
Miniature faking

http://en.wikipedia.org/wiki/File:Jodhpur_tilt_shift.jpg

In close-up photo, the depth of field is limited.

Miniature faking

Miniature faking

http://en.wikipedia.org/wiki/File:Oregon_State_Beavers_Tilt-Shift_Miniature_Greg_Keene.jpg

Review

• Previous section:

– Model fitting and outlier rejection

x

y

b

m

x

y m
3 5 3 3 2 2

3 7 11 10 4 3

2 3 1 4 5 2

2 1 0 1 3 3

b
Slide from S. Savarese

Review: Hough transform



Review: RANSAC

14=IN
Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Review: 2D image transformations

Szeliski 2.1

Rough count of mentions in recent literature

• “interest point” 958 mentions

• SIFT 3,660 mentions

• “Least Squares” 3,050 mentions

• Hough: 1,230 mentions

• RANSAC: 2,250 mentions

• ICP: 1,360 mentions

• Affine 4,090 mentions

• ResNet: 15,100 mentions

• ViT: 6,070 mentions

• Convolution: 40,500 mentions

Google search for site:https://openaccess.thecvf.com [term]

Seems to find results since 2013.

This section – multiple views

• Today – Camera Calibration. Intro to multiple views
and Stereo.

• Next Lecture – Epipolar Geometry and Fundamental
Matrix. Stereo Matching (if there is time).

• Both lectures are relevant for project 2.

Recap: Oriented and Translated Camera

Ow

iw

kw

jw

t

R

Recap: Degrees of freedom

 XtRKx =



















































=

















1
100

0

1 333231

232221

131211

0

0

z

y

x

trrr

trrr

trrr

v

us

v

u

w

z

y

x





5 6

This Lecture: How to calibrate the camera?



































=

















1

Z

Y

X

s

sv

su

 XtRKx =

What can we do with camera calibration?

How do we calibrate a camera?

312.747 309.140 30.086

305.796 311.649 30.356

307.694 312.358 30.418

310.149 307.186 29.298

311.937 310.105 29.216

311.202 307.572 30.682

307.106 306.876 28.660

309.317 312.490 30.230

307.435 310.151 29.318

308.253 306.300 28.881

306.650 309.301 28.905

308.069 306.831 29.189

309.671 308.834 29.029

308.255 309.955 29.267

307.546 308.613 28.963

311.036 309.206 28.913

307.518 308.175 29.069

309.950 311.262 29.990

312.160 310.772 29.080

311.988 312.709 30.514

880 214

 43 203

270 197

886 347

745 302

943 128

476 590

419 214

317 335

783 521

235 427

665 429

655 362

427 333

412 415

746 351

434 415

525 234

716 308

602 187

World vs Camera coordinates

Slide Credit: Saverese

Projection matrix

 XtRKx =
x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

Ow

iw

kw

jw
R,T

 X0IKx =


































=

















1
0100

000

000

1
z

y

x

f

f

v

u

w

K

Slide Credit: Saverese

Projection matrix

Intrinsic Assumptions

• Unit aspect ratio

• Optical center at (0,0)

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

Remove assumption: known optical center

 X0IKx =


































=

















1
0100

00

00

1

0

0

z

y

x

vf

uf

v

u

w

Intrinsic Assumptions

• Unit aspect ratio

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

Remove assumption: square pixels

 X0IKx =


































=

















1
0100

00

00

1

0

0

z

y

x

v

u

v

u

w 



Intrinsic Assumptions
• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

Remove assumption: non-skewed pixels

 X0IKx =


































=

















1
0100

00

0

1

0

0

z

y

x

v

us

v

u

w 



Intrinsic Assumptions Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

Note: different books use different notation for parameters

Oriented and Translated Camera

Ow

iw

kw

jw

t

R

Allow camera translation

 XtIKx =


















































=

















1
100

010

001

100

0

1

0

0

z

y

x

t

t

t

v

us

v

u

w

z

y

x





Intrinsic Assumptions Extrinsic Assumptions
• No rotation

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:















 −

=

















−

=

















−=

100

0cossin

0sincos

)(

cos0sin

010

sin0cos

)(

cossin0

sincos0

001

)(

















z

y

x

R

R

R

p

p’



y

z

Slide Credit: Saverese

Allow camera rotation

 XtRKx =



















































=

















1
100

0

1 333231

232221

131211

0

0

z

y

x

trrr

trrr

trrr

v

us

v

u

w

z

y

x





Degrees of freedom

 XtRKx =



















































=

















1
100

0

1 333231

232221

131211

0

0

z

y

x

trrr

trrr

trrr

v

us

v

u

w

z

y

x





5 6

Beyond Pinholes: Radial Distortion

• Common in wide-angle lenses or
for special applications (e.g.,
security)

• Creates non-linear terms in
projection

• Usually handled by through solving
for non-linear terms and then
correcting image

Image from Martin Habbecke

Corrected Barrel Distortion

How to calibrate the camera?



































