Multi-stable Perception

/

"""""""

/

Necker Cube

Spinning dancer illusion, Nobuyuki Kayahara

Feature Matching and Robust Fitting
Read Szeliski 7.4.2 and 2.1

Computer Vision

James Hays

Project 2

» Take two images of a building or structure near you. Save them in the additional_datas folder of the
project and run your SIFT pipeline on them. Analyze the results - why do you think our pipeline may

have performed well or poorly for the

helpful or detrimental to feature matehing?

n image pair? Is ther

rthing about the building that is

® projection(): Projects homogeneous world coordinates [X, Y, Z, 1] to non-homogeneous image coordi-
nates (u,v). Given projection matrix M, the equations that accomplish this are (4) and (5).

Algorithm 1: Harris Corner Detector

Compute the horizontal and vertical derivatives I, and [, of the image by convolving the original

mage with a Sobel filter;
ompute the three images corresponding to th

Overview

The goal of this assignment is to create a local feature

Project 2: SIFT Local Feature Matching and Camera Calibration

Brief

e Due: Check Canvas for up to date information
e Project materials including report template: zip file on Canvas
e Hand-in: through Gradescope

e Required files: <your_gt_username>.zip, <your_gt_username>_proj2.pdf

Figure 1: The top 100 most confident local feature matches from a baseline implementation of project 2. In
this case, 89 were correct (lines shown in green), and 11 were incorrect (lines shown in red).

atching algorithin using techniques deseribed in
ified version of the ons SIFT pipeline. The
matching — multiple views of the same physical

r environment installation.

~2.ipynb

are passing by running pytest tests

submission once you've finished the project using

username>

ps of a local feature matching algorithm (detecting
intching feature vectors). We'll implement two
ganized as follows:

see Szeliski 7.1.1)

patch feature in part2_patch descriptor.py (see

Szeliski 7.1.3)

rtd_sift_descriptor.py (see Szeliski 7.1.2)

P—"

d in the lecture materials and Szeliski 7.1.1.

ion 7.8 of book, p. 424)

A m [1])

screte convolutions with the weighting kernel w

tion matrix A as:

race(A)? (2)

outer products of these gradients. (The matrix A is

a{umls:t.xic 50 (JE#‘ three entries are needed. :

(Equation 2) discussed above.;
it them as detected feature point locations.;

1 out the following methods in part1_harris_corner

ents using the Sobel filter.

er responses over the entire image (the previously

ppres \g max-pooling. You can use PyTorch

ts from the entire image (the previously imple-

rtl harris _corner.py:

aussian kernel (this is essentially the same as your

of the input image. This makes use of your

n using just NumPy.
ext step.

s manual implementation
border that we can’t create a useful SIFT window

do not need to worry about seale invariance or
ruer detector. The original paper by Chris Harris
found here.
-3 (p-n:z patch d.asl:zipt_c:.py)

fill implement a bare-bones feature deseriptor in
mage intensity patches as your local feature. See
ized patch_descriptors()

center of a square window, as shown in Figure

otre Dame is around 40 — 45% and Mt Rushmore

ature_matching. py)

“nearest neighbor distance ratio test”) method of
ials and Szeliski 7.1.3 (page 444). See equation
io test the easiest should have a greater tendency

_matrix(): Solves for the camera projection matrix using a system of equations
nding 2D and 3D points.

nter(): Computes the camera center location in world coordinates.

amental matrix

epipolar plane

igure 2: Two-camera setup. Reference: Szeliski, p. 682.

project is estimating the mapping of points in one image to lines in another by
matrix. This will require you to use similar methods to those in part 4. We will
ding point locations listed in pts2d-pic_a.txt and pts2d-pic_b.txt. Recall that
umental matrix is:

fu fi2 fiz fu
(u’ v 1) far for fas v|=0 9)
fa1 faa fa 1
ige A, and a point (u’,v’,1) in image B. See Appendix A for the full derivation.
atrix is sometimes defined as the transpose of the above matrix with the left and
ed. Both are valid fundamental matrices, but the visualization functions in the
se the above form.

is matrix equations is:

Suu+ fizv+ fis
(u' v’ 1) foau+ faov+ foz | =0 (10}
faru+ fagv + fas
frovw + fist! + faruv’ + faav0 + fasv' + faru+ fazv + faz) =0 (11)

sion equations? Given corresponding points you get one equation per point pair.

