Read Szeliski 7.1.2 and 7.1.3

Local Image Features

Computer Vision

James Hays

"Flashed Face Distortion"
2nd Place in the 8th Annual
Best Illusion of the Year
Contest, VSS 2012

Keep your eyes on the cross

Project 2

The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and 7 were incorrect (highlighted in red).

Project 2: Local Feature Matching

This section: correspondence and alignment

 Correspondence: matching points, patches, edges, or regions across images

Overview of Keypoint Matching

1. Find a set of distinctive keypoints

2. Compute a local descriptor from the region around each keypoint

3. Match local descriptors

Review: Harris corner detector

- Define distinctiveness by local autocorrelation.
- Approximate local auto-correlation by second moment matrix
- Quantify distinctiveness (or cornerness) as function of the eigenvalues of the second moment matrix.
- But we don't actually need to compute the eigenvalues. Instead, we use the determinant and trace of the second moment matrix.

Review: Harris corner detector

- We want to find distinctive patches that don't look self-similar to neighboring patches
- If there are *gradients* in a patch, those gradients indicate distinctiveness in a particular direction.
- We want to check that we have strong, independent gradients in all directions.
- The eigenvalues of a collection of gradients in a patch tell us this.

What do the gradients / structure matrix look like?

If you're not comfortable with Eigenvalues and Eigenvectors, Gilbert Strang's linear algebra lectures are linked from the course homepage

Lecture 21: Eigenvalues and eigenvectors

Harris Detector [Harris88]

Second moment matrix

$$\mu(\sigma_{I}, \sigma_{D}) = g(\sigma_{I}) * \begin{bmatrix} I_{x}^{2}(\sigma_{D}) & I_{x}I_{y}(\sigma_{D}) \\ I_{x}I_{y}(\sigma_{D}) & I_{y}^{2}(\sigma_{D}) \end{bmatrix}$$
 1. Image derivatives (optionally, blur first)

2. Square of derivatives

3. Gaussian filter $g(\sigma_l)$

4. Cornerness function – both eigenvalues are strong

$$har = \det[\mu(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(\mu(\sigma_{I}, \sigma_{D}))^{2}] =$$

$$g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

5. Non-maxima suppression

Compute corner response R

Find points with large corner response: *R*>threshold

Take only the points of local maxima of R

Invariance and covariance

- We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations
 - Invariance: image is transformed and corner locations do not change
 - Covariance: if we have two transformed versions of the same image, features should be detected in corresponding locations

Affine intensity change

$$I \rightarrow a I + b$$

- Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
- Intensity scaling: $I \rightarrow a I$

Partially invariant to affine intensity change

Image translation

Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Scaling

All points will be classified as edges

Corner location is not covariant to scaling!

Image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

So far: can localize in x-y, but not scale

How to find corresponding patch sizes?

Orientation Normalization

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation

[Lowe, SIFT, 1999]

Maximally Stable Extremal Regions

- Based on Watershed segmentation algorithm
- Select regions that stay stable over a large parameter range

"Robust Wide Baseline Stereo from Maximally Stable Extremal Regions", Matas, Chum, Urban, and Pajdla, BMVC 2002 6k+ citations

Example Results: MSER

Comparison

Harris

LoG

Hessian

MSER

Recap Quiz: Are these Harris Corners?

Matrix contains pairs of (x,y) gradients at pixels in the patch

Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding $\mathbf{x}_1 = [x_1^{(1)}, \dots, x_d^{(1)}]$ each interest point.

3) Matching: Determine correspondence between descriptors in two views

$$\mathbf{x}_{2}^{\vee} = [x_{1}^{(2)}, \dots, x_{d}^{(2)}]$$

Image representations

Templates

- Intensity, color, gradients, etc.
- Keeps spatial layout

Histograms

- Distribution of intensity, color, texture,
 SIFT descriptors, etc.
- Discards spatial layout

Image Representations: Histograms

Histogram: Probability or count of data in each bin

- Joint histogram
 - Requires lots of data
 - Loss of resolution to avoid empty bins

Marginal histogram

- Requires independent features
- More data/bin than joint histogram

Image Representations: Histograms

Clustering

Use the same cluster centers for all images

What kind of things do we compute histograms of?

Color

Texture (filter banks or HOG over regions)

What kind of things do we compute histograms of?

