
The blue and green colors are actually the same





Hybrid Images

• A. Oliva, A. Torralba, P.G. Schyns, 
“Hybrid Images,” SIGGRAPH 2006

http://cvcl.mit.edu/hybridimage.htm


Why do we get different, distance-dependent 
interpretations of hybrid images?

?

Slide: Hoiem







Recap of Filtering Discussion from Previous Lecture

• Linear filtering is dot product at each 
position

– Not a matrix multiplication

– Can smooth, sharpen, translate (among 
many other uses)

– Linear filters “look for” features that 
resemble the filter itself

• Be aware of details for filter size, 
extrapolation, cropping

-101

-202

-101



Why do we care so much about 
filtering/convolution? 
• Pixels are individually weak and 

noisy signals. Reasoning over 
neighborhoods helps.

Surely there are other ways to 
extract information from images?
• Yes, but they may be more 

brittle, slower to compute, or 
less easy to plug into machine 
learning tools.



Alternative to Filtering - Viola Jones Face Detection

Viola, Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001. 



Alternative to Filtering – Non-overlapping Patches

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. 

Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. International Conference on Learning Representations, (2021)



Filtering vs. Convolution

• 2d filtering

• 2d convolution

],[],[],[
,

lnkmIlkfnmh
lk

−−=

I=image,  size m x n

f=filter, size k x l

],[],[],[
,

lnkmIlkfnmh
lk

++=

In Python you can use https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html

h=output, size m x n

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html


Key properties of linear filters

Linearity: 
imfilter(I, f1 + f2) = 

   imfilter(I,f1) + imfilter(I,f2)

Shift invariance: same behavior regardless of 
pixel location
imfilter(I,shift(f)) = shift(imfilter(I,f))

Any linear, shift-invariant operator can be 
represented as a convolution

Source: S. Lazebnik



More properties
• Commutative: a * b = b * a

– Conceptually no difference between filter and signal

– But particular filtering implementations might break this equality

• Associative: a * (b * c) = (a * b) * c
– Often apply several filters one after another: (((a * b1) * b2) * b3)

– This is equivalent to applying one filter: a * (b1 * b2 * b3)

• Distributes over addition: a * (b + c) = (a * b) + (a * c)

• Scalars factor out: ka * b = a * kb = k (a * b)

• Identity: unit impulse e = [0, 0, 1, 0, 0],
a * e = a

Source: S. Lazebnik
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Median filters

• A Median Filter operates over a window by 
selecting the median intensity in the window.

• What advantage does a median filter have over 
a mean filter?

• Is a median filter a kind of convolution?

Slide by Steve Seitz
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Comparison: salt and pepper noise

Slide by Steve Seitz



Can we do edge detection in a single filtering step?



Sobel filters

-101

-202

-101

Vertical Edge

(absolute value)

Sobel



Sobel filters

-1-2-1

000

121

Horizontal Edge

(absolute value)

Sobel



Sobel Filters for Edge Detection

https://ieeexplore.ieee.org/document/996





Review: questions

1. Write down a 3x3 filter that returns a positive value if the 
average value of the 4-adjacent neighbors is less than the 
center and a negative value otherwise (and zero if they are 
the same)

2. Write down a filter that will compute the gradient in the x-
direction:

 gradx(y,x) = im(y,x+1)-im(y,x) for each x, y

 

Slide: Hoiem



Thinking in Frequency

Slides: Hoiem, Efros, and others



This lecture

• Fourier transform and frequency domain

– Frequency view of filtering

• Reminder: Read your textbook

– Today’s lecture covers material in 3.4

Slide: Hoiem



Why does the Gaussian give a nice smooth 
image, but the square filter give edgy artifacts?

Gaussian Box filter



Why does a lower resolution image still make 
sense to us?  What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/ Slide: Hoiem

http://www.flickr.com/photos/igorms/136916757/


Thinking in terms of frequency



Background: Change of Basis



Background: Change of Basis

For vectors and for image patches



How is it that a 4MP image can be compressed 
to a few hundred KB without a noticeable 
change?

Related concept: Image Compression



Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)

https://en.wikipedia.org/wiki/JPEG



Using DCT in JPEG 

• The first coefficient B(0,0) is the DC component, the average 
intensity

• The top-left coeffs represent low frequencies, the bottom right 
– high frequencies



8x8 image patch

DCT bases

Patch representation after 

projecting on to DCT bases

Lossy Image Compression (JPEG)



Image compression using DCT

• Quantize 
– More coarsely for high frequencies (which also tend to have smaller values)

– Many quantized high frequency values will be zero

• Encode
– Can decode with inverse dct

Quantization table

Filter responses

Quantized values



JPEG Compression Summary

1. Convert image to YCrCb

2. Subsample color by factor of 2

– People have bad spatial sensitivity for color

3. Split into blocks (8x8, typically), subtract 128

4. For each block

a. Compute DCT coefficients

b. Coarsely quantize

• Many high frequency components will become zero

c. Encode (e.g., with Huffman coding)

http://en.wikipedia.org/wiki/YCbCr

http://en.wikipedia.org/wiki/JPEG

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG


Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):
 Any univariate function can be 

rewritten as a weighted sum of 
sines and cosines of different 
frequencies. 

• Don’t believe it?  
– Neither did Lagrange, 

Laplace, Poisson and 
other big wigs

– Not translated into 
English until 1878!

•  But it’s (mostly) true!
– called Fourier Series

– there are some subtle 
restrictions

...the manner in which the author arrives at these 
equations is not exempt of difficulties and...his 

analysis to integrate them still leaves something to be 
desired on the score of generality and even rigour.

Laplace

Lagrange
Legendre



How would math 

have changed if the 

Slanket or Snuggie 

had been invented?



A sum of sines

Our building block:

 

Add enough of them to get 
any signal g(x) you want!

)+xAsin(



Frequency Spectra

• example : g(t) = sin(2πf t) + (1/3)sin(2π(3f) t)

= +

Slides: Efros



Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra



Example: Music

• We think of music in terms of frequencies at different 
magnitudes

Slide: Hoiem



Other signals

• We can also think of all kinds of other signals the same way

xkcd.com



Fourier analysis in images

Intensity Image

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering



Fourier Transform

• Fourier transform stores the magnitude and phase at each frequency
– Magnitude encodes how much signal there is at a particular frequency

– Phase encodes spatial information (indirectly)

– For mathematical convenience, this is often notated in terms of real and complex numbers

22 )()(  IRA +=
)(

)(
tan 1






R

I−=Amplitude: Phase:



Salvador Dali invented Hybrid Images?

Salvador Dali

“Gala Contemplating the Mediterranean Sea, 

which at 20 meters becomes the portrait 

of Abraham Lincoln”, 1976







Fourier Bases

This change of basis is the Fourier Transform

Teases away fast vs. slow changes in the image.



Fourier Bases



This looks a lot like DCT in JPEG compression

8x8 image patch

DCT bases

Patch representation after 

projecting on to DCT bases



Man-made Scene



Can change spectrum, then reconstruct



Low and High Pass filtering



Computing the Fourier Transform

Continuous

Discrete

k = -N/2..N/2

Fast Fourier Transform (FFT): NlogN

Euler’s Formula



https://youtu.be/spUNpyF58BY?si=93x8YxT5n45OA3CD



The Convolution Theorem

• The Fourier transform of the convolution of two 
functions is the product of their Fourier transforms

• Convolution in spatial domain is equivalent to 
multiplication in frequency domain!

]F[]F[]F[ hghg =

]]F[][F[F* 1 hghg −=
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