
https://www.reddit.co

m/r/Utah/comments/

177ymi6/the_partial_

eclipse_shadow_thr

ough_my_trees_st/

https://www.reddit.com/r/Utah/comments/177ymi6/the_partial_eclipse_shadow_through_my_trees_st/
https://www.reddit.com/r/Utah/comments/177ymi6/the_partial_eclipse_shadow_through_my_trees_st/
https://www.reddit.com/r/Utah/comments/177ymi6/the_partial_eclipse_shadow_through_my_trees_st/
https://www.reddit.com/r/Utah/comments/177ymi6/the_partial_eclipse_shadow_through_my_trees_st/
https://www.reddit.com/r/Utah/comments/177ymi6/the_partial_eclipse_shadow_through_my_trees_st/

Welcome back!

• Optional project 0 is out.

• Project 1 will be out soon.

• Read Szeliski 2.1, especially 2.1.4

• Today

– Image projection

– Filtering

Slide credit Fei Fei Li

Camera Obscura used for Tracing

Lens Based Camera Obscura, 1568

First Photograph

Oldest surviving photograph

– Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

On display at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

“Louis Daguerre—the inventor of daguerreotype—shot what is not only the

world's oldest photograph of Paris, but also the first photo with humans. The 10-

minute long exposure was taken in 1839 in Place de la République and it's just

possible to make out two blurry figures in the left-hand corner.”
Source

https://mymodernmet.com/first-photograph-photography-history/

Great history lesson on
the chemistry and
engineering challenges
of early photography
from the “Technology
Connections” YouTube
channel.

https://www.youtube.com/watch?v=wbbH77rYaa8list=PLv0jwu7G_DFV6yW240e6CbiwCLaZ0Z6PV

https://www.youtube.com/watch?v=wbbH77rYaa8&list=PLv0jwu7G_DFV6yW240e6CbiwCLaZ0Z6PV

https://www.youtube.com/watch?v=wbbH77rYaa8&list=PLv0jwu7G_DFV6yW240e6CbiwCLaZ0Z6PV
https://www.youtube.com/watch?v=wbbH77rYaa8&list=PLv0jwu7G_DFV6yW240e6CbiwCLaZ0Z6PV

Slide credit Fei Fei Li

Projective Geometry

What is lost?

• Length

Which is closer?

Who is taller?

Length and area are not preserved

Figure by David Forsyth

B’

C’

A’

Projective Geometry

What is lost?

• Length

• Angles

Perpendicular?

Parallel?

Projective Geometry

What is preserved?

• Straight lines are still straight

The pinhole camera model preserves straight lines, but real
cameras might not

Vanishing points and lines

Parallel lines in the world intersect in the image at a “vanishing point”

Vanishing points and lines

o
Vanishing Point o

Vanishing Point

Vanishing Line

Vanishing points and lines

Vanishing
 point

Vanishing
 point

Vertical vanishing
 point

(at infinity)

Slide from Efros, Photo from Criminisi

Projection: world coordinates→image coordinates

Camera

Center

(0, 0, 0)

















=

z

y

x

X.

.

. f

z

y









=

'

'

v

u
x

.
v’

u’

z

f
xu *' −=

z

f
yv *' −=

5

2
*2' −=u

5

2
*3' −=v

If x = 2, y = 3, z = 5, and

f = 2

What are u’ and v’?

3
5

2
?

z

y

f

v
=

−

'

Projection: world coordinates→image coordinates

Camera

Center

(tx, ty, tz)

















=

Z

Y

X

P.

.

. f Z Y









=

v

u
p

.

Optical

Center

(u0, v0)

v

u

How do we handle the general case?

Interlude: why does this matter?

Relating multiple views

Projection: world coordinates→image coordinates

Camera

Center

(tx, ty, tz)

















=

Z

Y

X

P.

.

. f Z Y









=

v

u
p

.

Optical

Center

(u0, v0)

v

u

How do we handle the general case?

