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Abstract

As computer vision datasets grow larger the community is increasingly relying on
crowdsourced annotations to train and test our algorithms. Due to the heterogeneous and
unpredictable capability of online annotators, various strategies have been proposed to
“clean” crowdsourced annotations. However, these strategies typically involve getting
more annotations, perhaps different types of annotations (e.g. a grading task), rather than
computationally assessing the annotation or image content. In this paper we propose
and evaluate several strategies for automatically estimating the quality of a spatial object
annotation. We show that one can significantly outperform simple baselines, such as that
used by LabelMe, by combining multiple image-based annotation assessment strategies.

1 Introduction
Numerous core computer vision [18] and computer graphics [6, 14] research topics rely on
data sets of spatially annotated objects. Perhaps the most widely known data set is that of the
annually updated Pascal VOC object detection challenge [11]. The Pascal data set was tradi-
tionally built by a dozens of skilled annotators operating with detailed instructions and expert
supervision. The resulting data sets contain ∼20,000 objects in ∼10,000 images. The object
annotations span 20 categories and are limited to rectangular bounding boxes. The various
Pascal VOC challenges continue to advance the state of the art in object recognition, but the
data sets are relatively expensive to collect, relatively limited in number of categories and
amount of training data, and rectangular bounding boxes carry limited shape information.

In recent years there has been interest in larger and more diverse object data sets. Ef-
forts such as LabelMe [4] and ImageNet [9] contain spatial annotations of thousands of
object categories in hundreds of thousands of images. To build these data sets with orders of
magnitude more data than expert-constructed data sets researchers must crowdsource the an-
notation effort to non-expert, minimally trained workers of heterogeneous ability. Whether
such workers are paid [9] or not [4], individual annotations can not be trusted as they can for
a dataset such as Pascal or Lotus Hill [2]. For this reason, numerous strategies are employed
to “clean” or filter the raw annotations. Sorokin and Forsyth [1] suggest strategies such
as “Gold standard”, “Grading”, and “Consensus”. These strategies are effective, but they
necessarily cost additional money (especially consensus) and add complexity to database
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creation. LabelMe, on the other hand, does not explicitly use any of these strategies (al-
though administrators will manually remove flagrant annotations). Instead LabelMe uses a
simple but surprisingly effective heuristic to rank user annotations – the number of control
points in each annotation.

This heuristic is an instance of what we will refer to as annotation scoring functions.
One can think of such functions as returning a real-valued score given a user annotation and
an image. Such functions are useful because they do not throw out any user annotations
and allow a database to be filtered in accordance with the demands of a specific algorithm.
For instance, applications such as Photo Clip Art [14] or silhouette-based detectors [12]
require very accurate annotations. Fixed aspect ratio detectors like Delal and Triggs [8]
or Felzenswalb et al. [18] need the rough spatial extent of each object. Finally, to learn
contextual relationships one might only need the rough location of objects or one might only
be concerned with whether objects co-occur in the same scene [18].

We believe this paper is the first to explore annotation scoring functions. We hope these
methods will help researchers utilize large-scale, crowdsourced data sets in computer vision
and computer graphics. An ideal annotation scoring function would rank annotations in
accordance with a “ground truth” quality ranking. We will discuss how we define ground
truth later in the paper. The scoring function should be unbiased. For instance, one might
consider using a car detector to assess the quality of car annotations, but this circularity
would bias you toward using car instances which are already easy to recognize and thus
defeat the purpose of using larger datasets. To help avoid such biases, we examine only
category agnostic scoring functions (i.e. scoring functions which consider only the spatial
annotation and not the category label).

The baseline scoring function proposed by LabelMe [4] which counts control points is
surprisingly effective but it does not even consider the image itself. Clearly, we should be
able to score annotations more intelligently by considering whether an annotation is likely
given the local or global image content. While there is little previous work on “annotation
scoring functions” per se, there is considerable research on edge detection, image segmenta-
tion, and more recently generic object detection which might relate to annotation quality. In
Section 3 we operationalize such techniques for use in annotation assessment and compare
their performance to simple baselines. A combined scoring function leveraging multiple
cues significantly outperforms any existing baseline.