can solve this (why 8?). Similar to part 4, there’s an issue here where the matrix
e and the degenerate zero solution solves these equations. So you need to solve
1 used in part 4 of first fixing the scale and then solving the regression.

of F' is full rank; however, a proper fundamental matrix is a rank 2. As such we
rder to do this, we can decompose F' using singular value decomposition into the

port using the template slides provided
. as this will affect the grading process

will describe your algorithim and any
you will show and discuss the results of
should include in your report. A good
rom the experime: You must convert
ach PDF page to the relevant question

n in the tempiate deck to deseribe your
it for your extra credit implementations

tarter code includes file handling, visual-
er versions of the three functions listed

starter code as well. evaluate
ased on hand-provided matches . The
i (Mount R
he appropriate lines in project-2.ipynb.

in th

age p imore and

ur performance according to evaluate
overfit to the initial Notre Dame
re and in the starter code will give you

£1iplr(), np.£lipud(}, np.histogram(),
pe (}, np.sort ().

), torch.median (), torch.nn.functional

ameter, torch.stack ().

might find terch.meshgrid, torch.nerm,

orch.nn.Conv2d OF torch.nn. functional

er libraries (e.g., cv.filter2n(), scipy.

This section: correspondence and alighment

* Correspondence: matching points, patches, edges, or regions
across images

Review: Local Descriptors

* Most features can be thought of as templates, histograms
(counts), or combinations

* The ideal descriptor should be pATUTLEN AR
— Robust and Distinctive (SRR) > [
NI DS \
— Compact and Efficient o

* Most available descriptors focus on edge/gradient information
— Capture texture information

— Color rarely used

K. Grauman, B. Leibe

How lossy is this? Can we invert SIFT descriptors?

K

Image gradients Keypoint descriptor

ﬁ‘;i

Can we invert SIFT descriptors?

6.06634v3 [cs.CV] 30 Mar 2021

Privacy-Preserving Image Features via Adversarial Affine Subspace Embeddings

Mihai Dusmanu’

Abstract

Many computer vision systems require users to upload im-
age features to the cloud for processing and storage. These
features can be exploited to recover sensitive information
about the scene or subjects, e.g., by reconstructing the ap-
pearance of the original image. To address this privacy
concern, we propose a new privacy-preserving feature repre-
sentation. The core idea of our work is to drop constraints
[from each feature descriptor by embedding it within an affine
subspace containing the original feature as well as adver-
sarial feature samples. Feature matching on the privacy-
preserving representation is enabled based on the notion of
subspace-to-subspace distance. We experimentally demon-
strate the effectiveness of our method and its high practical
relevance for the applications of visual localization and
mapping as well as face authentication. Compared to the
original features, our approach makes it significantly more
difficult for an adversary to recover private information.

1. Introduction

- ~ » . . ™ g e - ~ 1

Johannes L. Schénberger?
! Department of Computer Science, ETH Ziirich

Sudipta N. Sinha® Marc Pollefeys'
2 Microsoft

Reconstruction

Descriptors

Inversion

Traditional

Proposed
®

® Inversion

Keypoints Subspaces Reconstruction

Figure 1: Privacy-Preserving Image Features. Inversion
of traditional local image features is a privacy concern in
many applications. Our proposed approach obfuscates the
appearance of the original image by lifting the descriptors to
affine subspaces. Distance between the privacy-preserving
subspaces enables efficient matching of features. The same
concept can be applied to other domains such as face fea-
tures for biometric authentication. Image credit: laylam-
orandbattersea (Layla Moran).

Can we invert SIFT descriptors?

raw descriptors rand. lifting sub-hyb. lifting sub-hybrid lifting
dim. 2 dim. 2 im. ' dim. 4 -

T

nearest neighbor attack direct inversion attack

SIFT is 20+ years old. Is it still useful?

SIFT is 20+ years old. Is it still useful?

README.md

e Let’s look at
some trendy
research on
Neural Radiance
Fields (NeRF)

Instant Neural Graphics Primitives o« &=

Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a
factory robot? Of course you have!

Here you will find an implementation of four neural graphics primitives, being neural radiance fields (NeRF), signed
distance functions (SDFs), neural images, and neural volumes. In each case, we train and render a MLP with
multiresolution hash input encoding using the framework.

