
Chapter 6 

Dependence and Data 
Flow Models 

The control flow graph and state machine mode ls introduced in the previous chapter 
capture one aspect of the dependencies among parts of a program. The y exp licit ly 
represent control flow but deemphasi ze transm ission of information through program 
variab les . Data flow mode ls provide a complementary view, emphas izing and making 
explicit relations involving transmission of informatio n. 

Model s of data flow and dependence in sof tware were originally developed in the 
field of com piler construction, where they were (and still are) used to detect opportuni
ties for optimi zation . They also have many applic ations in software engineering, fro m 
tes ting to refactoring to revers e engineering. In test and ana lysis , applications range 
from selecting test cases based on depende nce inform ation (as described in Chap
ter 13) to detecting anomalous pattern s that indicate probab le programmi ng errors , 
such as uses of potenti ally uninitialized values. Moreover, the basic algorithms used 
to construct da ta flow models have even wider application and are of particular interest 
becaus e they can often be quite efficient in time and space. 

6.1 Definition-Use Pairs 

The most fundamental class of data flow model associ ates the point in a progr am where 
a value is produc ed (called a "definitio n") with the points at which the value may be 
accessed (called a "use"). Associations of definitions and uses funda mentally cap ture 
the flow of information through a program, from input to output. 

Definitions occur where vari ab les are declared or initialized, assigned values, or 
received as para me ters, and in general at all statemen ts that change the value of one or 
more variables. Uses occur in expressions, conditional statements, parameter passing , 
return statemen ts, and in general in all statements whose exec ution extracts a value 
from a variab le. For example, in the standard greatest common divisor (QCD) algo
rithm of Figur e 6.1, line 1 contains a definition of param eters x and y, line 3 con tains 
a use of variable y, line 6 contains a use of variable tmp and a defin ition of variable y, 
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1 public int gcd(int x, int y) { 1* A: def x,y *1 
2 int tmp ; /* def tmp 11. *1 
3 wh il e (y != 0) { 1* B: use y *1 
4 tmp = x % y; /* C: use x,y; de'ltmp *1 
5 x =y; /* 0.' use y; def -1j 'I 
6 y = tmp; 1* E: use tmp, def y *1 
7 } 
8 ret urn x; /* F: use x *1 
9 } 

Figure 6.1: Java implementation of Eucl id 's algorithm f or calcula ting the greates t 
common denominato r of two positive integers. Th e lab els A- F eJre p rovided to relate 
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single definiti on can be paired wi th more than one use, and vi c ~ versa. For example, 
the de finit ion of variable y in line 6 is paired w ith a use in line fl (in the loop test), as 
well as additional uses in lines 4 and 5. The definitio n of x in lirie 5 is associa ted with 

uses in lines 4 and 8. I 
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the first definiti on is killed by the seco nd. For exa mple, the declc\'ration of tmp in line 2 
is not paired wit h the use of tmp in line 6 be cause the defini tion ~ I li n e 2 is kill ed by the 
definition at line 4 . A definition-clea r path is a pa th from definidon to use on which the
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(node D). Path A, B ,C ,D,E is not a definition-cle ar path with !·bspect to tmp because 
of the interve ning definition at no ~e C. II . . 

Definition-use pans rec ord a kind of pro gram dependence, sometimes called dire ct 

,', (>, direc t dat a data dependenc e. These dependencies can be represented in th ~ form of a graph, with 
~ dependence a directed edge for each definition-use pair. The data dependence graph repres entation 

~ of the OCD method is illustrated in Figure 6.3 with nodes that a:{e program sta teme nts. - Different levels of gra nularity are possibl e . For use in testin g, nodes are typically bas ic 
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block s. Comp ilers often use a finer-grained da ta dependence l repres entati on, at the 
level of indiv idual expressi ons and operations, to detect opp ortu nities for perfo rma nce
improvin g transform at ions. I 

~~ . The data dependence graph in Figure 6.3 captures on ly depend ence throu gh flow 
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" of data. Depende nce of the bod y of the loop on the predi cate g ~v ern i ng the loop is not 
repre sented by data dependenc e alon e. Control depend ence can also be represent ed 

'f with a graph, as in Figure 6.5, which show s the control depe ndenc ies for the OCD 
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public int gcd 

( 
y 

public int gcd(int x, int y) { ~ I 
int tmp; def = {x, y, Imp} 

use ={} 

while (y != 0) ~ 
{ Idef= 0

), use ={y} fi ;-False 
True I 

I
I 

C' 
tmp =x % y; " 

