
Generating Facial Expressions

Jonathan Suit
Georgia Tech

Abstract

In this report, I use CAS-PEAL dataset [1] to try and
generate facial expressions. That is, I take in, say, a smiling
face, and try to generate a face that is neutral. I build off
Ghodrati’s, et al. [2] to see if I generate facial expressions.
Finally, I use a variant of Deep Convolutional Adversarial
Networks, hereafer DCGAN’s, [7] to generate a facial ex-
pressions.

1. Introduction
Realistic facial images are hard to generate. Put differ-

ently, it is hard to learn a distribution to generate realistic
faces. There are lots of reasons it is hard: images are typ-
ically high-dimensional, highly non-linear relations are in-
volved in generating an image of a face, and capturing facial
expressions requires capturing intricate minutia of the face.
The latter can be difficult for CNs.

The CAS-PEAL dataset gives you about 300 pairs of
users where each user gives 6 different facial expressions:
neutral, laughing, frowning, surprised, eyes closed, and
eyes open. The images are around 380 x 480 before be-
ing resized to 128 x 128. The images include just the faces,
however, the alignment and pose of the faces is very rough.

The format of this paper is as follows: introduce the two-
step process, DCGAN’s, go over the my variations of these
two networks. Finally, I give visualizations to show what
the network has and has not learned.

In the end, I show that DCGANs seem promising. Using
them I can reconstruct the original image with great accu-
racy. However, the network has not learned to modify the
image.

2. Related Work
There are two major approaches I will focus on: the

“two-step” CN and DCGAN.

2.1. Two Step

The two-step process comes from [2]. The network they
employ can best be seen by the following figure from [2]

Figure 1. The two-step process.

The network takes in an image, a one-hot vector and then
produces a new image. This output image should be an im-
age with the pose corresponding to the which index was
turned on in the one-hot vector. The next step, a.k.a., the
second step in the two-step process, is there to refine the
image, to make it sharper.

It’s important to see that this network uses a encoder-
decoder framework within each CN, the image-generation
and image-refinement net. For a 32 x 32 image, the net-
work condenses its representation down to 16 x 16 before
decoding that representation back to 32 x 32 in pixel space.

The network is trained in a two-step process. First, you
learn to generate the image and then you use a second net-
work to refine the image generated by the first network.

Both networks use MSE as the loss function.They also
use SGD with a batch size equal to 32, momentum = .95, a
learning rate = 1e-5. All weights initalized according to [4],
which in torch7 is implemented as math.sqrt(4/fanin +
fanout) for each layer.

2.2. DCGAN

DCGANs are generative convolutional networks based
off of GoodFellows’s Generative Adversarial Networks,
GANs, in [3]. See section 2.2.1 for a brief intro into GANs.
DCGAN’s are GANs with specific architectural guidelines:

1. No pooling layes. Use either convolutions with stride
> 1 and use fractional-strided convolutions, such as in
[6].

2. Use Spatial Batch Normalization from [5]

3. For deeper architectures, remove the fully connected
hidden layers.

4321



4. Use ReLU in all stages at of the generator except the
last unit, which uses a Tanh activation layer.

5. Use Leaky ReLU in all layers of discriminator.1

These guidelines make it easier to train GANs as GANs are
notoriously hard to train.

2.2.1 GANs

Briefly put, GANs work by pitting a generator vs. a dis-
criminator. The generator should try to generate images to
fool a discriminator. The discriminator’s goal is to be able
to detect th “fakes”, i.e., the output of the generator. They
show in the paper that the best outcome occurs when the
generator’s output matches the true data distribution.2

GANs are notoriously difficult to train as it involves
keeping the discriminator and the generator competitive
with one another. The discriminator cannot be too good at
detecting fakes relative to the generator or else the generator
does not receive a strong enough error signal to update its
parameters so it can become better at fooling the discrimi-
nator. If the generator is too good at fooling the discrimi-
nator, the generator is probably not being forced to explore
the distribution. Thus, it is probably not actually learning a
good approximation of a distribution.

2.3. My Model: the Two-Step process

2.3.1 Model

The model is roughly the same as in Figure 1. As I go along,
I describe the changes to this base model and the effects it
causes.

