


Recap: projection
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Relating multiple views

Figure Credit: Bundler: Structure from Motion (SfM) for Unordered Image Collections



Recap of Filtering

* Linear filtering is dot product at
each position
— Not a matrix multiplication

— Can smooth, sharpen, translate
(among many other uses)

 We can use the Fourier transform
to represent images in the
frequency domain.
— Filtering in the spatial domain is e
multiplication in the frequency
domain.




Fourier Bases

Teases away fast vs. slow changes in the image.

Ml

This change of basis is the Fourier Transform



Fourier Bases
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Low and High Pass filtering
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The Convolution Theorem

* The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

Flg *h]=F[g]F[h]

* Convolution in spatial domain is equivalent to
multiplication in frequency domain!

g*h=F[F[g]F[h]]



Filtering in spatial domain T To 1

intensity image




Filtering in frequency domain

intensity image

log fit magnitude

FFT

Inverse FFT
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Filtering

Why does the Gaussian give a nice smooth
image, but the square filter give edgy artifacts?

Box filter n

Gaussian




intensity image

Gaussian

filter: gaussian

filtered image

filter: gaussian

log fit magnitude of filtered image
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Box Filter

filtered image
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Is convolution invertible?

* |f convolution is just multiplication in the Fourier domain, isn’t
deconvolution just division?

 Sometimes, it clearly is invertible (e.g. a convolution with an
identity filter)

* |n one case, it clearly isn’t invertible (e.g. convolution with an
all zero filter)

e What about for common filters like a Gaussian?



But you can’t invert multiplication by O

* Butit’s not quite zero, is it...

intensity image

filter: gaussian

filtered image

filter: gaussian
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log fft magnitude of filtered image




Let’s experiment on Novak




Convolution
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Deconvolution?

100
150

200

300

100 f 10
100
200 | : , » 8 200
300 b e e 300
400F : 400
; 14 500

500 3 ¢ —

- ; i 600

600 o T 1,

Bes g iy 700
700 8 By ' 0 800
800 F 000

2
900 1000
000 ; & N e . 200 400 600 800 1000

200 400 600 800 1000



But under more realistic conditions

Random noise, .000001 magnitude
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But under more realistic conditions

Random noise, .0001 magnitude
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But under more realistic conditions

Random noise, .001 magnitude
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With a random filter...
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Deconvolution is hard

e Active research area.

* Even if you know the filter (non-blind deconvolution), it is still
very hard and requires strong regularization.

* |f you don’t know the filter (blind deconvolution) it is harder
still.



Blind Deconvolution Example

intermediate build . edge refinement . blur output
strong gradients

latent image
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Figure 1. Algorithm pipeline. Our algorithm iterates between x-step and k-step with the help of a patch prior for edge refinement process.
In particular, we coerce edges to become sharp and increase local contrast for edge patches. The blur kernel is then updated using the
strong gradients from the restored latent image. After kernel estimation, the method of [20] is used for final non-blind deconvolution.

Edge-based Blur Kernel Estimation Using Patch Priors.
Libin Sun, Sunghyun Cho, Jue Wang, and James Hays.
IEEE International Conference on Computational Photography 2013.



Groqnd Truth Cho & Lee
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Edge-based Blur Kernel Estimation Using Patch Priors.
Libin Sun, Sunghyun Cho, Jue Wang, and James Hays.
IEEE International Conference on Computational Photography 2013.




Canvas Quiz

Fill in the blanks:
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Project 1: Convolution and Hybrid Images

CS 6476
Spring 2025

Logistics
e Due: Check Canvas for up to date information.
e Project materials including report template: Project 1
e Hand-in: Gradescope

L] Required files: <your_gt_username>.zip, <your_gt_username>_projectl.pdf

Figure 1: Look at the image from very close, then from far away.



Next Topics

* Image Formation
* Biological Vision
* Light and Color



From the 3D to 2D

P =[xy.zZ]

3D world

Slide credit Fei Fei Li



Image Formation

Digital Camera




Vision is so biologically ubiquitious that it is interesting
when it is not present, e.g. the blind cava tetra

Blind cave form [edit;

A. mexicanus is famous for its blind cave form, which is known
by such names as blind cave tetra, blind tetra (leading to
easy confusion with the Brazilian Stygichthys typhlops), blind
cave characin and blind cavefish. Depending on the exact

population, cave forms can have degenerated sight or have

Blind cave fish form

total loss of sight and even their eyes, due to down-regulation
of the protein aA-crystallin and consequent lens cell death.[1°]
Despite losing their eyes, cavefish cells respond to light responsive and show an endogenous
circadian rhythm.['6] During the start of development, larvae still exhibit a shadow response which
is controlled by the pineal eye.l'”l The fish in the Pachdn caves have lost their eyes completely
whilst the fish from the Micos cave only have limited sight.['®] Cave fish and surface fish are able to
produce fertile offspring.['é]