'-- - - - - - - - - ---,,-. def = {Imp }
 
use ={x, y}
 

x =y; ~ 
def ={x} 
use ={y} 

~ = tmp ; ~ 
~ d'f = (Y} I JLuse ~ {Im~} __ __ 

---.., 
F ' 
Jl~~~_ 

def= 0 
use ={x} 

Figure 6.2: Corurol fi ow graph of GCD method in Figure 6.1 . 
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public int gcd(int x, in! y) { 
inttmp; 

, X I I- -y- - - -  , y 
, / --'! 

,I
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I
I '; tmp ,- - y' 
I \
 
I
 
I
 
I
 
I /
 
I I
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( While (y != 0) L-T ~ /~ =y; 

,,( ,, x.. __ 
\ , 

'~e t u rn x; II ~ 

I 
Figure 6.3: Data dependen ce graph of GCD method in Figu re 6.1f with nodes fo r 
sta tements corresponding to the con trol flow graph in Figu re 6.2. EJch direc ted edge 
rep resents a dire ct data depende nce, and the edg e label indi cate s I!he variable that 
transmits a valu e f rom the defin ition at the head of the edge to the us~ at the tail of the 
edg e. 

meth od . The control dep end enc e grap h shows direct control dep endencies, that is, 
where execution of one statement controls whether another is executf d. For example, 
execution of the bod y of a loop or if statement depends on the result Ma predicate. 

Control depend ence differs from the sequencing information capt ~red in the control 
flow graph. Th e control flow graph imp oses a definite order on exegution even when 
two statements are logicall y independent and could be executed in eidier order with the 
same results. If a statement is control- or data-dependent on ano the~, then their order 
of exec ution is not arbitrary. Program dependence rep resentations l:typi cally incl ude 
both data dependen ce and con trol dependence information in a single graph with the 
two kin ds of informa tion appearing as different kind s of edg es amo ~g the same set of 

nodes . II 
A node in the control flow graph that is reached on every execution path from entry 

point to exit is control dep endent onl y on the entry point. For any oth~ ~ node N , reached 
on some but not all execution path s, there is some bran ch that con trols lexecution of N in 
the sense that , depending on which way execution pro ceeds fr om the lpra nch , execu tion 
of N either does or does not become inevitable . It is this notion of co ntro l that con trol 
dependence cap tures . II 

6. dominator The not ion of dom inators in a rooted, directed graph can be used to make thi s 
intuitive noti on of "c ontro lling decision" precise . Node M dominat& node N if every 
path fr om the root of the graph to N passes throu gh M . A node + 11 typicall y have 

6. immediate many dominators, but except for the root, there is a unique immed iate dominator of 
dominator node N , which is clo sest to N on any path from the root and which is1in turn dominated 
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r-i publicint ged ' 

pul5TIc infgea{lnt x.Int y) 
int trno: 

/--0vhile (y != O){ ~..- \ 

r I I 
yI 

(tmp =x % y; (C)I I
 
0 =v. (D)I ~ 

II Ii(y =trnp: (E~\: ' 

, 

"'---...return x;} ( F) 
~ - -- / 

Figu re 6.4: Calculating control dependence f or node E in the control flow graph of 
the GCD method. Nodes C, D, and E in the gray region are post-domi nated by E ; 
that is, execu tion of E is inev itab le in tha t region. Node B has successors both with in 
and outside the gray region, so it controls whether E is executed; thus E is control
dependent on B. 

by all the other dominators of N. Because each node (except the root) has a unique 
immedia te dom inator, the immediate dominator relation forms a tree. 

The point at which execution of a node becomes inevitable is related to paths fro m 
a node to the end of execut ion - that is, to dom inators that are calcul ated in the re
verse of the cont rol flow graph, us ing a special "exit" node as the root. Dominators 
in this direction are called post-dominators, and dominators in the normal direc tion of 
execution can be ca lled pre-dominators for cla ri ty. 