SIFT is 20+ years old. Is it still useful?

:= README.md

e Let’s look at
some trendy
research on
Neural Radiance
Fields (NeRF)

e Let’s look under
the hood

Instant Neural Graphics Primitives ©ci &=

Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a
factory robot? Of course you have!

Tips for training NeRF models with Instant Neural Graphics Primitives

Our NeRF implementation expects initial camera parameters to be provided in a transforms.json file in a format compatible with

. We provide a script as a convenience, , that can be used to process a video file or sequence of images,

using the open source structure from motion software to extract the necessary camera data.

SIFT is 20+ years old. Is it still useful?

e COLMAP is the
“standard” way
to do structure
from motion
these days

COLMAP

¥ o LS -
$ 518 ¥ & , -
Sy Ly | iy e . S i
Y 2 L R R
; 7 };’;’} b IR 3 S i wa 3 W T

Sparse model of central Rome usiﬁg 21K photdé; prbduced by COLMAP’s SfM pipeline. |

= i“‘;E.--Ed e hod I

Dense models of several landmarks produced by COLMAP’s MVS pipeline. |

“Structure-From-Motion Revisited”. Johannes L. Schonberger, Jan-Michael Frahm; CVPR 2016

5k+ citations

SIFT is 20+ years old. Is it still useful?

e COLMAP is the
“standard” way
to do structure
from motion
these days

Images Correspondence Search Incremental Reconstruction Reconstruction

3 Initialization =1 mTm > |
Image Registration Outlier Filtering I.J,> 1 ':y;.? :
- 1.3: -4 i

Triangulation Bundle Adjustment

Matching

Geometric Verification

“Structure-From-Motion Revisited”. Johannes L. Schonberger, Jan-Michael Frahm; CVPR 2016
5k+ citations

SIFT is 20+ years old. Is it still useful?

° CO L M A P iS t h e You can either detect and extract new features from the images or import existing features from
text files. COLMAP extracts SIFT [lowe04] features either on the GPU or the CPU. The GPU version
((Sta n d a rd) Wa requires an attached display, while the CPU version is recommended for use on a server. In general,
y the GPU version is favorable as it has a customized feature detection mode that often produces
to d O St r u Ct u re higher quality features in the case of high contrast images. If you import existing features, every
image must have a text file next to it (e.g., /path/to/imagel.jpg and /path/to/imagel.jpg.txt) in the
fro m m Ot i O n following format:
t h ese d a NUM_FEATURES 128
yS X Y SCALE ORIENTATION D_1 D_2 D_3 ... D_128
X Y SCALE ORIENTATION D_1D_2D_3 ... D_128
Images Correspondence Search — HIUT SIS G 1 ISUUT IS U ULTUIT rmevunsuaction

= Initialization - em—————— -
1 |
1

Matching

Image Registration Outlier Filtering I.J’> £

Geometric Verification

Triangulation Bundle Adjustment

B w =

“Structure-From-Motion Revisited”. Johannes L. Schonberger, Jan-Michael Frahm; CVPR 2016
5k+ citations

2311.18801v1 [cs.CV] 30 Nov 2023

Distributed Global Structure-from-Motion with a Deep Front-End

Ayush Baid *f John Lambert*! Travis Driver* Akshay Krishnan*
Hayk Stepanyan Frank Dellaert
Georgia Tech
Abstract

While initial approaches to Structure-from-Motion (SfM)
revolved around both global and incremental methods, most
recent applications rely on incremental systems to estimate
camera poses due to their superior robustness. Though there
has been tremendous progress in SfM ‘front-ends’ powered
by deep models learned from data, the state-of-the-art (in-
cremental) SfM pipelines still rely on classical SIFT features,
developed in 2004. In this work, we investigate whether
leveraging the developments in feature extraction and match-
ing helps global SfM perform on par with the SOTA incre-
mental SfM approach (COLMAP). To do so, we design a
modular SfM framework that allows us to easily combine
developments in different stages of the SfM pipeline. Our
experiments show that while developments in deep-learning
based two-view correspondence estimation do translate to
improvements in point density for scenes reconstructed with
global SfM, none of them outperform SIFT when comparing
with incremental SfM results on a range of datasets. Our
SfM system is designed from the ground up to leverage dis-
tributed computation, enabling us to parallelize computation
on multiple machines and scale to large scenes. Our code is
publicly available at github.com/borglab/gtsfm.