These fish can still, however, find their way around by means of their lateral lines, which are highly
sensitive to fluctuating water pressure.['¥ Blindness in A. mexicanus induces a disruption of early
neuromast patterning, which further causes asymmetries in cranial bone structure. One such
asymmetry is a bend in the dorsal region of their skull, which is propounded to increase water flow
to the opposite side of the face, functionally enhancing sensory input and spatial mapping in the
dark waters of caves.[?%] Scientists suggest that gene cystathionine beta synthase-a mutation
restricts blood flow to cavefish eyes during a critical stage of growth so the eyes are covered by
skin.[21]



A photon’s life choices

e Absorption

e Diffusion

* Reflection

* Transparency

* Refraction

* Fluorescence

* Subsurface scattering
* Phosphorescence

light source




A photon’s life choices

* Absorption

light source



A photon’s life choices

* Diffuse Reflection (e.g. matte surface)

light source




A photon’s life choices

light source

* Reflection (e.g. specular surface)



A photon’s life choices

light source

* Transparency



A photon’s life choices

light source

 Refraction






A photon’s life choices

light source
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A photon’s life choices

light source

e Subsurface scattering






A photon’s life choices

light source

* Phosphorescence



Sleepytime

STICK THESE STARS
ON YOUR BEOROOM"

ALEILINGAND
FALL ASLEEP




Lambertian Reflectance

* |[n computer vision, the complexity of light transport is mostly
ignored.

e Surfaces are often assumed to be ideal diffuse reflectors with
no dependence on viewing direction.

¢ A
o.
& x
use

https://en.wikipedia.org/wiki/Lambertian_reflectance



Image Formation

Digital Camera




Digital camera

* A digital camera replaces film with a sensor
array

— Each cell in the array is light-sensitive diode that converts photons to electrons
— Two common types

* Charge Coupled Device (CCD)
e CMOS
— http://electronics.howstuffworks.com/digital-camera.htm

Slide by Steve Seitz


http://electronics.howstuffworks.com/digital-camera.htm

Sensor Array

NN I

11 10
| H B! BB N

CMOS sensor

ab

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image
sampling and quantization.



Sampling and Quantization
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FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image,
used to illustrate the concepts of sampling and quantization. (¢) Sampling and quantization. (d) Digital scan line.



Interlace vs. progressive scan

[
1=t field: Odd field 2nd field: Even field One complete frame
uzing interlaced scanning

One complete frame
Using progressive scanning

http://www.axis.com/products/video/camera/progressive_scan.htm Slide by Steve Seitz



http://www.axis.com/products/video/camera/progressive_scan.htm

Progressive scan or Global shutter

- -

http://www.axis.com/products/video/camera/progressive_scan.htm Slide by Steve Seitz



http://www.axis.com/products/video/camera/progressive_scan.htm

Interlaced

http://.axis.com/products1video/camera/proqressive scan.htm Slide by Steve Seitz



http://www.axis.com/products/video/camera/progressive_scan.htm

Slow mo guys — CRTs
* https://youtu.be/3BJU2drrtCM

but we do need to go even slower.



https://youtu.be/3BJU2drrtCM

Rolling Shutter




The Eye

Conjunctiva )
: Vitreous humor

Iris

Cornea

Visual axis —_

Aqueous

Choroid

Sclera

The human eye is a cameral

— IriS - colored annulus with radial muscles

— Pu p|| - the hole (aperture) whose size is controlled by the iris
— What’s the “film”?
— photoreceptor cells (rods and cones) in the retina

Slide by Steve Seitz



Aside: why do we care about human vision in
this class?

 We don’t, necessarily.



Ornithopters




Why do we care about human vision?

 We don’t, necessarily.

* But cameras necessarily imitate the frequency
response of the human eye, so we should know that
much.

* Also, computer vision probably wouldn’t get as much
scrutiny if biological vision (especially human vision)
hadn’t proved that it was possible to make important
judgements from 2D images.



Does computer vision “understand” images?

"Can machines fly?" The answer is yes, because
airplanes fly.

"Can machines swim?" The answer is no,
because submarines don't swim.

"Can machines think?" Is this question like the
first, or like the second?

Source: Norvig



The Retina

Cross-section of eye

Ganglion axons
Ganglion cell layer

Bipolar cell layer

Receptor layer

Cross section of retina

Pigmented
epithelium

i 1998 Sinauer Associates, Inc.




Retina up-close
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What humans don’t have: tapetum lucidum
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Human eyes can reflect a tiny
bit and blood in the retina
makes this reflection red.



Wait, the blood vessels are in front of the
photoreceptors??

https://www.youtube.com/watch?v=L_ W-IXqoxHA



https://www.youtube.com/watch?v=L_W-IXqoxHA
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