statements are logicall y independent and could be executed in eidier order with the
same results. If a statement is control- or data-dependent on ano the~, then their order
of exec ution is not arbitrary. Program dependence rep resentations l:typi cally incl ude
both data dependen ce and con trol dependence information in a single graph with the
two kin ds of informa tion appearing as different kind s of edg es amo ~g the same set of

nodes . II
A node in the control flow graph that is reached on every execution path from entry

point to exit is control dep endent onl y on the entry point. For any oth~ ~ node N , reached
on some but not all execution path s, there is some bran ch that con trols lexecution of N in
the sense that , depending on which way execution pro ceeds fr om the lpra nch , execu tion
of N either does or does not become inevitable . It is this notion of co ntro l that con trol
dependence cap tures . II

6. dominator The not ion of dom inators in a rooted, directed graph can be used to make thi s
intuitive noti on of "c ontro lling decision" precise . Node M dominat& node N if every
path fr om the root of the graph to N passes throu gh M . A node + 11 typicall y have

6. immediate many dominators, but except for the root, there is a unique immed iate dominator of
dominator node N , which is clo sest to N on any path from the root and which is1in turn dominated

Definition-Use Pairs

r-i publicint ged '

pul5TIc infgea{lnt x.Int y)
int trno:

/--0vhile (y != O){ ~..- \

r I I
yI

(tmp =x % y; (C)I I

0 =v. (D)I ~

II Ii(y =trnp: (E~\: '

,

"'---...return x;} (F)
~ - -- /

Figu re 6.4: Calculating control dependence f or node E in the control flow graph of
the GCD method. Nodes C, D, and E in the gray region are post-domi nated by E ;
that is, execu tion of E is inev itab le in tha t region. Node B has successors both with in
and outside the gray region, so it controls whether E is executed; thus E is control
dependent on B.

by all the other dominators of N. Because each node (except the root) has a unique
immedia te dom inator, the immediate dominator relation forms a tree.

The point at which execution of a node becomes inevitable is related to paths fro m
a node to the end of execut ion - that is, to dom inators that are calcul ated in the re
verse of the cont rol flow graph, us ing a special "exit" node as the root. Dominators
in this direction are called post-dominators, and dominators in the normal direc tion of
execution can be ca lled pre-dominators for cla ri ty.

We can use pos t-dominators to give a more precise definitio n of contro l depe n
dence. Con sider aga in a node N that is reached on som e but not all execution paths.
Th ere must be some node C with the follow ing property: C has at least two succ es
sors in the control flow graph (i.e., it represent s a contro l flow decision) ; C is not
post-dom inated by N (N is not already inevitabl e when C is reached); and there is a
successor of C in the con tro l flow graph that is post-dominated by N When these co n
ditions are true , we say node N is cont rol-dependent on no de C. Figure 6.4 illus trates
the control dependence calculation for one node in the GCD examp le, and Figure 6.5
shows the contro l dep end ence relation for the method as a whole.

c> post-dominator

II
C> pre-dominator

I

82 Dependen ce and Data Flow Models

IPUbliC int gcd (int x, int y) { ~
\ nt tmp;)

w hile (y !- 0)	 (return x;
(

(1£. ! \s'i
,{- - -)

,(')
(Imp = x % y; ((,E) ~ (" Imp

:!:

r'x = y; /D~ I

Figure 6.5.' Control dependence tree of the GCD method. The lool>test and the return
sta tem ent are reached on every possible execu tion p ath, so they a ~h co ntrol-dep endent
only on the ent ry po int. The statements within the loop are cont ~~) l - dependent on the
loop test.

6.2 Data Flow Analysis

6. reaching definition

Definition-use pairs can be de fined in term s of pa ths in the program control flow graph.
As we have seen in the former section, there is an asso cia tio n (d,u)Ibelween a definiti on
of variable v at d and a use of variable v at u if and only if there i ~ at least one con trol
flow path fr om d to u with no intervening definition of v. We als!l say that definition
Vd reaches u, and tha t Vd is a reaching defi nition at u. If, on the 9ther han d, a control
flow path passes through anot her definition e of the same vari able \" we say that Ve kills

v« at tha t point . II
It would be pos sible to com pute definition-use pairs by searching the control flow

graph for individual paths of the form described above. How everjleven if we consider
only loop- free path s, the num ber of pa ths in a graph can be exp opentially larger than
the num ber of nodes and edges. Practical algo rithms therefore leannot searc h every
individual path . Ins tead, they summ arize the reaching definiti ons ~t a node over all the
paths reaching that node. II

An effic ient algorithm for computing reaching definitions (ana several other prop
ert ies, as we will see below) is based on the way reac hing defin illons at one node are
related to reaching definitions at an adjacent node. Suppose wg are calculating the

II
reac hing defini tions of node n, and ther e is an edge (p ,n) from an immediate predeces
sor node p , We observe:

•	 If the predecessor node p can assign a value to variable v, then the definiti on vp

reaches n . We say the defin ition v» is generated at p, II

•	 If a definition Vd of variable v reaches a pred eces sor no ~e p , and if v is not
redefined at that node (in which case we say the Vd is kill~11 at tha t po int), then
the definit ion is prop agat ed on from p to n.