Figure 1. A sparse reconstruction of the UNC South Building using
GTSfM with a deep LoFTR-based [64] front-end, with an example
image input. Multi-view stereo is not used.

[53, 57], Gaussian Splatting [32], accurate monocular depth
predictions for humans [39], and more.

Incremental SfM is the dominant paradigm, as global
StM suffers from a lack of accuracy, largely due to diffi-
culty in reasoning about outliers globally in a single pass.
However, to our knowledge, almost all global SfM systems

Input Ground Truth SIFT SuperGlue LightGlue LoFTR

o W

?E
&
€]

———— : = L {)T\‘.;’."-\: : > :_.', S E ™ 4_.:\-‘ :
R “"i i""‘,:.::* Table 2. Average performance of each front-end over 9 datasets, as

measured by Pose AUC @N deg. after bundle adjustment (higher
is better).

Front-End @l deg. @25deg. @5deg. @10deg. @20 deg.

od “{ LightGlue 39.2 53.7 63.8 72.1 77.9
3___,,_._2 .. SuperGlue 433 57.8 67.0 74.2 79.0
AR sy LoFTR 40.0 58.0 70.8 80.3 86.2

SIFT 53.1 67.7 76.5 84.3 90.3

What is “Geometric Verification”?

e COLMAP is the
standard way to
do structure from
motion these
days

Images Correspondence Search Incremental Reconstruction Reconstruction

- Initialization -1 o -
1 |
1

;
Image Registration Outlier Filtering I.J,> 1 w y-j? :
- 1.3: -4 I e

Matching

Geometric Verification

Triangulation Bundle Adjustment

B w =

“Structure-From-Motion Revisited”. Johannes L. Schonberger, Jan-Michael Frahm; CVPR 2016
5k+ citations

What is “Geometric Verification”?

Local features: main components

e COLMAP is the 1) Detection: Identify the F
standard way to e
do structure from 2) pesepton it v (B
motion these B
days

ceey

3) Matching: Determine .
correspondence between x, =[x
descriptors in two views o

Images Reconstruction

Correspondence Searﬁ/

- Initialization -

Image Registration Outlier Filtering

Matching

Geometric Verification Triangulation Bundle Adjustment

“Structure-From-Motion Revisited”. Johannes L. Schonberger, Jan-Michael Frahm; CVPR 2016
5k+ citations

Can we refine this further?

" Ng

£
1 81

?.
&
é

e |

Can we refine this further?

" Ng

£

L83 7

?.
&
é

ot /T ™

Can we refine this further?

Can we refine this further?

What is the space of allowable correspondences?

'y

f y=mx+Db
A’i)

-

Fitting: find the parameters of a model that best fit the data

Alignment: find the parameters of the transformation that best
align matched points

Fitting and Alighment

* Design challenges

— Design a suitable goodness of fit measure
 Similarity should reflect application goals 4

. y=mx+Db
* Encode robustness to outliers and noise |
— Design an optimization method [(X, Y:)

* Avoid local optima

* Find best parameters quickly

Fitting and Alignment: Methods

* Global optimization / Search for parameters
— Least squares fit
— Robust least squares
— Other parameter search methods

* Hypothesize and test
— Generalized Hough transform
— RANSAC

* |terative Closest Points (ICP)

Fitting and Alignment: Methods

* Global optimization / Search for parameters

— Least squares fit
— Robust least squares
— Other parameter search methods

* Hypothesize and test

— Generalized Hough transform
— RANSAC

* |terative Closest Points (ICP)

Simple example: Fitting a line

Least squares line fitting

*Data: (Xg, Yy), -+ Xy Vi)
eLine equation:y, = mx; + b
*Find (M, b) to minimize

E= Zin:l(Yi —mx; —b)*

fo {1

)fl 1 m Yl 2
SHNEEE EURY

b
X, 1) Y|
=y"y—2(Ap)"y +(Ap)" (Ap) Matlab:p = & \ y;
9 _oATAp-2aTy—0 |Python:p -

dp

numpy.linalg.lstsqg (A, V)

ATAp=ATy=p=(ATA]'ATy

Modified from S. Lazebnik

Least squares (global) optimization

Good
e Clearly specified objective
* Optimization is easy

Bad
 May not be what you want to optimize
e Sensitive to outliers

— Bad matches, extra points

* Doesn’t allow you to get multiple good fits
— Detecting multiple objects, lines, etc.