We can use pos t-dominators to give a more precise definitio n of contro l depe n
dence. Con sider aga in a node N that is reached on som e but not all execution paths. 
Th ere must be some node C with the follow ing property: C has at least two succ es
sors in the control flow graph (i.e., it represent s a contro l flow decision) ; C is not 
post-dom inated by N (N is not already inevitabl e when C is reached); and there is a 
successor of C in the con tro l flow graph that is post-dominated by N When these co n
ditions are true , we say node N is cont rol-dependent on no de C. Figure 6.4 illus trates 
the control dependence calculation for one node in the GCD examp le, and Figure 6.5 
shows the contro l dep end ence relation for the method as a whole. 

c> post-dominator 

II
C> pre-dominator 

I 
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IPUbliC int gcd (int x, int y) { ~ 
\ nt tmp; ) 

w hile (y !- 0)	 (return x;
(	

(1£. ! \s'i 
,{- - -	 ) 

,( ') 
( Imp = x % y; (( ,E) ~ (" Imp 

:!:
 
r'x = y; /D~ I
 

Figure 6.5.' Control dependence tree of the GCD method. The lool>test and the return 
sta tem ent are reached on every possible execu tion p ath, so they a ~h co ntrol-dep endent 
only on the ent ry po int. The statements within the loop are cont ~~ ) l - dependent on the 
loop test. 

6.2 Data Flow Analysis 

6. reaching definition 

Definition-use pairs can be de fined in term s of pa ths in the program control flow graph. 
As we have seen in the former section, there is an asso cia tio n (d,u)Ibelween a definiti on 
of variable v at d and a use of variable v at u if and only if there i ~ at least one con trol 
flow path fr om d to u with no intervening definition of v. We als!l say that definition 
Vd reaches u, and tha t Vd is a reaching defi nition at u. If, on the 9ther han d, a control 
flow path passes through anot her definition e of the same vari able \" we say that Ve kills 

v« at tha t point . II 
It would be pos sible to com pute definition-use pairs by searching the control flow 

graph for individual paths of the form described above. How everjleven if we consider 
only loop- free path s, the num ber of pa ths in a graph can be exp opentially larger than 
the num ber of nodes and edges. Practical algo rithms therefore leannot searc h every 
individual path . Ins tead, they summ arize the reaching definiti ons ~t a node over all the 
paths reaching that node. II 

An effic ient algorithm for computing reaching definitions (ana several other prop
ert ies, as we will see below) is based on the way reac hing defin illons at one node are 
related to reaching definitions at an adjacent node. Suppose wg are calculating the

II 
reac hing defini tions of node n, and ther e is an edge (p ,n) from an immediate predeces
sor node p , We observe: 

•	 If the predecessor node p can assign a value to variable v, then the definiti on vp 

reaches n . We say the defin ition v» is generated at p, II 

•	 If a definition Vd of variable v reaches a pred eces sor no ~e p , and if v is not 
redefined at that node (in which case we say the Vd is kill~11 at tha t po int), then 
the definit ion is prop agat ed on from p to n. 
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These observa tions can be stated in the form of an equation describing sets of reach 
ing definitions . For example, reaching definitions at node E in Fig ure 6.2 are those at 
nod e D , except that D adds a definition of y and replaces (kills) an earlier definition of 
y: 

Reach(E ) = (Reach(D) \ {XA}) U {XD} 

Thi s rule can be broken down into two part s to make it a little more intuitive and 
more efficient to implement. The first part describes how node E receives values from 
its predecessor D, and the second describes how it modifies those values for its succes
sors: 

Reach(E ) ReachOut(D) 

ReachOut(D) (Reach(D) \ {XA }) U {XD} 

In this form, we can easily expre ss what should happen at the head of the while 
loop (node B in Figure 6.2), wher e values may be transmitted both from the beginning 
of the proc edure (node A) and through the end of the body of the loop (node E) . The 
beginning of the procedure (node A ) is treated as an initial definition of parameters 
and local variables . (If a local variable is declared but not initia lized , it is treated as a 
definition to the special value "uninitialized .") 

Reach(B) ReachOut(A) U ReachOut(E ) 

ReachOut(A) gen(A) = {xA ,YA,tmpA} 

ReachOut(E) (Reachln(E ) \ {)'A}) U b E} 

In general, for any node n with predecessors pred(n) , 

Reach(n ) U ReachOut(m) 
mEpred( ll ) 

ReachOut(n) (Reachln(n) \ kill(n))Ugen(n) 

Remarkably, the reaching definitions can be calculated simply and efficiently, first 
init ializ ing the reaching definiti ons at each node in the contro l flow graph to the empty 
set, and then applying these equations repeated ly until the resu lts stabi lize . The algo
rithm is given as pseudocode in Figure 6.6. 



