

RANSAC, ICP, Fitting and Alignment

Computer Vision

James Hays

Acknowledgment: Many slides from Derek Hoiem, Lana Lazebnik,

and Grauman&Leibe 2008 AAAI Tutorial

Szeliski 2.1

and 8.1

Project 2

Fitting and Alignment: Methods

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Other parameter search methods

• Hypothesize and test

– Hough transform

– RANSAC

• Iterative Closest Points (ICP)

Review: Hough Transform

1. Create a grid of parameter values

2. Each point (or correspondence) votes for a set of parameters,
incrementing those values in grid

3. Find maximum or local maxima in grid

x

y

b

m

y = m x + b

Review: Hough transform

Given a set of points, find the curve or line that

explains the data points best

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf.
High Energy Accelerators and Instrumentation, 1959

Hough space

Slide from S. Savarese

x

y

b

m

x

y m
3 5 3 3 2 2

3 7 11 10 4 3

2 3 1 4 5 2

2 1 0 1 3 3

b
Slide from S. Savarese

Review: Hough transform

Hough transform for circles

• Conceptually equivalent (but maybe less efficient)

grid search procedure: for each (x,y,r), draw the

corresponding circle in the image and compute its

“support”

x

y

r

Is this more or less efficient than voting with features?

Hough Transform

• How would we find circles?

– Of fixed radius

– Of unknown radius

– Of unknown radius but with known edge orientation

Hough transform for circles

• For an unknown radius r

• Circle: center (a,b) and radius r
222)()(rbyax ii =−+−

Hough spaceImage space

b

a

r

Kristen Grauman

17

Hough transform for circles

• For an unknown radius r

• Circle: center (a,b) and radius r
222)()(rbyax ii =−+−

Hough spaceImage space

b

a

r

Kristen Grauman

18

Hough Transform

• How would we find circles?

– Of fixed radius

– Of unknown radius

– Of unknown radius but with known edge orientation

Hough transform for circles

• For an unknown radius r, known gradient direction

• Circle: center (a,b) and radius r
222)()(rbyax ii =−+−

Hough spaceImage space

θ

x

Kristen Grauman

20

Hough transform for circles

For every edge pixel (x,y) :

 For each possible radius value r:

 For each possible direction θ:

 // or use estimated gradient at (x,y)

 a = x – r cos(θ) // column

 b = y + r sin(θ) // row

 H[a,b,r] += 1

 end

end

Kristen Grauman

21

Original Edges

Example: detecting circles with Hough

Votes: Penny

Note: a different Hough transform (with separate accumulators)

was used for each circle radius (quarters vs. penny).
22

Slide credit: Kristen Grauman

Original Edges

Example: detecting circles with Hough

Votes: QuarterCombined detections

Coin finding sample images from: Vivek Kwatra

23

Slide credit: Kristen Grauman

Fitting and Alignment: Methods

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Other parameter search methods

• Hypothesize and test

– Hough transform

– RANSAC

• Iterative Closest Points (ICP)

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example



RANSAC

6=IN

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example



RANSAC

14=IN
Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

How to choose parameters?
• Number of samples (iterations) N

– Choose N so that, with probability p, at least one random sample is free
from outliers (e.g. p=0.99) (outlier ratio: e)

• Number of sampled points s
– Minimum number needed to fit the model

• Distance threshold 
– Choose  so that a good point with noise is likely (e.g., prob=0.95) within threshold

() ()()s
e11log/p1logN −−−=

proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

modified from M. Pollefeys
For p = 0.99

RANSAC conclusions

Good
• Robust to outliers
• Applicable for larger number of model parameters than

Hough transform
• Optimization parameters are easier to choose than Hough

transform

Bad
• Computational time grows quickly with fraction of outliers

and number of parameters
• Not good for getting multiple fits

Common applications
• Computing a homography (e.g., image stitching)
• Estimating fundamental matrix (relating two views)

Original Edges

Can we use RANSAC instead of Hough transform?

Votes: Penny

Slide credit: Kristen Grauman

Original Edges
Let’s find circles of any radius from 6 to 55

pixels

Let’s assume that for a particular coin, 10%

of the overall edge pixels are “inliers” (on the

perimeter of that coin)

Recall this equation to estimate the number

of RANSAC iterations needed, N

() ()()s
e11log/p1logN −−−=

s = number of samples needed to fit a model

p = desired probability of finding an outlier free solution

e = proportion of outliers

Can we use RANSAC instead of Hough transform?