2.3.2 Training Process

I use an image size of 32x32. I quickly dropped this as the
images were too small to see whether any errors were due
to the shrinking of the image (the original images were in
the 380 x 400 range) or due to the CN. Originally, I also
kept the images in the [0,1] range. But (on 32 x 32 sized
images) I had a harder time learning than with the image
in the [0,255] range. More accurately, when using SGD,
minimal batch normalization, and images in the [0,1] range,
the network outputs images of random noise. By minimal
batch normalization, I mean batch normalization after the
first convolutional layer in the first network and batch nor-
malization after the second convolutional layer in the sec-
ond network.

1Leaky ReLU is defined as max(0, x) + a ∗ min(0, x). In [7], they
use a = .2

2More accurately, the generator’s output should look exactly like it was
sampled from the true data distribution. The generator does not explicity
output a distribution.

By changing one of these (SGD, more batch normaliza-
tion, or images within [0-255] range) my network(s) learned
something. Later, I found that a lack of batch normalization
was able to fix these problems. I still stuck with adam over
SGD as SGD was more fickle about learning rates and even
loss functions (e.g., SGD with a variant of the L1 loss did
not learning anything). Visually, we can SGD’s difficulties

Figure 2. SGD issues with SmoothL1 Loss.

with different loss functions. Figure 1 shows the issue that
SGD has smooth L1 loss. Figure 3 shows that the SGD
has trouble with the mean squared error (MSE) loss with-
out batch normalization. Finally, the benefits of using batch
normalization can be seen in Figure 4. Lastly, I would like

Figure 3. (Left.) SGD troubles with MSE with no batch normal-
ization
Figure 4. (Right.) SGD with MSE with batch normalization

to point out that using adam let me experiment with a num-
ber of higher learning rates, whereas SGD would often di-
verge.

2.3.3 Visualization

The visualization reveals one of the biggest issues with us-
ing CNs in the two-step process to generate facial expres-
sions: blurriness.

Figure 5. 32x32 blurry Image, result of image generation model.
The person should be frowning.

This is the result of 4 epochs. This means that the net-
work has seen this pair of images 4 times. While this does
not seem like a lot, the loss function shows otherwise. The
model converges well before the end of the first epoch. And,
as can be seen in Fig. 6, the image refinement step does not
seem to make much of a difference.

4322



Figure 6. 128x128 blurry Image from image refinement model. In-
put is smiling expression. Output should be frowning. Generated
image is far left, Input is the middle, and the output is the far right.

Figure 7. MSE Loss plot for the image refinement step. Well be-
fore the end of the first epoch, the model converges, and then it
stays there. The loss acts the same for the image generation step.
With L1 Smooth loss, you get the same sort of plot, though the
error’s magnitude is not as big. For MSE, the loss converges to
around 800 and for the L1 Smooth loss it converges to about 20.

The visualizations reveal another issue: the model is bi-
ased towards the identity function as can be seen in Fig. 8.

Figure 8. Generated Image = left, input = middle, output = right.
Even though the image is blurry, we can still see from the location
and pose of the head that the generated image is looks more like
the input than the output.

I will talk more about this issue in section 3

2.3.4 Refinements

Following much of [7], I got rid of maxpooling layers,
which were replaced with convolutions with a stride > 1, I
replaced any upsampling layers (which do not have any pa-
rameters) with deconvolution layers from [6], batch normal-
ization was used after every layer except after the last layer
(in both the image generation step and image refinement
step), a ReLU was used after every layer in the image gen-
eration network, and a leaky ReLU (with hyper-parameter

.2) was used in the image refinement network.3

However, this did not result in any improvements. The
loss functions has a similar kind of shape and images gen-
erated still look very blurry. Note that the Smooth L1 loss
is less blurry than MSE, but it is still very blurry. Experi-
mentation showed that any gains in sharpness are the result
from the change in loss function, not any refinements made
to the model.

Figure 9. Loss Smooth L1 loss

Figure 10. Generated Image with Smooth L1 loss. Slighly sharper
than generated image from Fig. 6.