=

















1

Z

Y

X

s

sv

su

 XtRKx =

Calibrating the Camera

Use a scene with known geometry

– Correspond image points to 3d points

– Get least squares solution (or non-linear solution)



































=

















1
34333231

24232221

14131211

Z

Y

X

mmmm

mmmm

mmmm

s

sv

su

Known 3d

locations
Known 2d

image coords

Unknown Camera Parameters

How do we calibrate a camera?

312.747 309.140 30.086

305.796 311.649 30.356

307.694 312.358 30.418

310.149 307.186 29.298

311.937 310.105 29.216

311.202 307.572 30.682

307.106 306.876 28.660

309.317 312.490 30.230

307.435 310.151 29.318

308.253 306.300 28.881

306.650 309.301 28.905

308.069 306.831 29.189

309.671 308.834 29.029

308.255 309.955 29.267

307.546 308.613 28.963

311.036 309.206 28.913

307.518 308.175 29.069

309.950 311.262 29.990

312.160 310.772 29.080

311.988 312.709 30.514

880 214

 43 203

270 197

886 347

745 302

943 128

476 590

419 214

317 335

783 521

235 427

665 429

655 362

427 333

412 415

746 351

434 415

525 234

716 308

602 187

Known 3d

locations

Known 2d

image coords

Estimate of camera center

1.5706 -0.1490 0.2598

 -1.5282 0.9695 0.3802

 -0.6821 1.2856 0.4078

 0.4124 -1.0201 -0.0915

 1.2095 0.2812 -0.1280

 0.8819 -0.8481 0.5255

 -0.9442 -1.1583 -0.3759

 0.0415 1.3445 0.3240

 -0.7975 0.3017 -0.0826

 -0.4329 -1.4151 -0.2774

 -1.1475 -0.0772 -0.2667

 -0.5149 -1.1784 -0.1401

 0.1993 -0.2854 -0.2114

 -0.4320 0.2143 -0.1053

 -0.7481 -0.3840 -0.2408

 0.8078 -0.1196 -0.2631

 -0.7605 -0.5792 -0.1936

 0.3237 0.7970 0.2170

 1.3089 0.5786 -0.1887

 1.2323 1.4421 0.4506

1.0486 -0.3645

 -1.6851 -0.4004

 -0.9437 -0.4200

 1.0682 0.0699

 0.6077 -0.0771

 1.2543 -0.6454

 -0.2709 0.8635

 -0.4571 -0.3645

 -0.7902 0.0307

 0.7318 0.6382

 -1.0580 0.3312

 0.3464 0.3377

 0.3137 0.1189

 -0.4310 0.0242

 -0.4799 0.2920

 0.6109 0.0830

 -0.4081 0.2920

 -0.1109 -0.2992

 0.5129 -0.0575

 0.1406 -0.4527



































=

















1
34333231

24232221

14131211

Z

Y

X

mmmm

mmmm

mmmm

s

sv

su

14131211 mZmYmXmsu +++=

24232221 mZmYmXmsv +++=

34333231 mZmYmXms +++=

Known 3d

locations

Known 2d

image coords

Unknown Camera Parameters

1413121134333231)(mZmYmXmumZmYmXm +++=+++

2423222134333231)(mZmYmXmvmZmYmXm +++=+++

1413121134333231 mZmYmXmumuZmuYmuXm +++=+++

2423222134333231 mZmYmXmvmvZmvYmvXm +++=+++



































=

















1
34333231

24232221

14131211

Z

Y

X

mmmm

mmmm

mmmm

s

sv

su
Known 3d

locations

Known 2d

image coords

Unknown Camera Parameters

1413121134333231 mZmYmXmumuZmuYmuXm +++=+++

2423222134333231 mZmYmXmvmvZmvYmvXm +++=+++

umuZmuYmuXmmZmYmXm 34333231141312110 −−−−+++=

vmvZmvYmvXmmZmYmXm 34333231242322210 −−−−+++=



































=

















1
34333231

24232221

14131211

Z

Y

X

mmmm

mmmm

mmmm

s

sv

su
Known 3d

locations

Known 2d

image coords

Unknown Camera Parameters

umuZmuYmuXmmZmYmXm 34333231141312110 −−−−+++=

vmvZmvYmvXmmZmYmXm 34333231242322210 −−−−+++=

• Method 1 – homogeneous linear
system. Solve for m’s entries using
linear least squares