Edges
Let’s find circles of any radius from 6 to 55

pixels

Let’s assume that for a particular coin, 10%

of the overall edge pixels are “inliers” (on the

perimeter of that coin)

Recall this equation to estimate the number

of RANSAC iterations needed, N

() ()()s
e11log/p1logN −−−=

s = number of samples needed to fit a model

p = desired probability of finding an outlier free solution

e = proportion of outliers

Can we use RANSAC instead of Hough transform?

s = 3

p = .99

e = .9

Edges
Let’s find circles of any radius from 6 to 55

pixels

Let’s assume that for a particular coin, 10%

of the overall edge pixels are “inliers” (on the

perimeter of that coin)

Recall this equation to estimate the number

of RANSAC iterations needed, N

() ()()s
e11log/p1logN −−−=

s = number of samples needed to fit a model

p = desired probability of finding an outlier free solution

e = proportion of outliers

Can we use RANSAC instead of Hough transform?

s = 3

p = .99

e = .9

N = log(1 - .99) /

 log(1 - .001)

Edges
Let’s find circles of any radius from 6 to 55

pixels

Let’s assume that for a particular coin, 10%

of the overall edge pixels are “inliers” (on the

perimeter of that coin)

Recall this equation to estimate the number

of RANSAC iterations needed, N

() ()()s
e11log/p1logN −−−=

s = number of samples needed to fit a model

p = desired probability of finding an outlier free solution

e = proportion of outliers

Can we use RANSAC instead of Hough transform?

s = 3

p = .99

e = .9

N = log(1 - .99) /

 log(1 - .001)

N = 4,602

How do we fit the best alignment?

How do we fit the best alignment?

How do we fit the best alignment?

Alignment

• Alignment: find parameters of model that maps
one set of points to another

• Typically want to solve for a global transformation
that accounts for *most* true correspondences

• Difficulties

– Noise (typically 1-3 pixels)

– Outliers (often 50%)

– Many-to-one matches or multiple objects

Parametric (global) warping

Transformation T is a coordinate-changing machine:
 p’ = T(p)

 What does it mean that T is global and parametric?

– Global: Is the same for any point p
– Parametric: can be described by just a few numbers

 We’re going to focus on linear transformations. We can represent T as

a matrix multiplication
 p’ = Tp

T

p = (x,y) p’ = (x’,y’)









=









y

x

y

x
T

'

'

Common transformations

translation rotation aspect

affine perspective

original

Transformed

Slide credit (next few slides):

A. Efros and/or S. Seitz

Scaling
• Scaling a coordinate means multiplying each of its components by a

scalar

• Uniform scaling means this scalar is the same for all components:

 2

• Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5

Scaling

• Scaling operation:

• Or, in matrix form:

byy

axx

=

=

'

'

















=









y

x

b

a

y

x

0

0

'

'

scaling matrix S

2-D Rotation (around the origin)



(x, y)

(x’, y’)

2-D Rotation (around the origin)



(x, y)

(x’, y’)

x’ = x cos() - y sin()

y’ = x sin() + y cos()

2-D Rotation
This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,

– For a particular  x’ is a linear combination of x and y

– For a particular  y’ is a linear combination of x and y

What is the inverse transformation?

– Rotation by –

– For rotation matrices

() ()

() () 














 −
=









y

x

y

x





cossin

sincos

'

'

TRR =−1

R

How about translation?

How about translation?

x’ = x + tx
y’ = y + ty

Basic 2D transformations

TranslateRotate

ShearScale

















=









y

x

y

x

y

x

1

1

'

'
























−
=









y

x

y

x

cossin

sincos

'

'

















=









y

x

s

s

y

x

y

x

0

0

'

'

























=













1
10

01
y

x

t

t

y

x

y

x

























=













1

y

x

fed

cba

y

x

Affine

Affine is any combination of

translation, scale, rotation,

shear

2D Affine Transformations

Affine transformations are combinations of …

• Linear transformations, and

• Translations

Parallel lines remain parallel

































=

















w

y

x

fed

cba

w

y

x

100'

'

'

Slide credit: Kristen Grauman

Projective Transformations

Projective transformations:

• Affine transformations, and

• Projective warps

Parallel lines do not necessarily remain parallel




























=















w
y
x

ihg
fed
cba

w
y
x

'
'
'

Slide credit: Kristen Grauman

2D image transformations (reference table)

Szeliski 2.1

Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

Example: solving for translation

A1

A2 A3
B1

B2 B3

Least squares solution









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Write down objective function