2.3.5 Extensions

I take the second network in the two-step process (i.e., the
image refinement network in Fig. 1) and a discriminative
network to it in order to see if any of the features are being
learned are good at disciminating they type of facial expres-
sion. Specifically, I take the output of first network (the
image generation network in Fig. 1), run it through the first
three layers of the second network, and use the output of
these features to both generate an image and predict what
facial expression we are seeing. The part of the network
that tries to generate a facial expression has not changed;
however, to predict the facial expression I attach a CN with
3 convolutional layers and a fully connected one: Convolu-
tion(128,32,5,5,1,1), Convolution(32,16,5,5,5,5), Convolu-
tion(16,1,2,2,2,2), FullyConnected(36,6). Each convolution
is followed by a batch normalization and Leaky ReLU. The
fully connected layer also has a ReLU as its activation. 4

This network using Smooth L1 loss gets 58.97% of train-
ing examples correct and 48% of test cases correct (the split
between the training and test cases was randomly chosen to
be 50-50). Using MSE, the accuracy drops to 40% and 20%
accuracy in the training and test cases, respectively. It’s

3Actually, ReLU and Leaky ReLu were both used and the difference
was indiscernible.

4Convolution(a,b,c,d,e,f) is a convolutional layer that takes in an input
of depth a, outputs b filter, kernel of size c x d, and has stride e, f .

4323



surprising that the Smooth L1 loss function does so much
better. It’s not surprising that the the accuracy is not terri-
bly high for training or testing. The split between train-test
should probably be closer to 80-20 and the classifier in the
second network should have (a) more parameters and (b)
should not have such a huge stride in the second convolu-
tion. (I did it because: first, the classification accuracy is
not the most important thing we are interested in, and sec-
ond, I wanted to quickly get the input down to an output of
size 6, the number of facial expressions possible.) What is
even more interesting is that using the Smooth L1 loss, if
you train the everything together as one big network (that
is, the image generation network and the image refinement
network, where the image refinement network both outputs
an image and a classification) you can get 95% correct on
the training cases.5 However, the images generated by this
network are terrible and barely resemble a human face.

3. DCGAN Model
Unable to get past the blurriness issue, I moved to using

a modified version of DCGAN model as in [7]. The results,
in terms, of sharpness of the image were much better. How-
ever, it puts into focus (no pun intended) the other problem:
the network acts like an autoencoder that is trying to repro-
duce its input.

3.1. DCGAN

I don’t use the exact same DCGAN as mentioned
in [7], but it’s close. First, I use all the refinements
from the two-step process. Put differently, I use all
architetural guidelines from section 2.2 except I keep
the fully connected layers. And I also use adam as
my optimizer. My discriminative model is the exact
same as the one at https://github.com/soumith/
dcgan.torch/blob/master/main.lua6, except I
have an additional convolutional layer at the top of the net-
work since my imagesize is two times as large as the input
expected in the original discriminator code.

3.1.1 Generator

My generative model is different from the one in [7]. First,
the generative model is the has the same structure from the
image generatrion network from section 2.3. It’s output,
as you might recall, are images of size 128x128. I do not
reuse the weights, but it has a different structure from the
DCGAN in [7]. It’s input are images of size 12 x 128 and
a one-hot vector of size 6, which tells the network how to
modify the image. Secondly, I do not feed random noise to
the generator. Instead, I feed in an image of the person’s

5I have not had time to look at the test accuracy, but more than likely, it
is much higher.

6The disriminator starts on line 84.

face that we wish to modify. Lastly, my generator has two
loss functions: (1) reconstruct the output image and (2) fool
the generator.

3.1.2 Disciminator

I try two different things with the disciminator. First, the
discriminator tries to predict whether this is an image from
the true data distribution or whether it is an image generated
by the generator.7 I also attempt to see how well it can clas-
sify the facial expression of an image, regardless of whether
it is from the generator or is an image from the dataset.

Figure 11. The Generator loss

3.2. Visualization

The following visualizations reveal that the DCGAN
model gets around the blurriness issue, but is not learning
how to modify the image. In fact, the one-hot vector plays
no meaningful role in generating the image. Of course, this
affected the previous model, but it is striking when looking
at the generatred images.

