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Local Image Features
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“Flashed Face Distortion”
2nd Place in the 8th Annual
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Project 2

The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and
7 were incorrect (highlighted in red).

Project 2: Local Feature Matching



This section: correspondence and alighment

* Correspondence: matching points, patches, edges, or regions
across images




Overview of Keypoint Matching

1. Find a set of distinctive
keypoints

2. Compute a local
descriptor from the
region around each
keypoint

3. Match local
descriptors

K. Grauman, B. Leibe



Review: Harris corner detector

* Define distinctiveness by local auto-
correlation.

* Approximate local auto-correlation by
second moment matrix

« Quantify distinctiveness (or cornerness)

as function of the eigenvalues of the
second moment matrix.

* But we don’t actually need to
compute the eigenvalues. Instead, we
use the determinant and trace
of the second moment matrix.
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Review: Harris corner detector

 We want to find distinctive patches that don’t
look self-similar to neighboring patches

 |f there are gradients in a patch, those
gradients indicate distinctiveness in a
particular direction.

 We want to check that we have strong,
independent gradients in all directions.

* The eigenvalues of a collection of gradients in
a patch tell us this.



I (I
P O FRPOOORFRERO®

What do the gradients / structure matrix look like?
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If you're not comfortable with Eigenvalues and
Eigenvectors, Gilbert Strang’s linear algebra lectures are
linked from the course homepage

Lecture 21: Eigenvalues and eigenvectors
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Harris Detector [Harrisss]

e Second moment matrix

2
IX(O-D) ley(GD) 1 Image

L1,(op) 1;(op) derivatives
(optionally, blur first)

H(o,,0p) = g(o-l)*|:

2. Square of

detM = 44, derivatives

traceM =4 + 4, 3. Gaussian

filter g(oy)

4. Cornerness function — both eigenvalues are strong

har = det[ u(o, ,0 )] - altrace(u(o, 0 5))*] =
9(1)9(1y) -[g(L1)F -elg(1) +9(1,)I°

5. Non-maxima suppression 11




Harris Detector: Steps




Harris Detector: Steps

Compute corner response R




Harris Detector: Steps

Find points with large corner response: R>threshold




Harris Detector: Steps

Take only the points of local maxima of R




Harris Detector: Steps




Invariance and covariance

e We want corner locations to be invariant to photometric
transformations and covariant to geometric transformations
— Invariance: image is transformed and corner locations
do not change

— Covariance: if we have two transformed versions of the
same image, features should be detected in
corresponding locations




Affine intensity change

RA

threshold

=8 l>al+b

« Only derivatives are used =>
Invariance to intensity shiftl > 1+Db

 [Intensity scaling: 1 > al
VLN
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\V,
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X (image coordinate) X (image coordinate)

Partially invariant to affine intensity change




Image translation

- .

* Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation




Scaling

— ——
7 I
Corner
All points will
be classified
as edges

Corner location is not covariant to scaling!




Image rotation

Second moment ellipse rotates but its shape
(l.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation




So far: can localize in x-y, but not scale




Automatic Scale Selection

f(lil...im(xia)) = f(lil...im(x”a,))

How to find corresponding patch sizes?

K. Grauman, B. Leibe



Automatic Scale Selection

* Function responses for increasing scale (scale signature)

d3le
f(I, ;. (X.0)

K. Grauman, B. Leibe



Automatic Scale Selection

* Function responses for increasing scale (scale signature)

T
f (Iil.,,im (X,O‘)) f (I R (X’i O-))

K. Grauman, B. Leibe
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)

T
f (Iil.,,im (X,O‘)) f (I R (X’i O-))

K. Grauman, B. Leibe

scale



Automatic Scale Selection

* Function responses for increasing scale (scale signature)

dale
f(I, ;. (X.0)

K. Grauman, B. Leibe



Automatic Scale Selection

* Function responses for increasing scale (scale signature)