Homogeneous coordinates

Conversion

Converting to homogeneous coordinates

homogeneous image

coordinates

homogeneous scene

coordinates

Converting from homogeneous coordinates

Homogeneous coordinates

Invariant to scaling

Point in Cartesian is ray in Homogeneous









=


























=

















w

y

w
x

kw

ky

kw
kx

kw

ky

kx

w

y

x

k

Homogeneous
Coordinates

Cartesian
Coordinates

Slide Credit: Savarese

Projection matrix

 XtRKx =
x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

Ow

iw

kw

jw
R,t

X

x

 X0IKx =


































=

















1
0100

000

000

1
z

y

x

f

f

v

u

w

K

Slide Credit: Savarese

Projection matrix

Intrinsic Assumptions

• Unit aspect ratio

• Optical center at (0,0)

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

X

x

 X0IKx =


































=

















1
0100

000

000

1
z

y

x

f

f

v

u

w

Slide Credit: Savarese

Projection matrix

Intrinsic Assumptions

• Unit aspect ratio

• Optical center at (0,0)

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

X

x

Remove assumption: center pixel is (0,0)

 X0IKx =


































=

















1
0100

00

00

1

0

0

z

y

x

vf

uf

v

u

w

Intrinsic Assumptions

• Unit aspect ratio

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

Remove assumption: square pixels

 X0IKx =


































=

















1
0100

00

00

1

0

0

z

y

x

v

u

v

u

w 



Intrinsic Assumptions
• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

Remove assumption: non-skewed pixels

 X0IKx =


































=

















1
0100

00

0

1

0

0

z

y

x

v

us

v

u

w 



Intrinsic Assumptions Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

Note: different books use different notation for parameters

Oriented and Translated Camera

Ow

iw

kw

jw

t

R

X

x

Allow camera translation

 XtIKx =


















































=

















1
100

010

001

100

0

0

1

0

0

z

y

x

t

t

t

v

u

v

u

w

z

y

x





Intrinsic Assumptions Extrinsic Assumptions
• No rotation

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:















 −

=

















−

=

















−=

100

0cossin

0sincos

)(

cos0sin

010

sin0cos

)(

cossin0

sincos0

001

)(

















z

y

x

R

R

R

p

p’



y

z

Slide Credit: Saverese

Allow camera rotation

 XtRKx =



















































=

















1
100

0

1 333231

232221

131211

0

0

z

y

x

trrr

trrr

trrr

v

us

v

u

w

z

y

x





Degrees of freedom

 XtRKx =



















































=

















1
100

0

1 333231

232221

131211

0

0

z

y

x

trrr

trrr

trrr

v

us

v

u

w

z

y

x





5 6

Field of View (Zoom, focal length)

Beyond Pinholes: Radial Distortion

Image from Martin Habbecke

Corrected Barrel Distortion

Things to remember

• Vanishing points and
vanishing lines

• Pinhole camera model
and camera projection
matrix

• Homogeneous
coordinates

Vanishing
 point

Vanishing
 line

Vanishing
 point

Vertical vanishing
 point

(at infinity)

 XtRKx =

Reminder: read your book

• Lectures have assigned readings

• Szeliski 2.1 and especially 2.1.4 cover the geometry of image
formation

Image Filtering

Computer Vision

James Hays
Many slides by Derek Hoiem

Project 1

BBC Clip: https://www.youtube.com/watch/OlumoQ05gS8

https://www.youtube.com/watch/OlumoQ05gS8

Slide credit Fei Fei Li

Slide credit Fei Fei Li

Slide credit Fei Fei Li

Hybrid Images

• A. Oliva, A. Torralba, P.G. Schyns,
“Hybrid Images,” SIGGRAPH 2006

http://cvcl.mit.edu/hybridimage.htm

Upcoming classes: two views of filtering

• Image filters in spatial domain

– Filter is a mathematical operation of a grid of numbers

– Smoothing, sharpening, measuring texture

• Image filters in the frequency domain

– Filtering is a way to modify the frequencies of images

– Denoising, sampling, image compression

Image filtering (or convolution)

• Image filtering: compute function of local
neighborhood at each position

• Really important!

– Enhance images
• Denoise, resize, increase contrast, etc.

– Extract information from images
• Texture, edges, distinctive points, etc.

– Deep Convolutional Networks

111

111

111

Slide credit: David Lowe (UBC)

],[g 

Example: box filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

?

],[],[],[
,

lnkmflkgnmh
lk

++=

0 10 20 30 30

50

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

?

],[],[],[
,

lnkmflkgnmh
lk

++=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

[.,.]h[.,.]f

Image filtering
111

111

111],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

What does it do?

• Replaces each pixel with

an average of its

neighborhood

• Achieve smoothing effect

(remove sharp features)

111

111

111

Slide credit: David Lowe (UBC)

],[g 

Box Filter

Smoothing with box filter

Practice with linear filters

000

010

000

Original

?

Source: D. Lowe

Practice with linear filters

000

010

000

Original Filtered

(no change)

Source: D. Lowe

Practice with linear filters

000

100

000

Original

?