Least squares: Robustness to noise

* Least squares fit to the red points:

-0k

124

14

1 1 1 1 1 1 1 1
-14 -12 -10 - -G -4 -2 I 2

Least squares: Robustness to noise

e Least squares fit with an outlier:

ot / _
.ﬂ- *

-0k

124

_14 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 - -G -4 -2 I 2 4 i

Problem: squared error heavily penalizes outliers

Fitting and Alignment: Methods

* Global optimization / Search for parameters

— Least squares fit
— Robust least squares
— Other parameter search methods

* Hypothesize and test
— Generalized Hough transform
— RANSAC

* |terative Closest Points (ICP)

Robust least squares (to deal with outliers)

General approach:
minimize Zp(ul (XI | 9), O') U2 :Zin:l(yi —mx, _b)Z
i

u; (xi,) — residual of it" point w.r.t. model parameters ¢
p — robust function with scale parameter o

2 2

. . U~
1.8} plu; JJ —

o2 + u? 1 The robust function p
|« Favors a configuration
with small residuals

e Constant penalty for large
residuals

Slide from S. Savarese

Choosing the scale: Just right

-0k

12k

-14

1 1 1 1 1 1 1 1 1
-14 -12 -110 - -G -4 -2 0 2 4

The effect of the outlier is minimized

Choosing the scale: Too small

-0k

12k

-‘Iq. 1 1 1 1 1 1 1 1 1

-14 -12 -110 - -G -4 -2 0 2 4

The error value is almost the same for every
point and the fit is very poor

Choosing the scale: Too large

0 4
*\g(- *
al i

-0k

12k

-14

1 1 1 1 1 1 1 1 1 1
-14 -12 -110 - -G -4 -2 0 2 4 b

Behaves much the same as least squares

Robust estimation: Details

e Robust fitting is a nonlinear optimization problem that must be
solved iteratively

e Least squares solution can be used for initialization

e Scale of robust function should be chosen adaptively based on
median residual

Fitting and Alignment: Methods

* Global optimization / Search for parameters
— Least squares fit
— Robust least squares
— Other parameter search methods

* Hypothesize and test
— Generalized Hough transform
— RANSAC

* |terative Closest Points (ICP)

Other ways to search for parameters
(for when no closed form solution exists)

* Line search (see also“coordinate descent”)

1. For each parameter, step through values and choose value
that gives best fit

2. Repeat (1) until no parameter changes

e @Grid search

1. Propose several sets of parameters, evenly sampled in the
joint set

2. Choose best (or top few) and sample joint parameters around
the current best; repeat

* Gradient descent
1. Provide initial position (e.g., random)
2. Locally search for better parameters by following gradient

Fitting and Alignment: Methods

* Global optimization / Search for parameters

— Least squares fit
— Robust least squares
— Other parameter search methods

* Hypothesize and test

— Generalized Hough transform
— RANSAC

* |terative Closest Points (ICP)

Fitting and Alignment: Methods

* Global optimization / Search for parameters

— Least squares fit
— Robust least squares
— Other parameter search methods

* Hypothesize and test

— Generalized Hough transform
— RANSAC

* |terative Closest Points (ICP)

Hough Transform: Outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters, incrementing those
values in grid

3. Find maximum or local maxima in grid

Hough fransform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf.
High Energy Accelerators and Instrumentation, 1959

Given a set of poinfts, find the curve or line that
explains the data points best

o

Hough space

y=mx+Db

Slide from S. Savarese

Hough fransform

Y m

Slide from S. Savarese

Hough fransform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf.
High Energy Accelerators and Instrumentation, 1959

Issue : parameter space [m,b] is unbounded...

Slide from S. Savarese

Hough fransform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf.
High Energy Accelerators and Instrumentation, 1959

Issue : parameter space [m,b] is unbounded...