1.1 Additional Related Work
The argument for effective annotation scoring functions is partly an economic argument. If
money weren’t an issue, collecting more annotations and involving more expert supervision
would always be a solution. To make large-scale annotation economical and fast there is
ongoing research into active learning methods for visual recognition which preferentially
collect the most informative annotations [20], sometimes while considering the expected
human annotation effort [19]. These methods are very effective but they are task dependent.
To annotate a general purpose database like LabelMe or ImageNet these methods are not
suitable because there is no single classification task to guide the active learning. Also,
while these methods are informative about which annotations to collect, they don’t usually
offer any unique insight into which annotations to trust.

The image synthesis method of Sketch2photo[6] could be thought of as including an an-
notation scoring function. In this case the annotations or bounding boxes being assessed are
not from humans but from automatic segmentation techniques that are expected to have a
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high failure rate. Sketch2photo focuses on finding “algorithm friendly” images which seg-
ment easily (for instance, containing only one salient object). Our proposed methods might
also have a tendency to reward “algorithm friendly” images for which the user annotation
and automatic segmentation agree. Our evaluation penalizes any such bias, though.

2 Definitions and Dataset
An annotation scoring function is a function that takes an image and user’s annotation and
returns a real-valued score indicating the quality of that annotation. By our definition, an
annotation scoring function does not consider the supposed category of an annotation. We
do not consider the situation where an annotation is poor quality because the annotator gave
it the wrong label (e.g. a user accurately segmented a dog but then labeled it a car). In our
experience, this is a very rare situation. In this paper, we investigate five annotation scoring
functions and have each method rank hundreds of crowdsourced user annotations. We then
compare those rankings of annotation quality to a ground truth ranking using Spearman’s
rank correlation coefficient [16]. To make this comparison we must first build a dataset con-
taining pairs of crowdsourced annotations with their corresponding ground truth annotation.

2.1 User Annotations
We collect spatial object annotations from LabelMe [4]. We expect such annotations to be
qualitatively similar to those obtained from other sources such as Mechanical Turk. LabelMe
annotations are closed polygons entered from a web-based interface. All of the scoring
functions, except for the LabelMe baseline, take a binary mask as input rather than a polygon.
Thus our functions are suitable to any labeling interface that produces a bounding box or
segmentation. For the experiments in this paper, we collect 200 pairs of object images and
user annotations from 5 categories – person, car, chair, dog, and building. These categories
are picked because they are among the most common objects in LabelMe and because they
are distinct in size, shape, and annotation difficulty.

2.2 Ground Truth Annotations
For these 1,000 total images we need to establish a ground truth spatial annotation in order to
know how good each user annotation is. The red contour in Figure 1 shows a sample of the
ground truth annotation for five objects in our dataset. Because we are assessing LabelMe
annotations, our ground truth is specified in strict accordance with the LabelMe guidelines.
For instance, different datasets have different rules about how to annotate occlusions. We do
not think these rules had a significant impact on user annotation quality, except for the build-
ing category where user annotations violated these rules occasionally. The actual ground
truth segmentation was a time-consuming, manual process. We have released this database
online.

2.3 Comparing Annotations
To establish a ground truth quality score for user annotations we need to compare user anno-
tations to our ground truth annotations. There are numerous methods in the vision literature
for comparing such shapes. Perhaps the most widely used is the PASCAL VOC overlap
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Figure 1: Example of the ground truth dataset from 5 categories. The red bounding box is
the ground truth bounding box of object.

score [11]. However, the overlap score is not entirely satisfying for arbitrary shapes be-
cause it gives no special attention to boundaries or small protrusions. For instance, a person
annotation might still be scored quite highly even if extended arms are completely left out,
because those pixels are perhaps only five percent of the area of the shape. Therefore, we
also use the Euclidean distance score, inspired by the “Shape Context” method [3], which
emphasizes the boundary agreement of two annotations.