Source: D. Lowe

Practice with linear filters

000

100

000

Original Shifted left

By 1 pixel

Source: D. Lowe

Practice with linear filters

Original

111

111

111

000

020

000

- ?

(Note that filter sums to 1)

Source: D. Lowe

Practice with linear filters

Original

111

111

111

000

020

000

-

Sharpening filter

- Accentuates differences with local

average

Source: D. Lowe

Sharpening

Source: D. Lowe

Other filters

-101

-202

-101

Vertical Edge

(absolute value)

Sobel

Other filters

-1-2-1

000

121

Horizontal Edge

(absolute value)

Sobel

Filtering vs. Convolution

• 2d filtering

• 2d convolution

],[],[],[
,

lnkmIlkfnmh
lk

−−=

I=image, size m x n

f=filter, size k x l

],[],[],[
,

lnkmIlkfnmh
lk

++=

In Python you can use https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html

• Weight contributions of neighboring pixels by nearness

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5 x 5,  = 1

Slide credit: Christopher Rasmussen

Important filter: Gaussian

Smoothing with Gaussian filter

Smoothing with box filter

Gaussian filters

• Remove “high-frequency” components from the image (low-
pass filter)
– Images become more smooth

• Convolution with self is another Gaussian
– So can smooth with small-width kernel, repeat, and get same result

as larger-width kernel would have

– Convolving two times with Gaussian kernel of width σ is same as
convolving once with kernel of width σ√2

• Separable kernel
– Factors into product of two 1D Gaussians

Source: K. Grauman

Separability of the Gaussian filter

Source: D. Lowe

Separability example

*

*

=

=

2D convolution

(center location only)

Source: K. Grauman

The filter factors

into a product of 1D

filters:

Perform convolution

along rows:

Followed by convolution

along the remaining column:

Separability

• Why is separability useful in practice?

Some practical matters

How big should the filter be?
• Values at edges should be near zero

• Rule of thumb for Gaussian: set filter half-width to
about 3 σ

Practical matters

Practical matters

• What about near the edge?

– the filter window falls off the edge of the image

– need to extrapolate

– methods:

• clip filter (black)

• wrap around

• copy edge

• reflect across edge

Source: S. Marschner

Next class: Light and Color and
 Thinking in Frequency

	Slide 1
	Slide 2: Welcome back!
	Slide 3
	Slide 4
	Slide 5: Camera Obscura used for Tracing
	Slide 6
	Slide 7: First Photograph
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Projective Geometry
	Slide 12: Length and area are not preserved
	Slide 13: Projective Geometry
	Slide 14: Projective Geometry
	Slide 15
	Slide 16: Vanishing points and lines
	Slide 17: Vanishing points and lines
	Slide 18: Vanishing points and lines
	Slide 19: Projection: world coordinatesimage coordinates
	Slide 20: Projection: world coordinatesimage coordinates
	Slide 21: Interlude: why does this matter?
	Slide 22: Relating multiple views
	Slide 23
	Slide 24: Projection: world coordinatesimage coordinates
	Slide 25: Homogeneous coordinates
	Slide 26: Homogeneous coordinates
	Slide 29
	Slide 33
	Slide 34
	Slide 35: Remove assumption: center pixel is (0,0)
	Slide 36: Remove assumption: square pixels
	Slide 37: Remove assumption: non-skewed pixels
	Slide 38: Oriented and Translated Camera
	Slide 39: Allow camera translation
	Slide 40: 3D Rotation of Points
	Slide 41: Allow camera rotation
	Slide 42: Degrees of freedom
	Slide 46: Field of View (Zoom, focal length)
	Slide 48: Beyond Pinholes: Radial Distortion
	Slide 49: Things to remember
	Slide 50: Reminder: read your book
	Slide 51: Image Filtering
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: Hybrid Images
	Slide 57: Upcoming classes: two views of filtering
	Slide 58: Image filtering (or convolution)
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70: Practice with linear filters
	Slide 71: Practice with linear filters
	Slide 72: Practice with linear filters
	Slide 73: Practice with linear filters
	Slide 74: Practice with linear filters
	Slide 75: Practice with linear filters
	Slide 76: Sharpening
	Slide 77: Other filters
	Slide 78: Other filters
	Slide 79: Filtering vs. Convolution
	Slide 80
	Slide 81
	Slide 82
	Slide 83: Gaussian filters
	Slide 84: Separability of the Gaussian filter
	Slide 85: Separability example
	Slide 86: Separability
	Slide 87: Some practical matters
	Slide 88: Practical matters
	Slide 89: Practical matters
	Slide 90: Next class: Light and Color and Thinking in Frequency