1
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K. Grauman, B. Leibe



Automatic Scale Selection

Function responses for increasing scale (scale signature)

K. Grauman, B. Leibe




Orientation Normalization

 Compute orientation histogram lLowe, SIFT. 1999]
e Select dominant orientation
e Normalize: rotate to fixed orientation

! e



Maximally Stable Extremal Regions
* Based on Watershed segmentation algorithm
e Select regions that stay stable over a large parameter range

"Robust Wide Baseline Stereo from Maximally Stable Extremal Regions",
Matas, Chum, Urban, and Pajdla, BMVC 2002
6k+ citations

K. Grauman, B. Leibe



Example Results: MSER

40 __ K




Comparison ____Hessian




Recap Quiz: Are these Harris Corners?

1. 2. 3.
[ 0 ©
-1 1
-.6 .6 2
0 ©
o © et
-.3 .3 Current
B} 2 2 Window Light and dark regions are a single

pixel in width

| M|

Matrix contains pairs of (x,y)
gradients at pixels in the patch



Local features: main components

1) Detection: Identify the
interest points

2) Description: Extract vector
feature descriptor surrounding X, =
each interest point.

3) Matching: Determine
correspondence between
descriptors in two views

Kristen Grauman



lmage representations

 Templates
— Intensity, color, gradients, etc.
— Keeps spatial layout

* Histograms

— Distribution of intensity, color, texture,
SIFT descriptors, etc.

— Discards spatial layout
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Image Representations: Histograms

Histogram: Probability or count of data in each bin

feature 2

feature 1

feature 2

feature 1

e Joint histogram

— Requires lots of data

— Loss of resolution to
avoid empty bins

Images from Dave Kauchak
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feature 1

Marginal histogram

Requires independent features

More data/bin than
joint histogram



Image Representations: Histograms

Clustering

feature 2
feature 2

feature 1 feature 1

Use the same cluster centers for all images

Images from Dave Kauchak



What kind of things do we compute
histograms of?

e Color

L*a*b* color space HSV color space

e Texture (filter banks or HOG over regions)



What kind of things do we compute histograms of?

* Histograms of oriented gradients
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Image gradients Keypoint descriptor

SIFT — Lowe 1JCV 2004



SIFT vector formation

« 4x4 array of gradient orientation histogram weighted
by magnitude

8 orientations X 4x4 array = 128 dimensions

« Motivation: some sensitivity to spatial layout, but not
too much.

* ¥
| 2F

Image gradients Keypoint descriptor

showing only 2x2 here, but typical feature would be 4x4



Ensure smoothness

 (Gaussian weight

* Interpolation

— a glven gradient contributes to 8 bins:
4 In space times 2 In orientation

* ¥
|k

Image gradients Keypoint descriptor



Reduce effect of illumination

e 128-dim vector normalized to 1

» Optionally, threshold gradient magnitudes to avoid

excessive influence of high gradients
— after normalization, clamp gradients >0.2
— renormalize

*

¥

K

X

Image gradients Keypoint descriptor
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6.4 Matching to large databases Image noise

An important remaining issue for measuring the distinctiveness of features is how the re-

liability of matching varies as a function of the number of features in the database being

matched. Most of the examples in this paper are generated using a database of 32 images

with about 40,000 keypoints. Figure 10 shows how the matching reliability varies as a func- Lowe IJCV 2004



https://people.eecs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf
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https://people.eecs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf

SIFT Repeatability

Correct nearest descriptor (%)
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https://people.eecs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf

Local Descriptors: Shape Context

Count the number of points
Inside each bin, e.g.:

Count =4

Count =10

Log-polar binning: more
precision for nearby points,
more flexibility for farther
points.

Belongie & Malik, ICCV 2001



Shape Context Descriptor




Self-similarity Descriptor

1 L Pl >
Figure 1. These images of the same object (a heart) do NOT share

common image properties (colors, textures, edges), but DO share
a similar geometric layout of local internal self-similarities.