Overlap Score. In PASCAL VOC competition, algorithms are evaluated based on the
overlap area of the two annotations. For two objects Bu and Bv, the overlap score is:

scorep =
area(Bu∩Bv)

area(Bu∪Bv)
(1)

where Bu∩Bv denotes the intersection of two bounding boxes or binary masks and Bu∪Bv
their union.

Euclidean Distance Score. The Euclidean distance score measures the distance between
two annotation boundaries. There are numerous shape matching methods and we chose a
bipartite matching method in the spirit of [3]. We sample m = 300 random points along each
annotation boundary then calculate the Euclidean distance between all possible pairwise
correspondences, resulting in an m by m matrix of Euclidean distances. Given this matrix,
the Kuhn-Munkres algorithm [15] returns the m assignments which have the minimum total
Euclidean distance. In Figure 2 left, the red and green points are the random points from
the user and ground truth annotations, respectively, while the blue lines show the Euclidean
distance between the assigned pairwise. Given these correspondences for annotations Bv
and Bu where (Xi,Yi) ∈ Bu,(xi′ ,yi′) ∈ Bv we simply sum the pairwise distances according
to Equation 2. Finally, we normalize these distances into [0,1]. Because larger Euclidean
distances are associated with lower annotation quality, we define our Euclidean distance
score as 1 minus the normalized summed distance (Equation 3).

dist = ∑
i

√
(Xi− xi′)

2 +(Yi− yi′)
2 (2)

scoree = 1− dist
max(dist)

(3)

And max(dist) is the maximum Euclidean distance of that category.

2.4 Ground Truth Quality Ranking
To create our per-category ground truth ranking, we sort the user annotations by a combined
score: score = (w1× scoree)+ (w2× scorep) where scoree is the Euclidean distance score,
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Figure 2: Left: The blue line shows the Euclidean distance between the ground truth bound-
ing box (red points) and the user’s bounding box (green points) Right: The green contour is
the user’s bounding box, while the red contours are the candidate object’s contour base on
the user’s bounding box

scorep is the overlap score between the user and ground truth bounding box while w1 and w2
were set to 0.5.

3 Annotation Scoring Functions
Given an image and annotation, we evaluate the quality of each annotation using an an-
notation scoring function and then rank all of the annotations within each object category.
We investigate five annotation scoring functions: number of annotation control points [4],
annotation size, edge detection, Bayesian matting [7] and object proposal [10].

3.1 Baselines: Control Points and Annotation Size
We start with the simple baseline used by LabelMe [4] and techniques which derive data
from LabelMe such as Photo Clipart [14]. For this baseline, the quality of an annotation is
proportional to the number of control points in the bounding polygon. This baseline works
well – a large number of control points usually indicates that the user made an effort to
closely follow the object boundary.

We also propose an even simpler baseline relating annotation size and quality of annota-
tion. We assume that the larger an object is, the better the annotation is because it is easier
for a user to annotate a large, high resolution object than a smaller one. We calculate the size
baseline score as the percentage of image area occupied by the user annotation.

3.2 Edge Detection
Intuitively, a good annotation will tend to follow image edges. But this is not strictly true of
most user annotations, even those which are qualitatively quite good. Users have a tendency
to annotate outside the actual object boundary by a few pixels even when they are tracing
the shape quite accurately. To accommodate for this we consider not just the user bounding
polygon, but also several dilations and erosions of this bounding region as shown in Figure
2, right. For each such dilated or eroded user boundary we measure the overlap with filtered
image edges. We first run Canny edge detection [5] with threshold 0.2 on the image and
group the resulting edge fragments into contours. If w is the diagonal length of a user’s
annotation’s bounding box, we discard contours which are (1) shorter than 3% of w, because
such contours tend to be texture not boundaries, (2) more than 5% of w away from the user
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Figure 3: Left:The input image with annotation, its trimap and its alpha map from Bayesian
Matting approach. The black, gray and white region in the trimap are the background, un-
known and foreground region respectively. Right:The blue contours are regions which are
similar to the user’s bounding box (green contour) from object proposal approach

annotation, or (3) oriented more than 20 degrees away from the nearby user annotation.
Finally, we find the boundary which has the most edge overlap and we assign a score to the
user annotation in proportion to how much this best boundary was dilated or eroded.