As the reader can see, the generated image is practically
identical to the input. And it does not matter what index is
turned on in the one-hot vector. All the generated images
look virtually identical to the input regardless of what the
one-hot vector is. Nor were these images cherry-picked.
All the images generated are as clean and sharp as the input
image. In short, I accidentally learned the identity function.
It should be pointed out that this could be useful, for perhaps
the features learned might be useful for some discrimination
task.

3.3. Trying not to learn the identity function

The next attempts were seeing as to how I could avoid
my network learning to perfectly (or almost perfectly) re-

7An image from the true data distribution are the images with the facial
expression that we wish to generate.

4324

https://github.com/soumith/dcgan.torch/blob/master/main.lua
https://github.com/soumith/dcgan.torch/blob/master/main.lua


construct the input.

I tried several avenues to figth against this, but none were
really successful.

The “best” way to avoid reconstructing the input image
was train on an image for several iterations before getting
the next batch. Around 8-16 iterations per batch seemed
sufficient. 2 iterations was not sufficient. This strategy
worked in the sense that the generated images looked more
like the output faces than the input faces. However, the
drawback was that the faces looked fairly grotesque.

I would insert generated images, but the images I am
allowed to present via the license agreement are not ready
in time. However, looking at the faces in [7] gives a good
idea of what they look like.

To show that the network is actually learning the identity
function and is not just memorizing the images, I took a
picture of myself. The network has never seen this image.

Figure 12. The generated image is on the left; the input is on the
right. Regardless, of the one-hot vector, the output always looks
like the input.

3.4. Why is it learning the identity function?

It’s reasonable to ask why the network is learning the
identity network. While it is not clear to me, I do have
some ideas. First, once the network learns the input, it will
be nearly impossible for it to leave this local optima. That’s
because the subtle changes account for the difference in fa-
cial expressions. Thus, the network must make extremely
subtle changes to account for these changes in expressions.
(Perhaps one can argue that the net has not learned to dis-
entangle the factors that create different facial expressions.
Maybe we should make the network even deeper?) Moving
away from the input image, once it has learned that, from
the point of the view of the CN, will only increase the error.

But why does it move to learn the input in the first place?
This is where we need to more experimentation. It could be
that all the batch normalizations regularize the network too
much. In fact, if you demean the data and divide by the
standard deviation of all the images and use the batch nor-
malizations at every layer you reach a much,much worse
optima. This could suggest that the network is at the tip-
ping point when it comes to normalizing the data, i.e., over-
regularized.

Figure 13. For both rows, the leftmost image is the generated im-
age, the center is input, and right is desired output.

4. Summary
it is hard to generate facial expression because the facial

images are high dimensional inputs and modifying them re-
quires learning highly non-linear transformations. Further-
more, CN’s have a hard time generating non-blurry images.
And once the CN can figure out how to generate an image,
it can recreate the original image, but my networks have not
figured out how modify the image so that only small parts
of the image are modified (e.g., adding a smile).

References
[1] W. Gao, B. Cao, S. Shan, X. Chen, D. Zhou, X. Zhang,

and D. Zhao. The cas-peal large-scale chinese face database
and baseline evaluations. Trans. Sys. Man Cyber. Part A,
38(1):149–161, Jan. 2008.

[2] A. Ghodrati, X. Jia, M. Pedersoli, and T. Tuytelaars. Towards
automatic image editing: Learning to see another you. CoRR,
abs/1511.08446, 2015.

[3] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial networks. 2014.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet clas-
sification. CoRR, abs/1502.01852, 2015.

[5] S. Ioffe and C. Szegedy. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift.
CoRR, abs/1502.03167, 2015.

[6] H. Noh, S. Hong, and B. Han. Learning deconvolution net-
work for semantic segmentation. CoRR, abs/1505.04366,
2015.

[7] A. Radford, L. Metz, and S. Chintala. Unsupervised represen-
tation learning with deep convolutional generative adversarial
networks. CoRR, abs/1511.06434, 2015.

4325


	. Introduction
	. Related Work
	. Two Step
	. DCGAN
	GANs

	. My Model: the Two-Step process
	Model
	Training Process
	Visualization
	Refinements
	Extensions


	. DCGAN Model
	. DCGAN
	Generator
	Disciminator

	. Visualization
	. Trying not to learn the identity function
	. Why is it learning the identity function?

	. Summary

