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Heterochromia iridum

From Wikipedia, the free encyclopedia

Not to be confused with Heterochromatin or Dichromatic (disambiguation).

In anatomy, heterochromia (ancient Greek: €repoc, héteros,

Heterochromia

ST

different + xpwpa, chréma, colorl'l) is a difference in

e

coloration, usually of the iris but also of hair or skin.

Heterochromia is a result of the relative excess or lack of

melanin (a pigment). It may be inherited, or caused by genetic Complete heterochromia in human eyeé: one brown
mosaicism, chimerism, disease, or injury.l2] and one green/hazel

i . Classification and external resources
Heterochromia of the eye (heterochromia iridis or

heterochromia iridum) is of three kinds. In complete e RN el
heterochromia, one iris is a different color from the other. In ICD-10 Q13.2e#, H20.8, L6717
sectoral heterochromia, part of one iris is a different color ICD-9-CM 364.53%

from its remainder and finally in "central heterochromia” there | OMIM 142500/

are spikes of different colours radiating from the pupil. DiseasesDB 31289



The Spectrum of Biological Inspiration

Traditional Tesla Humanoid and
cameras autopilot Quadruped robots
Less biologically inspired More biologically inspired
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Interest Points and Corners

Computer Vision

James Hays

Read Szeliski 7.1.1 and 7.1.2



Correspondence across views

* Correspondence: matching points, patches, edges, or regions
across images




Example: estimating “fundamental matrix”
that corresponds two views

Slide from Silvio Savarese



Application: structure from motion




Invariant Local Features

Image content is transformed into local feature coordinates that are
Invariant to translation, rotation, scale, and other imaging parameters

2N

Features Descriptors



Sparse Matching

DINOv2's frozen features are relevant to recognize the main
objects in an image and to consistently encode similar parts
across images. Here we match most similar patches across two
images.




Project 2: interest points and local features

| use “interest points” and “keypoints” and
“SIFT features” interchangeably



This class: interest points

e Suppose you have to
click on some point,
go away and come
back after | deform the
image, and click on the
same points again.

— Which points would
you choose?

original

deformed



Overview of Keypoint Matching

1. Find a set of distinctive
keypoints

2. Compute a local
descriptor from the
region around each
keypoint

3. Match local
descriptors

d(f,, fz)<T

K. Grauman, B. Leibe



Goals for Keypoints

Detect points that are repeatable and distinctive



Why extract features?

« Motivation: panorama stitching
« We have two images — how do we combine them?




Local features: main components

1) Detection: Identify the
Interest points

2) Description: Extract vector
feature descriptor
surrounding each interest
point.

3) Matching: Determine
correspondence between
descriptors in two views

Kristen Grauman



Characteristics of good features

Repeatability

 The same feature can be found in several images despite geometric
and photometric transformations

Saliency
 Each feature is distinctive

Compactness and efficiency
« Many fewer features than image pixels

Locality

» A feature occupies a relatively small area of the image; robust to
clutter and occlusion



Goal: interest operator repeatabllity

« We want to detect (at least some of) the
same points in both images.

* Yet we have to be able to run the detection
procedure independently per image.

Kristen Grauman



Goal: descriptor distinctiveness

« We want to be able to reliably determine
which point goes with which.

« Must provide some invariance to geometric
and photometric differences between the two
Views.

Kristen Grauman



Local features: main components

1) Detection: Identify the
Interest points

2) Description:Extract vector

feature descriptor
surrounding each interest
point.

3) Matching: Determine
correspondence between
descriptors in two views



Many Existing Detectors Available

Hessian & Harris ‘Beaudet ‘78], [Harris ‘88]
Laplacian, DoG Lindeberg ‘98], [Lowe 1999]
Harris-/Hessian-Laplace ‘Mikolajczyk & Schmid ‘01]
Harris-/Hessian-Affine ‘Mikolajczyk & Schmid ‘04]
EBR and IBR Tuytelaars & Van Gool ‘04]
MSER ‘Matas ‘02]

Salient Regions Kadir & Brady ‘01]

Others...



Corner Detection: Basic Idea

« We should easily recognize the point by
looking through a small window

 Shifting a window In any direction should
give a large change in intensity

“flat” region: “‘edge”: ‘corner’:
no change in no change along significant
all directions the edge change in all

direction directions

Source: A. Efros



Corner Detection: Baseline strategies

* First, cornerness is a property of a “patch”,
not a single pixel

* Let's look for patches that have high
gradients in the x and y directions.

“flat” region: “‘edge”: ‘corner”;
no gradients gradients in one gradients in both
direction directions

Source: James Hays



Reminder: gradients measured with filtering

Vertical Edge
(absolute value)



Reminder: gradients measured with filtering

Horizontal Edge
(absolute value)



Corner Detection: Baseline strategies

* First, cornerness is a property of a “patch”,
not a single pixel

* Let's look for patches that have high
gradients in the x and y directions.