Use a polar representation for the parameter
space

Hough space

XCc0s@ +ysinf =p

Slide from S. Savarese

Hough tfransform - experiments

features votes

Slide from S. Savarese

Hough tfransform - experiments

Noisy data

features votes

Need to adjust grid size or smooth

Slide from S. Savarese

Hough tfransform - experiments

features votes

Issue: spurious peaks due o uniform noise

Slide from S. Savarese

10N

1. Image = Canny Edge Detect

2. Canny = Hough votes

3. Hough votes - Edges

Find peaks and post-process

Hough transform example

7 “Image i Hough Transform

http://ostatic.com/files/images/ss_hough.jpg

Hough Transform

e How would we find circlese
— Of fixed radius
— Of unknown radius
— Of unknown radius but with known edge orientation

Hough franstorm for circles

e Grid search equivalent procedure: for each (x,y.r),
draw the corresponding circle in the image and
compute its “support”

br

)
yd S

Hough Transform

e How would we find circles?
— Of fixed radius
— Of unknown radius
— Of unknown radius but with known edge orientation

Hough franstorm for circles

image space Hough parameter space

S

(X,y¥)+rVI(x,y) :>

/ (x.y)
(X’ y)_rVI(X’ y) \/

Hough transform conclusions

Good

* Robust to outliers: each point votes separately
* Fairly efficient (often faster than trying all sets of parameters)
* Provides multiple good fits

Bad

* Some sensitivity to noise

* Bin size trades off between noise tolerance, precision, and
speed/memory

— Can be hard to find sweet spot

* Not suitable for more than a few parameters
— grid size grows exponentially

Common applications

* Line fitting (also circles, ellipses, etc.)

* Object instance recognition (parameters are affine transform)
* Object category recognition (parameters are position/scale)

Fitting and Alignment: Methods

* Global optimization / Search for parameters

— Least squares fit
— Robust least squares
— Other parameter search methods

* Hypothesize and test

— Generalized Hough transform
— RANSAC

* |terative Closest Points (ICP)

	Slide 1: Multi-stable Perception
	Slide 2
	Slide 3
	Slide 4: Feature Matching and Robust Fitting
	Slide 5: Project 2
	Slide 6: This section: correspondence and alignment
	Slide 7: Review: Local Descriptors
	Slide 8: How lossy is this? Can we invert SIFT descriptors?
	Slide 9: Can we invert SIFT descriptors?
	Slide 10: Can we invert SIFT descriptors?
	Slide 11: SIFT is 20+ years old. Is it still useful?
	Slide 12: SIFT is 20+ years old. Is it still useful?
	Slide 13: SIFT is 20+ years old. Is it still useful?
	Slide 14: SIFT is 20+ years old. Is it still useful?
	Slide 15: SIFT is 20+ years old. Is it still useful?
	Slide 16: SIFT is 20+ years old. Is it still useful?
	Slide 17
	Slide 18
	Slide 19: What is “Geometric Verification”?
	Slide 20: What is “Geometric Verification”?
	Slide 21: Can we refine this further?
	Slide 22: Can we refine this further?
	Slide 23: Can we refine this further?
	Slide 24: Can we refine this further?
	Slide 25: What is the space of allowable correspondences?
	Slide 26
	Slide 27: Fitting and Alignment
	Slide 28: Fitting and Alignment: Methods
	Slide 29: Fitting and Alignment: Methods
	Slide 30: Simple example: Fitting a line
	Slide 31: Least squares line fitting
	Slide 37: Least squares (global) optimization
	Slide 38: Least squares: Robustness to noise
	Slide 39: Least squares: Robustness to noise
	Slide 40: Fitting and Alignment: Methods
	Slide 41: Robust least squares (to deal with outliers)
	Slide 42: Choosing the scale: Just right
	Slide 43: Choosing the scale: Too small
	Slide 44: Choosing the scale: Too large
	Slide 45: Robust estimation: Details
	Slide 46: Fitting and Alignment: Methods
	Slide 47: Other ways to search for parameters (for when no closed form solution exists)
	Slide 48: Fitting and Alignment: Methods
	Slide 50: Fitting and Alignment: Methods
	Slide 51: Hough Transform: Outline
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: 1. Image  Canny Edge Detection
	Slide 60: 2. Canny  Hough votes
	Slide 61: 3. Hough votes  Edges
	Slide 62: Hough transform example
	Slide 65: Hough Transform
	Slide 66: Hough transform for circles
	Slide 67: Hough Transform
	Slide 68: Hough transform for circles
	Slide 69: Hough transform conclusions
	Slide 70: Fitting and Alignment: Methods