3.3 Bayesian Matting

Good annotations often agree with localized image segmentation. The fourth annotation
scoring function is based on the Bayesian matting algorithm [7]. Bayesian matting models
the object and background color distributions with spatially-varying mixtures of Gaussians
and assumes a fractional blending of the object and background colors to produce the ob-
served pixel colors. It then uses a maximum-likelihood criterion to estimate the optimal
opacity, object and background simultaneously.

The input for Bayesian matting is a trimap with three regions: “background”, “object”
and “unknown” where the background and object regions have been delineated conserva-
tively. We construct these three regions based on the user annotation. The region outside
the user annotation is constrained as background. The inside region is constrained as ob-
ject. All pixels within a small and fixed distance, 3% of the length of user’s bounding box’s
diagonal, of the user boundary are marked unknown (see Figure 3, left). Bayesian mat-
ting returns an alpha map with values between 0 to 1 where 0 means background and 1
means object. The fractional opacities, α , can be interpreted as a confidence of that pixel
belonging to the object. We use these α values to compute an annotation score as follows:
score=∑αin/areain−∑αout/areaout where αin and αout are the opacity of each pixel within
the unknown region inside and outside the annotation respectively while areain and areaout
are the area of the unknown region inside and outside the annotation.

3.4 Object Proposal

The last annotation scoring function is based on the object proposal approach by Endres
and Hoiem [10]. In their work, they propose a category-independent method to produce a
ranking of potential object regions. Given an input image, their approach generates a set
of segmentations by performing graph cuts based on a seed region and a learned affinity
function. Then these regions are ranked using structured learning based on various cues.
Top-ranked regions are likely to be good segmentations of objects. If the user annotation
is similar to one of the top ranked object proposals that suggests the annotation may be
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Catergory Rank correlation

Points Size Edge Bayesian Proposal Final

Car 0.5216 0.4356 0.5972 0.3848 0.0817 0.5999

Chair 0.6758 0.6519 0.6132 0.6780 0.0190 0.6947

Building −0.3874 0.4271 0.4055 0.2030 0.0386 0.5214

Person 0.5503 0.4386 0.5716 0.7036 0.0394 0.7072

Dog 0.6070 0.2367 0.6932 0.6503 0.0468 0.7689

Average 0.3935 0.4380 0.5761 0.5239 0.0232 0.6584

Table 1: The rank correlation between ground truth ranking and other rankings

high quality. To score a user annotation, we find the object proposal with smallest Euclidean
distance and overlap score to the user annotation. The score is the rank of that object proposal
divided by the total number of object proposals. We also tried to have the object proposal
method [10] directly score the segmentation provided by the user, and not explore multiple
segmentations, but the performance was worse.

4 Comparing Ranking
At this point we have a ground truth ranking for the user annotations within each category as
well as a ranking from each scoring function. We measure how well each ranking agrees with
the ground truth using Spearman’s rank correlation coefficient or Spearman’s rho, ρ [16].
The n raw scores Xi,Yi are converted to ranks xi,yi and the differences di = xi− yi between
the ranks of each observation on the two variables are calculated. If there are no tied ranks,
then ρ is given by:

ρ = 1− 6∑d2
i

n(n2−1)
(4)

An increasing rank correlation coefficient implies increasing agreement between rank-
ings. The coefficient is inside the interval [-1, 1] and can be interpreted as 1 if the agreement
between the two rankings is perfect, 0 if the rankings are completely independent, and -1 if
one ranking is the reverse of the other. We also measured the rank correlation using Kendall
rank correlation coefficient [13], but there were no changes in the relative performance of
the scoring functions so we do not report these numbers.

5 Results
Given the input image and its corresponding annotation, the annotation scoring function re-
turns a score corresponding to the estimated quality of that annotation. We then generate
the overall annotation ranking from each scoring function and evaluate these rankings by
calculating the rank correlation against the ground truth ranking. Table 1 shows the rank cor-
relations for each annotation scoring function broken down by category. “Building” stands
out as the most difficult category for most scoring functions. We believe this is because La-
belMe users did not reliably follow the annotation rules – they sometimes included multiple
buildings in a single annotation, or handled occlusion incorrectly. This led to a significant
disparity between some user and ground truth annotation pairs.
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Figure 4: Selected user annotations and their rank according to each scoring function.