Data Flow Analysis

These observa tions can be stated in the form of an equation describing sets of reach
ing definitions . For example, reaching definitions at node E in Fig ure 6.2 are those at
nod e D , except that D adds a definition of y and replaces (kills) an earlier definition of
y:

Reach(E) = (Reach(D) \ {XA}) U {XD}

Thi s rule can be broken down into two part s to make it a little more intuitive and
more efficient to implement. The first part describes how node E receives values from
its predecessor D, and the second describes how it modifies those values for its succes
sors:

Reach(E) ReachOut(D)

ReachOut(D) (Reach(D) \ {XA }) U {XD}

In this form, we can easily expre ss what should happen at the head of the while
loop (node B in Figure 6.2), wher e values may be transmitted both from the beginning
of the proc edure (node A) and through the end of the body of the loop (node E) . The
beginning of the procedure (node A) is treated as an initial definition of parameters
and local variables . (If a local variable is declared but not initia lized , it is treated as a
definition to the special value "uninitialized .")

Reach(B) ReachOut(A) U ReachOut(E)

ReachOut(A) gen(A) = {xA ,YA,tmpA}

ReachOut(E) (Reachln(E) \ {)'A}) U b E}

In general, for any node n with predecessors pred(n) ,

Reach(n) U ReachOut(m)
mEpred(ll)

ReachOut(n) (Reachln(n) \ kill(n))Ugen(n)

Remarkably, the reaching definitions can be calculated simply and efficiently, first
init ializ ing the reaching definiti ons at each node in the contro l flow graph to the empty
set, and then applying these equations repeated ly until the resu lts stabi lize . The algo
rithm is given as pseudocode in Figure 6.6.

84 Dependence and Data Flow M odel s

Algorithm Reaching definitions

Input:	 A control flow graph G = (nodes, edges)
pred(n) = { m E nodes I (min) E edges}
succ(m) = {n E nodes I (m,n) E edges}
gen(n) = {vn } if variable v is defined at n, otherwise n
kill(n) = all other definitions of v if v is defined at n , otherwise {}

II
Output:	 Reach(n) = the reaching definitions at node n

for nE nodes loop
ReachOut (n) = {} ;

end loop;

workList = nodes ;
while (workList i- {}) loop

II Take a node from worklist (e.g., pop from stack or queue

n = any node in workList ;

workList = workList \ {n} ;

oldVal = ReachOut(n) ;

II Apply flow equat ions, propagating values from predecese ers

Reach(n) = UmEpred(n) ReachOut(m);

ReachOut(n) = (Reach(n) \ kill(n)) U gen(n) ;

if (ReachOut (n) i- oldVal) then

II Propagate changed value to successor nodes
workList = workList U succ(n)

end if;
end loop;

Figure 6.6.' An itera tive work-list algo rithm to compu te reachin g defi nitions by apply
ing eac h flo w equat ion unt il the solut ion stabilizes.

Classic Analyses: Live and Avail

6.3 Classic Analyses: Live and Avail

Reaching definition is a cla ssic data flow analysis adapted from compiler construction
to applications in software testing and analysis. Other classical data flow analy ses
from compiler construction can likewi se be adapted. Moreover, they follow a common
pattern that can be used to devise a wide variety of additional analyses.

Available expre ssions is another clas sical data flow analy sis, used in compiler con
struc tion to determine when the value of a subexpression can be saved and reused rather
than recomputed. This is permissible when the value of the subexpression remains un
changed regardless of the execution path from the first computation to the second.

Available expression s can be defined in terms of path s in the control flow graph. An
expression is available at a point if, for all paths through the control flow graph from
procedure entry to that point, the expression has been computed and not subsequently
modified. We say an expression is gene rated (becomes available) where it is comp uted
and is killed (ceases to be avail able) when the value of any part of it changes (e.g.,
when a new value is assigned to a variable in the expr ession).

As with reaching definitions, we can obtain an efficient analysis by describing the
relation between the available expression s that reach a node in the control flow graph
and those at adjacent nodes. The expression s that become available at each node (the
gen set) and the expre ssions that change and cease to be available (the kill set) can be
computed simply, without consideration of control flow. Their propagation to a node
from its predecessors is described by a pair of set equations :

Avail(n) = n AvailOut(m)
mEpred (l1)

AvailOut(n) = (Avail(n) \ kill(n)) U Gen (n)

The similarity to the set equations for reaching definitions is striking. Both propa
gate sets of values along the control flow graph in tbe direction of program execution
(they are fo rw ard analyses), and both combine sets propagated along differ ent control
flow path s. However, reaching definitions combines propagated sets using set union ,
since a definition can reach a use along any execution path. Available expressions com
bine s propagated sets using set intersection, since an expr ession is considered available
at a node only if it reaches that node along all possible execution path s. Thu s we say
that , while reaching definitions is a forward, any-path analy sis, available expre ssions
is afor ward, all-paths analysis . A work-li st algorithm to implement available expres
sions analy sis is nearly identi cal to that for reachin g definitions, except for initialization
and the flow equations, as shown in Figure 6.7.