Matching Local Self-Similarities across Images
and Videos, Shechtman and Irani, 2007



Self-similarity Descriptor

Input image Correlation Image
surface descriptor

RV
image R 0=

Matching Local Self-Similarities across Images
and Videos, Shechtman and Irani, 2007



Self-similarity Descriptor

Matc
and Videos, Shechtman and Irani, 2007



Learning Local Image Descriptors, Winder
and Brown, CVPR 2007

Image Smooth | | T-Block SBlock | | N-Block |
Patch [*] G(x,c) [T] Flter [T Pooling [T} Normalize ™ Descriptor
‘. 64x64 ~64x64 vectors N histograms
Pixels of dimension k of dimension k

St: SIFT grid with <2 GLOH polar grid S3: 3x3 grid with $4: 17 polar samples
bilinear weights with bilinear radial Gaussian weights  with Gaussian weights
and angular weights



http://matthewalunbrown.com/papers/cvpr2007b.pdf
http://matthewalunbrown.com/papers/cvpr2007b.pdf

Learning Local Image Descriptors, Winder and

Brown, CVPR 2007/
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Figure 5. Selected ROC curves for the trained descriptors with four
dimensional T-blocks (kK = 4). Those that perform better than
SIFT all make use of the S2 log-polar summation stage. See Ta-
ble 4 for details.

We obtained a mixed training set consisting of tourist
photographs of the Trevi Fountain and of Yosemite Val-
ley (920 images), and a test set consisting of images of
Notre Dame (500 images). We extracted interest points and
matched them between all of the images within a set using
the SIFT detector and descriptor [9]. We culled candidate
matches using a symmetry criterion and used RANSAC
[5] to estimate initial fundamental matrices between image
pairs. This stage was followed by bundle adjustment to re-
construct 3D points and to obtain accurate camera matrices
for each source image. A similar technique has been de-
scribed by [17].


http://matthewalunbrown.com/papers/cvpr2007b.pdf
http://matthewalunbrown.com/papers/cvpr2007b.pdf

Local Descriptors

* Most features can be thought of as templates, histograms

(counts), or combinations
* The ideal descriptor should be

— Robust

— Distinctive

— Compact

— Efficient
* Most available descriptors focus on edge/gradient information

— Capture texture information

— Color rarely used

K. Grauman, B. Leibe



Local features: main components

1) Detection: Identify the
interest points

2) Description: Extract vector
feature descriptor surrounding X, =
each interest point.

3) Matching: Determine
correspondence between
descriptors in two views

Kristen Grauman



Matching

* Simplest approach: Pick the nearest neighbor. Threshold on
absolute distance

* Problem: Lots of self similarity in many photos



Distance: 0.34, 0.30, 0.40 Distance: 0.61
Distance: 1.22



Nearest Neighbor Distance Ratio

NN1 . . . .
2 where NN1 is the distance to the first nearest neighbor

and NN2 is the distance to the second nearest neighbor.

e Sorting by this ratio (into ascending order) puts matches in
order of confidence (in descending order of confidence).



Matching Local Features

* Nearest neighbor (Euclidean distance)

* Threshold ratio of nearest to 2"9 nearest descriptor
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Lowe IJCV 2004



https://people.eecs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf

Comparison of Keypoint Detectors

Table 7.1 Overview of feature detectors.

Feature Detector

Corner Blob  Region

Rotation
invariant

Scale
invariant

A ﬂ'l e
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Tuytelaars Mikolajczyk 2008



Choosing a descriptor

e Again, need not stick to one

* For object instance recognition or stitching, SIFT or variant is a
good choice

* Learning-based methods are taking over this space, although
not as quickly as one might expect.



Things to remember

* Keypoint detection: repeatable
and distinctive

— Corners, blobs, stable regions
— Harris, DoG

e Descriptors: robust and selective

— spatial histograms of orientation
— SIFT
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