These results show that the number of control points is indeed a good predictor of an-
notation quality except for the building category. We think that this metric is uniquely bad
for the building category because many buildings are rectangular, thus many accurate anno-
tations have only 4 control points. Interestingly, the even simpler annotation size baseline
performs about as well as the control point baseline and is more directly applicable to an-
notation protocols that don’t use polygons such as freehand lassoing. Both the Bayesian
matting and edge detection scoring functions have a high rank correlation. We believe the
Bayesian matting approach handles foreground occlusions poorly and thus does not perform
well on the building category. We expected the object proposal scoring function to perform
better. But, in fact, the algorithm is answering a somewhat different question than what we
are interested in. The object proposal evaluates how likely is this segment to be an object?
and the question we are interested in is how accurately annotated is this object segment?. We
know that all user annotations are object segments – none of the annotations are so adver-
sarial as to contain no object. The object proposal method may be intentionally invariant to
annotation quality, because the automatic segmentations that it considers cannot be expected
to be particularly accurate.

Finally, we investigate the performance of combinations of scoring functions. It is sim-
ple to “average” multiple rankings by converting a rank to a real valued number, averaging,
and then re-ordering. We tried numerous combinations and found that none could exceed
the performance of the Bayesian matting and edge scoring functions together. This "final"
combination scores the highest for every category. We were surprised that the baseline scor-
ing functions did not reinforce the more advanced, image-based functions. We also visualize
specific annotation instances are ranked by each function in Figure 4 and the rankings that
result from each scoring function in Table 2.

6 Test Scenario: Object Classification
We would like to confirm that using annotation scoring functions to filter crowdsourced
training examples can lead to increased performance in secondary vision or graphics tasks.
In particular, we examine a simple 5-way object classification task. The test set is made
up of 50 cropped objects from each of the five categories of our database. We create two
training sets of LabelMe annotated objects. For each category, training set I contains 50
random instances while training set II contains the 50 top ranked instances according to
our combined annotation scoring function. There is no overlap between the test set and
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Ranking method Example of best ranked Example of worst ranked

Ground truth

Number of points

Annotation size

Edge detection

Bayesian Matting

Object proposal

Final

Table 2: The five highest and lowest ranked user annotations according to the ground truth
ranking and each annotation scoring function.The green and red bounding boxes are the
user’s and ground truth bounding boxes respectively, while the blue contours are the object’s
contour from edge detection approach.

Category Classification Accuracy

Training set I Training set II

Car 79.9% 88.6%

Chair 75.5% 82.5%

Building 74.7% 79.7%

Person 85.3% 94%

Dog 74% 82%

Average 77.9% 85.3%

Table 3: The classification accuracy of each category

either training set. The test set objects are masked (background set to zero) according to
the ground truth annotations. The training set objects are likewise masked according to the
user annotations. We represent masked object crops with the gist descriptor [17]. This is
a primitive but straightforward way to encode both object shape and appearance. We train
one-vs-all linear SVMs for each category and show quantitative results in Table 3. The
results show that using our scoring function as a filter increases the classification rate in
every category and decreases the misclassification rate by 36% on average.

7 Conclusion
In this paper we rigorously show that numerous annotation scoring functions, some very
simple, can produce annotation rankings that are reasonably similar to the ground truth an-
notation quality rankings. We propose new annotation scoring functions and show that, in
isolation or combination, they outperform the simple LabelMe baseline. To evaluate these
scoring functions we produced an extensive database with 1,000 pairs of crowdsourced an-
notations and meticulous ground truth annotations. As a sanity check, we show that user
annotations ranked highly by our annotation scoring functions are more effective training
data than random user annotations in a simple object classification task. We share our dataset
and look forward to the development of better annotation scoring functions which will make
crowdsourced annotations easier to leverage.
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