Applications of a forward , all-paths analy sis extend beyond the common subexpres
sion detection for which the Avail algorithm was originally developed . We can think
of available expressions as token s that are propagated from where they are generated
through the control flow graph to point s where they might be used . We obtain differ ent
anal yses by choosing token s that represent some other property that becomes true (is
generated) at some points, may become false (be killed) at some other points, and is

torwaro analysis

I.
any-path analysis

II .
all-paths analysis

86 Dependenc e and Data Flow M odels

Algo rithm Available expressions

Input:	 A control flow graph G = (nodes, edges) , with a dist ingu i$hed root node start .
pred(n) = {m E nodes I (m,n) E edges}
succ (m) = {n E nodes I (m,n) E edges}
gen(n) = all expressions e computed at node n
kill(n) = expressions e computed anywhere, whose va l u~ is changed at n;

kill(start) is the set of all e.

Output:	 Avail (n) = the available expressions at node n

for n E nodes loop
AvaiIOut(n) = set of all e def ined anywhere;

end loop;

workList = nodes ;
while (workList I- {}) loop

II Take a node from worklist (e.g., pop from stack or queue)

n = any node in workList ;

workList = workList \ {n} ;

oldVal = AvaiIOut(n) ;

II Apply flow equations, propagating values from predecessors
Avail(n) = nm",pred(Il)AvaiIOut(m);

AvaiIOut (n) = (Avail(n) \ kill(n)) u gen(n) ;

if (AvaiIOut(n) =f. oldVal) then

II Propagate changes to successors
workList = workList U succ(n)

end if;
end loop ;

Figure 6.7: An iterative wo rk-list algo rithm for computing available expressions .

Class ic Analyses : Live and Avail II 87

1 / * * A trivial method with a potentially uninitialized variable.

2 * Java compilers reject the program. The compiler uses

3 * data flow analysis to determine that there is a potential

4 * (syntactic) execution pa th on which k is used before it

5 * has been assigned an initial value.

6 */

7 stati c void questionableO {

8 int k;

9 for (int i=O; i < 10 ; Hi) {

10 if (someCondition(i)) {

11 k = 0;

12 } else {

13 k += i;

14 }

15 }

16 System .out.print ln(k) ;

17 }

18 }

Figure 6.8: Function questionable (repeated from Chapter 3) has a potentially unini
tialized variable, wh ich the Java compiler can detect using data flow analysis.

evaluated (used) at cert ain poin ts in the graph. By associating appropri ate sets of tokens
in gen and kill sets for a node , we can evaluate other propert ies that fit the pa ttern

"G occurs on all execution pa ths leading to U, and there is no interveni ng

occ urre nce of K between the last occurren ce of G and U."

G, K, and U can be any events we care to check , so long as we can mark their occur
rences in a con tro l flow graph.

An example pro blem of this kind is variable initialization. We noted in Chapter 3
that Java requir es a variable to be ini tial ized before use on all execution pa ths. The
analysis that enforces thi s rule is an instance of Avai l. The token s propag ated through
the co ntro l flow graph record which variables have been ass igned initial values . Since
there is no way to "uninitialize" a varia ble in Java , the kill sets are empty. Figure 6.8
repeats the sour ce co de of an example program from Chapter 3. The corresponding
contro l flow graph is shown with definitions and uses in Figure 6.9 and annotated with
gen and ki ll sets for the initi alized variable chec k in Figure 6.10.

Reaching definitions and availabl e expressions are forwa rd ana lyses; tha t is, they
pro pagate values in the direct ion of program execution . Given a control flow graph
model , it is ju st as easy to propagate values in the opposite direct ion, backward from backward

analysis node s that repre sent the next steps in computation . Backward analyses are usefu l for
determining what happens after an event of interest. Live vari ables is a backward
analysis that det ermines whether the value held in a variable may be subsequently

88 Dependence and Data Flow M odels

static void quest ionab le() { l

,.I I
(

7A")
~-/l int k;

I
, Idef - 0

I = 0 Iuse

,.
(/8' I

I
I

(: or (int i=O; ·-"1

Idef - {ij

I = 0 Iuse

,.
/C' I

I l '
~.~G< 10' ~\

I -, Idef - 0
I use = {ij I I

true
I,. I

/l if (someCondition(i)) { (~,_ /
I

"---
I

1def 0
use = {i} I I

I
fallse ({k = O;}

(--true ,.

I !def = {k}
~, use = 0

/ \

C0
'I

fal se

(else
I{ k += i;}

,.

I
-I de ~ l - (kj

use.= {i,k)

~~ (I

III
I I

I

I

1

c

\ Hi) } ,

v·,.

Idef (i)
use = (ij

(G]

'J

1

) I
-

Ii
) I

I

I
\ , ! System.out.printlruk):

U jdef 0
use - {k}

~I

Figu re 6.9: Control flow graph of the source code in Figure 6.$, an notate d with vari
able defin itions and uses .