84 Dependence and Data Flow M odel s 

Algorithm Reaching definitions 

Input:	 A control flow graph G = (nodes, edges) 
pred(n) = { m E nodes I (min) E edges} 
succ(m) = {n E nodes I (m,n) E edges} 
gen(n) = {vn } if variable v is defined at n, otherwise n 
kill(n) = all other definitions of v if v is defined at n , otherwise {} 

II 
Output:	 Reach(n ) = the reaching definitions at node n 

for nE nodes loop 
ReachOut (n) = {} ; 

end loop; 

workList = nodes ; 
while (workList i- {}) loop 

II Take a node from worklist (e.g., pop from stack or queue
 
n = any node in workList ;
 
workList = workList \ {n} ;
 

oldVal = ReachOut(n) ; 

II Apply flow equat ions, propagating values from predecese ers 

Reach(n) = UmEpred(n) ReachOut(m);
 

ReachOut(n) = (Reach(n) \ kill(n) ) U gen(n) ;
 

if ( ReachOut (n) i- oldVal ) then
 
II Propagate changed value to successor nodes 
workList = workList U succ(n) 

end if; 
end loop; 

Figure 6.6.' An itera tive work-list algo rithm to compu te reachin g defi nitions by apply
ing eac h flo w equat ion unt il the solut ion stabilizes. 
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6.3 Classic Analyses: Live and Avail 

Reaching definition is a cla ssic data flow analysis adapted from compiler construction 
to applications in software testing and analysis. Other classical data flow analy ses 
from compiler construction can likewi se be adapted. Moreover, they follow a common 
pattern that can be used to devise a wide variety of additional analyses. 

Available expre ssions is another clas sical data flow analy sis, used in compiler con
struc tion to determine when the value of a subexpression can be saved and reused rather 
than recomputed. This is permissible when the value of the subexpression remains un
changed regardless of the execution path from the first computation to the second. 

Available expression s can be defined in terms of path s in the control flow graph. An 
expression is available at a point if, for all paths through the control flow graph from 
procedure entry to that point, the expression has been computed and not subsequently 
modified. We say an expression is gene rated (becomes available) where it is comp uted 
and is killed (ceases to be avail able) when the value of any part of it changes (e.g., 
when a new value is assigned to a variable in the expr ession ). 

As with reaching definitions, we can obtain an efficient analysis by describing the 
relation between the available expression s that reach a node in the control flow graph 
and those at adjacent nodes. The expression s that become available at each node (the 
gen set) and the expre ssions that change and cease to be available (the kill set) can be 
computed simply, without consideration of control flow. Their propagation to a node 
from its predecessors is described by a pair of set equations : 

Avail(n ) = n AvailOut(m) 
mEpred (l1 ) 

AvailOut(n ) = (Avail(n) \ kill( n)) U Gen (n ) 

The similarity to the set equations for reaching definitions is striking. Both propa
gate sets of values along the control flow graph in tbe direction of program execution 
(they are fo rw ard analyses), and both combine sets propagated along differ ent control 
flow path s. However, reaching definitions combines propagated sets using set union , 
since a definition can reach a use along any execution path. Available expressions com
bine s propagated sets using set intersection, since an expr ession is considered available 
at a node only if it reaches that node along all possible execution path s. Thu s we say 
that , while reaching definitions is a forward, any-path analy sis, available expre ssions 
is afor ward, all-paths analysis . A work-li st algorithm to implement available expres
sions analy sis is nearly identi cal to that for reachin g definitions, except for initialization 
and the flow equations, as shown in Figure 6.7. 

Applications of a forward , all-paths analy sis extend beyond the common subexpres
sion detection for which the Avail algorithm was originally developed . We can think 
of available expressions as token s that are propagated from where they are generated 
through the control flow graph to point s where they might be used . We obtain differ ent 
anal yses by choosing token s that represent some other property that becomes true (is 
generated) at some points, may become false (be killed ) at some other points, and is 

torwaro analysis 

I.
any-path analysis 

II .
all-paths analysis 
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Algo rithm Available expressions 

Input:	 A control flow graph G = (nodes, edges ) , with a dist ingu i$hed root node start . 
pred(n) = {m E nodes I (m,n) E edges} 
succ (m) = {n E nodes I (m,n) E edges} 
gen(n) = all expressions e computed at node n 
kill(n ) = expressions e computed anywhere, whose va l u~ is changed at n; 

kill(start ) is the set of all e. 