2. Derived solution

a) Compute derivative

b) Compute solution

3. Computational solution

a) Write in form Ax=b

b) Solve using pseudo-inverse or

eigenvalue decomposition 





















−

−

−

−

=






























A

n

B

n

A

n

B

n

AB

AB

y

x

yy

xx

yy

xx

t

t


11

11

10

01

10

01

Example: solving for translation

A1

A2 A3
B1

B2 B3

RANSAC solution









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Sample a set of matching points (1 pair)

2. Solve for transformation parameters

3. Score parameters with number of inliers

4. Repeat steps 1-3 N times

Problem: outliers

A4

A5

B5

B4

Example: solving for translation

A1

A2 A3
B1

B2 B3

Hough transform solution









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Initialize a grid of parameter values

2. Each matched pair casts a vote for

consistent values

3. Find the parameters with the most votes

4. Solve using least squares with inliers

A4

A5 A6

B4

B5 B6

Problem: outliers, multiple objects, and/or many-to-one matches

Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

Fitting and Alignment: Methods

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Other parameter search methods

• Hypothesize and test

– Hough transform

– RANSAC

• Iterative Closest Points (ICP)

What if you want to align but have no prior matched pairs?

• Hough transform and RANSAC not applicable

• Important applications

Medical imaging: align brain

scans or contours

Robotics: align point clouds

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets
of points

1. Initialize transformation (e.g., compute difference in means
and scale)

2. Assign each point in {Set 1} to its nearest spatial neighbor in
{Set 2}

3. Estimate transformation parameters
– e.g., least squares or robust least squares

4. Transform the points in {Set 1} using estimated parameters

5. Repeat steps 2-4 until change is very small

Example: aligning boundaries
1. Extract edge pixels 𝑝1. . 𝑝𝑛 and 𝑞1. . 𝑞𝑚

2. Compute initial transformation (e.g., compute translation and scaling
by center of mass, variance within each image)

3. Get nearest neighbors: for each point 𝑝𝑖
find corresponding

match(i) = argmin
𝑗

𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑞𝑗)

4. Compute transformation T based on matches

5. Warp points p according to T

6. Repeat 3-5 until convergence

p
q

Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

xICP solution
1. Find nearest neighbors for each point

2. Compute transform using matches

3. Move points using transform

4. Repeat steps 1-3 until convergence

Algorithm Summaries
• Least Squares Fit

– closed form solution
– robust to noise
– not robust to outliers

• Robust Least Squares
– improves robustness to outliers
– requires iterative optimization

• Hough transform
– robust to noise and outliers
– can fit multiple models
– only works for a few parameters (1-4 typically)

• RANSAC
– robust to noise and outliers
– works with a moderate number of parameters (e.g, 1-8)

• Iterative Closest Point (ICP)
– For local alignment only: does not require initial correspondences
– Sensitive to initialization

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: RANSAC, ICP, Fitting and Alignment
	Slide 6: Project 2
	Slide 9: Fitting and Alignment: Methods
	Slide 10: Review: Hough Transform
	Slide 11
	Slide 12
	Slide 13: Hough transform for circles
	Slide 14: Hough Transform
	Slide 17: Hough transform for circles
	Slide 18: Hough transform for circles
	Slide 19: Hough Transform
	Slide 20: Hough transform for circles
	Slide 21: Hough transform for circles
	Slide 22
	Slide 23
	Slide 25: Fitting and Alignment: Methods
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: How to choose parameters?
	Slide 32: RANSAC conclusions
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: How do we fit the best alignment?
	Slide 39: How do we fit the best alignment?
	Slide 40: How do we fit the best alignment?
	Slide 41: Alignment
	Slide 42: Parametric (global) warping
	Slide 43: Common transformations
	Slide 44: Scaling
	Slide 45: Scaling
	Slide 46: Scaling
	Slide 47: 2-D Rotation (around the origin)
	Slide 48: 2-D Rotation (around the origin)
	Slide 50: 2-D Rotation
	Slide 51: How about translation?
	Slide 52: How about translation?
	Slide 53: Basic 2D transformations
	Slide 54: 2D Affine Transformations
	Slide 55: Projective Transformations
	Slide 56: 2D image transformations (reference table)
	Slide 57: Example: solving for translation
	Slide 58: Example: solving for translation
	Slide 59: Example: solving for translation
	Slide 60: Example: solving for translation
	Slide 61: Example: solving for translation
	Slide 62: Fitting and Alignment: Methods
	Slide 63: What if you want to align but have no prior matched pairs?
	Slide 64: Iterative Closest Points (ICP) Algorithm
	Slide 65: Example: aligning boundaries
	Slide 66: Example: solving for translation
	Slide 67
	Slide 68
	Slide 69
	Slide 70: Algorithm Summaries