“flat” region: “‘edge”: ‘corner”;
no gradients gradients in one gradients in both “edge”:

direction directions gradients in both
directions

Source: James Hays



Corner Detection: Baseline strategies

+ | et'slookforpatches-that-have-high Not a sufficient
gradientsn-the xand-y-directions:  strategy

“flat” region: “‘edge”: ‘corner”;
no gradients gradients in one gradients in both “edge’
direction directions gradients in both
directions

Source: James Hays



Corner Detection: Baseline strategies

« Let's write down what the gradients actually
look like In different scenarios

“flat” region: “‘edge”: ‘corner”;
no gradients gradients in one gradients in both “edge’
direction directions gradients in both
directions

Source: James Hays



Corner Detection: Baseline strategies

« For a patch to be a corner, the gradient
distribution needs to be full rank

* We should check more than 2 pixels
« How do we measure this rank?

“flat” region: “‘edge”: ‘corner”;
no gradients gradients in one gradients in both “edge”:

direction directions gradients in both
directions

Source: James Hays



Eigenvalues tell us the rank

| =[-5, 0

. WO
o1 O Ww

| M

=5 0
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors



Corners as distinctive interest points

M => w(X,Y)

nelghborhood of a point).

‘©

..s/

Notation:

M = | Slele Ly
| S LI, Y I,

X X

XY
2 X 2 matrix of image derivatives (averaged in

Xy

y y_

ol Ol
I I & ——

" OX Oy

] =3 [ Iz ] [ ) =Y vi(vD)?!



Using a Taylor Series expansion of the image function Iy (x; + Au) =~ Io(x;)+VIo(X;)-
Au (Lucas and Kanade 1981; Shi and Tomasi 1994), we can approximate the auto-correlation

surface as

Exc(Au) =Y " w(x;)[Io(x; + Au) — Io(x;)]? (7.3)
~ > w(xq)[To(xi) + VIo(x;) - Au— Io(x;)]? (7.4)
= " w(x:)[VIo(x;) - Au]? (7.5)
= Aul AAu, (7.6)
where 9T O
_ (%o Yoy

is the image gradient at x;. This gradient can be computed using a variety of techniques
(Schmid, Mohr, and Bauckhage 2000). The classic “Harris™ detector (Harris and Stephens
1988) uses a [-2 -1 0 1 2] filter, but more modern variants (Schmid, Mohr, and Bauckhage
2000; Triggs 2004) convolve the image with horizontal and vertical derivatives of a Gaussian
(typically with o = 1).

The auto-correlation matrix A can be written as

2 1,1
A =wx* * 2y , (7.8)
I.1, I,

Different
derivations
exist.

This Is the
textbook
version.



Interpreting the second moment matrix

The surface E(u,v) is locally approximated by a
guadratic form. Let’s try to understand its shape.

E(u,v) = [u v] M

M=Swiey)

Xy Xy y




Interpreting the second moment matrix

u
} = const

Consider a horizontal “slice” of E(u, v): [u v] M {v

This is the equation of an ellipse.

T
z / T X 17
L ( Vi ™ } |
\ {“ :
> ., ‘\ ) /;//
\“%Q‘H————fﬁi’:i/--::f"



Interpreting the second moment matrix

u
} = const

Consider a horizontal “slice” of E(u, v): [u v] M {v

This is the equation of an ellipse.
0
Diagonalization of M: M=R" & R
0 A4,

The axis lengths of the ellipse are determined by the
eigenvalues and the orientation is determined by R

direction of the
fastest change

direction of the
slowest change



If you're not comfortable with Eigenvalues and Eigenvectors,
Gilbert Strang’s linear algebra lectures are linked from the
course homepage

Lecture 21: Eigenvalues and eigenvectors

N
SYLLABUS \ \Near Alﬁac\)ra Lﬁcﬂ«& a )
CALENDAR +' % U'\\/a\*&\’g E\‘ae /wec{"brs
het [ A - AT]=0
INSTRUCTOR
INSIGHTS : '\AKF‘A ¥/\a{~ o~~~ /\V\

VIDEO LECTURES €

READINGS

ASSIGNMENTS [3 Interactive Transcript



Interpreting the eigenvalues

Classification of image points using eigenvalues of M:

Ay

M=>wxy) ;zy
X,y




Corner response function

R=det(M)—-atrace(M)’ = 44, —a(4, +4,)°
a. constant (0.04 to 0.06)
|1,
M=>wxy)| = )
X,y

2
L1, 1




Harris corner detector

1) Compute M matrix for each image window to
get their cornerness scores.