Output:	 Avail (n) = the available expressions at node n 

for n E nodes loop 
AvaiIOut(n) = set of all e def ined anywhere; 

end loop; 

workList = nodes ; 
while (workList I- {}) loop 

II Take a node from worklist (e.g., pop from stack or queue)
 
n = any node in workList ;
 
workList = workList \ {n} ;
 
oldVal = AvaiIOut(n) ; 

II Apply flow equations, propagating values from predecessors 
Avail(n) = nm",pred(Il)AvaiIOut(m);
 

AvaiIOut (n) = (Avail(n) \ kill(n ) ) u gen(n) ;
 

if ( AvaiIOut(n) =f. oldVal ) then
 
II Propagate changes to successors 
workList = workList U succ(n) 

end if; 
end loop ; 

Figure 6.7: An iterative wo rk-list algo rithm for computing available expressions . 
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1 / * * A trivial method with a potentially uninitialized variable.
 
2 * Java compilers reject the program. The compiler uses
 
3 * data flow analysis to determine that there is a potential
 
4 * (syntactic) execution pa th on which k is used before it
 
5 * has been assigned an initial value.
 
6 */
 

7 stati c void questionableO {
 

8 int k;
 
9 for (int i=O; i < 10 ; Hi) {
 

10 if (someCondition( i)) {
 

11 k = 0;
 
12 } else {
 
13 k += i;
 
14 }
 
15 }
 
16 System .out.print ln(k) ;
 

17 }
 
18 }
 

Figure 6.8: Function questionable (repeated from Chapter 3) has a potentially unini
tialized variable, wh ich the Java compiler can detect using data flow analysis. 

evaluated (used) at cert ain poin ts in the graph. By associating appropri ate sets of tokens 
in gen and kill sets for a node , we can evaluate other propert ies that fit the pa ttern 

"G occurs on all execution pa ths leading to U, and there is no interveni ng
 
occ urre nce of K between the last occurren ce of G and U."
 

G, K, and U can be any events we care to check , so long as we can mark their occur
rences in a con tro l flow graph. 

An example pro blem of this kind is variable initialization. We noted in Chapter 3 
that Java requir es a variable to be ini tial ized before use on all execution pa ths. The 
analysis that enforces thi s rule is an instance of Avai l. The token s propag ated through 
the co ntro l flow graph record which variables have been ass igned initial values . Since 
there is no way to "uninitialize" a varia ble in Java , the kill sets are empty. Figure 6.8 
repeats the sour ce co de of an example program from Chapter 3. The corresponding 
contro l flow graph is shown with definitions and uses in Figure 6.9 and annotated with 
gen and ki ll sets for the initi alized variable chec k in Figure 6.10. 

Reaching definitions and availabl e expressions are forwa rd ana lyses; tha t is, they 
pro pagate values in the direct ion of program execution . Given a control flow graph 
model , it is ju st as easy to propagate values in the opposite direct ion, backward from backward 

analysis node s that repre sent the next steps in computation . Backward analyses are usefu l for 
determining what happens after an event of interest. Live vari ables is a backward 
analysis that det ermines whether the value held in a variable may be subsequently 
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static void quest ionab le() { l 

,.I I 
( 

7A") 
~-/l int k; 

I 
, Idef - 0

I = 0 Iuse 

,. 
(/8' I 

I
I 

(: or (int i=O; ·-"1 

Idef - {ij 

I = 0 Iuse 

,. 
/C' I 

I l ' 
~.~G< 10' ~\ 

I -, Idef - 0
I use = {ij I I 

true 
I,. I 

/l if (someCondition(i)) { ( ~,_ / 
I 

"---
I 

1def  0 
use = {i} I I 

I 
fallse ( {k = O;} 

(--true ,. 

I !def = {k} 
~, use = 0 

/ \ 

C0 
'I 

fal se 

(else 
I{ k += i;} 

,. 

I 
-I de ~ l - (kj 

use.= {i,k ) 

~~ (I 

III 
I I 

I 

I 

1 

c 

\ Hi) } , 

v·,. 

Idef  (i) 
use = (ij 

(G] 

'J 

1 

) I 
-

Ii 
) I 

I 

I 
\ , ! System.out.printlruk): 

U jdef  0 
use - {k} 

~I 

Figu re 6.9: Control flow graph of the source code in Figure 6.$, an notate d with vari
able defin itions and uses . 