Histograms of oriented gradients

SIFT vector formation

- 4x4 array of gradient orientation histogram weighted by magnitude
- 8 orientations x 4x4 array = 128 dimensions
- Motivation: some sensitivity to spatial layout, but not too much.

showing only 2x2 here, but typical feature would be 4x4

Ensure smoothness

- Gaussian weight
- Interpolation
 - a given gradient contributes to 8 bins:4 in space times 2 in orientation

Reduce effect of illumination

- 128-dim vector normalized to 1
- Optionally, threshold gradient magnitudes to avoid excessive influence of high gradients
 - after normalization, clamp gradients >0.2
 - renormalize

6.4 Matching to large databases

An important remaining issue for measuring the distinctiveness of features is how the reliability of matching varies as a function of the number of features in the database being matched. Most of the examples in this paper are generated using a database of 32 images with about 40,000 keypoints. Figure 10 shows how the matching reliability varies as a func-

SIFT Repeatability

SIFT Repeatability

Local Descriptors: Shape Context

Shape Context Descriptor

Self-similarity Descriptor

Figure 1. These images of the same object (a heart) do NOT share common image properties (colors, textures, edges), but DO share a similar geometric layout of local internal self-similarities.

Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007

Self-similarity Descriptor

Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007

Self-similarity Descriptor

Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007

Learning Local Image Descriptors, Winder and Brown, CVPR 2007

Learning Local Image Descriptors, Winder and Brown, CVPR 2007

Figure 5. Selected ROC curves for the trained descriptors with four dimensional T-blocks (k=4). Those that perform better than SIFT all make use of the S2 log-polar summation stage. See Table 4 for details.

We obtained a mixed training set consisting of tourist photographs of the Trevi Fountain and of Yosemite Valley (920 images), and a test set consisting of images of Notre Dame (500 images). We extracted interest points and matched them between all of the images within a set using the SIFT detector and descriptor [9]. We culled candidate matches using a symmetry criterion and used RANSAC [5] to estimate initial fundamental matrices between image pairs. This stage was followed by bundle adjustment to reconstruct 3D points and to obtain accurate camera matrices for each source image. A similar technique has been described by [17].

Local Descriptors

- Most features can be thought of as templates, histograms (counts), or combinations
- The ideal descriptor should be
 - Robust
 - Distinctive
 - Compact
 - Efficient
- Most available descriptors focus on edge/gradient information
 - Capture texture information
 - Color rarely used

Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding $\mathbf{x}_1 = [x_1^{(1)}, \dots, x_d^{(1)}]$ each interest point.

3) Matching: Determine correspondence between descriptors in two views

$$\mathbf{x}_{2}^{\vee} = [x_{1}^{(2)}, \dots, x_{d}^{(2)}]$$

Matching

- Simplest approach: Pick the nearest neighbor. Threshold on absolute distance
- Problem: Lots of self similarity in many photos

Nearest Neighbor Distance Ratio

- $\frac{NN1}{NN2}$ where NN1 is the distance to the first nearest neighbor and NN2 is the distance to the second nearest neighbor.
- Sorting by this ratio (into ascending order) puts matches in order of confidence (in descending order of confidence).

Matching Local Features

- Nearest neighbor (Euclidean distance)
- Threshold ratio of nearest to 2nd nearest descriptor

Comparison of Keypoint Detectors

Table 7.1 Overview of feature detectors.

				Rotation	Scale	Affine		Localization		
Feature Detector	Corner	$_{\mathrm{Blob}}$	Region	invariant	invariant	invariant	Repeatability	accuracy	Robustness	Efficiency
Harris	√			√			+++	+++	+++	++
Hessian		\checkmark		√			++	++	++	+
SUSAN	\checkmark			√			++	++	++	+++
Harris-Laplace	√	(√)		√	√		+++	+++	++	+
Hessian-Laplace	(√)	\checkmark		√	\checkmark		+++	+++	+++	+
DoG	(√)	\checkmark		√	\checkmark		++	++	++	++
SURF	(√)	\checkmark		√	\checkmark		++	++	++	+++
Harris-Affine	√	(√)		√	√	√	+++	+++	++	++
Hessian-Affine	(√)	\checkmark		√	\checkmark	\checkmark	+++	+++	+++	++
Salient Regions	(√)	\checkmark		√	\checkmark	(√)	+	+	++	+
Edge-based	\checkmark			√	\checkmark	\checkmark	+++	+++	+	+
MSER			\checkmark	√	√	√	+++	+++	++	+++
Intensity-based			\checkmark	√	\checkmark	\checkmark	++	++	++	++
Superpixels			\checkmark	\checkmark	(√)	(√)	+	+	+	+

Choosing a descriptor

Again, need not stick to one

 For object instance recognition or stitching, SIFT or variant is a good choice

• Learning-based methods are taking over this space, although not as quickly as one might expect.

Things to remember

- Keypoint detection: repeatable and distinctive
 - Corners, blobs, stable regions
 - Harris, DoG

- Descriptors: robust and selective
 - spatial histograms of orientation
 - SIFT