2) Find points whose surrounding window gave
large corner response (f> threshold)

3) Take the points of local maxima, I.e., perform
non-maximum suppression

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.



http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Harris Detector [Harrisss]

e Second moment matrix

2
1 (op) ley(O-D) 1. Image

|x|y(O'D) |§(O'D) derivatives
(optionally, blur first)

oy, 0p) = g(‘ﬂ)’{

2. Square of

detM = 44, derivatives

traceM =4+ 4, 3. Gaussian

'y
filter g(o;) a

(
B e
(I

4. Cornerness function — both eigenvalues are strong

har = det] (o, .o o)] - aftrace( (o, o)1 =
g(1)9(15)—[a(L 1) —ala(15) + 9]

5. Non-maxima suppression




Harris Corners — Why so complicated?

* Can’t we just check for regions with lots of
gradients in the x and y directions?

— No! A diagonal line would satisfy that criteria

Current
Window




Harris Detector [Harrisss]

e Second moment matrix

2
1 (op) ley(O-D) 1. Image

|x|y(O'D) |§(O'D) derivatives
(optionally, blur first)

oy, 0p) = g(‘ﬂ)’{

2. Square of

detM = 44, derivatives

traceM =4+ 4, 3. Gaussian

'y
filter g(o;) a

(
B e
(I

4. Cornerness function — both eigenvalues are strong

har = det] (o, .o o)] - aftrace( (o, o)1 =
g(1)9(15)—[a(L 1) —ala(15) + 9]

5. Non-maxima suppression




Harris Corners — Why so complicated?

Current
Window

e What does the structure matrix look here?
C -C|




Harris Corners — Why so complicated?

Current
Window

e What does the structure matrix look here?
c o




Harris Corners — Why so complicated?

Current
Window

e What does the structure matrix look here?
c o




Harris Corners — Why so complicated?

Current
Window

We will measure
X gradients by

filtering with: 1 O 1

N
o
N

=
N
=

We will measure
y gradients by

filtering with: _1 _2 _1

o
o
o

e What does the structure matrix look here?
c o




Harris Corners — Why so complicated?

We will measure
X gradients by
filtering with:

We will measure
y gradients by
filtering with:

Current
Window

0

o |O

o

o

AlA|N|AS

O|O0O|O0O|O|O

AN |PA~

O(O(OC|O|O

o|h|Oo|pn|O

o|h|lO|Aa|O

o|vV]|O|Nn]|O

o|lh|O|pn|O

o|lh|O|p|O




Harris Corners — Why so complicated?

We will measure
X gradients by
filtering with:

We will measure
y gradients by
filtering with:

Current
Window

0

o |O

o

o

AlA|N|AS

O|O0O|O0O|O|O

AN |PA~

O(O(OC|O|O

o|h|Oo|pn|O

o|h|lO|Aa|O

o|vV]|O|Nn]|O

o|lh|O|pn|O

o|lh|O|p|O

16

-16

-16

16

O|0|O0|0O|O

O(lO0O|O|O|O

O[O0 |O|O|O




Harris Corners — Why so complicated?

O|O0O|O0O|O|O

AN |PA~
O(O(OC|O|O

o|vV]|O|Nn]|O

o|lh|O|pn|O
o|lh|O|p|O

0|-4
1/0|1 4
We will measure
x gradients by 2102 qurent 0(-2
filtering with: 1lo011 Window 0l-4
0O|-4
1(-2]-1
We will measure OO0
%/.Itgra}dientlfhby 0[{0|0 4|2
iltering with: 11211
0|0
414
0|0
_ — 0|00
| | | | 0 |16] 0
I\/I—Ew(xy) S 0[o]o
I, 1)
R Y'Y | 0|{0]|0

O[O0 |O|O|O




Harris Corners — Why so complicated?

Current
Window

e What does the structure matrix look here?
c o




Harris Detector [Harrisss]

e Second moment matrix

2
1 (op) ley(O-D) 1. Image

|x|y(O'D) |§(O'D) derivatives
(optionally, blur first)

oy, 0p) = g(‘ﬂ)’{

2. Square of

detM = 44, derivatives

traceM =4+ 4, 3. Gaussian

'y
filter g(o;) a

(
B e
(I

4. Cornerness function — both eigenvalues are strong

har = det] (o, .o o)] - aftrace( (o, o)1 =
g(1)9(15)—[a(L 1) —ala(15) + 9]

5. Non-maxima suppression




Harris Detector: Steps




Harris Detector: Steps

Compute corner response R




Harris Detector: Steps

Find points with large corner response: R>threshold




Harris Detector: Steps

Take only the points of local maxima of R




Harris Detector: Steps