=



































































−−−−

−−−−

−−−−

−−−−

0

0

0

0

10000

00001

10000

00001

34

33

32

31

24

23

22

21

14

13

12

11

1111111111

1111111111



m

m

m

m

m

m

m

m

m

m

m

m

vZvYvXvZYX

uZuYuXuZYX

vZvYvXvZYX

uZuYuXuZYX

nnnnnnnnnn

nnnnnnnnnn

[U, S, V] = svd(A);

M = V(:,end);

M = reshape(M,[],3)';

For python, see

numpy.linalg.svd

• Method 2 – nonhomogeneous
linear system. Solve for m’s entries
using linear least squares























=































































−−−

−−−

−−−

−−−

n

n

nnnnnnnnn

nnnnnnnnn

v

u

v

u

m

m

m

m

m

m

m

m

m

m

m

ZvYvXvZYX

ZuYuXuZYX

ZvYvXvZYX

ZuYuXuZYX


1

1

33

32

31

24

23

22

21

14

13

12

11

111111111

111111111

10000

00001

10000

00001

Ax=b form M = A\Y;

M = [M;1];

M = reshape(M,[],3)';



































=

















1
34333231

24232221

14131211

Z

Y

X

mmmm

mmmm

mmmm

s

sv

su
Known 3d

locations

Known 2d

image coords

Unknown Camera Parameters

For python, see

numpy.linalg.lstsq

Calibration with linear method

• Advantages

– Easy to formulate and solve

– Provides initialization for non-linear methods

• Disadvantages

– Doesn’t directly give you human-interpretable camera parameters

– Doesn’t model radial distortion

– Can’t impose constraints, such as known focal length

• Non-linear methods are preferred

– Define error as difference between projected points and measured points

– Minimize error using Newton’s method or other non-linear optimization

Can we factorize M back to K [R | T]?

• Yes!

• You can use RQ factorization (note – not the more familiar QR
factorization). R (right diagonal) is K, and Q (orthogonal basis)
is R. T, the last column of [R | T], is inv(K) * last column of M.

– But you need to do a bit of post-processing to make sure that the
matrices are valid. See
http://ksimek.github.io/2012/08/14/decompose/

http://ksimek.github.io/2012/08/14/decompose/

For project 3, we want the camera center

Estimate of camera center

1.5706 -0.1490 0.2598

 -1.5282 0.9695 0.3802

 -0.6821 1.2856 0.4078

 0.4124 -1.0201 -0.0915

 1.2095 0.2812 -0.1280

 0.8819 -0.8481 0.5255

 -0.9442 -1.1583 -0.3759

 0.0415 1.3445 0.3240

 -0.7975 0.3017 -0.0826

 -0.4329 -1.4151 -0.2774

 -1.1475 -0.0772 -0.2667

 -0.5149 -1.1784 -0.1401

 0.1993 -0.2854 -0.2114

 -0.4320 0.2143 -0.1053

 -0.7481 -0.3840 -0.2408

 0.8078 -0.1196 -0.2631

 -0.7605 -0.5792 -0.1936

 0.3237 0.7970 0.2170

 1.3089 0.5786 -0.1887

 1.2323 1.4421 0.4506

1.0486 -0.3645

 -1.6851 -0.4004

 -0.9437 -0.4200

 1.0682 0.0699

 0.6077 -0.0771

 1.2543 -0.6454

 -0.2709 0.8635

 -0.4571 -0.3645

 -0.7902 0.0307

 0.7318 0.6382

 -1.0580 0.3312

 0.3464 0.3377

 0.3137 0.1189

 -0.4310 0.0242

 -0.4799 0.2920

 0.6109 0.0830

 -0.4081 0.2920

 -0.1109 -0.2992

 0.5129 -0.0575

 0.1406 -0.4527

Oriented and Translated Camera

Ow

iw

kw

jw

t

R

Recovering the camera center



































=

















1

Z

Y

X

s

sv

su

 XtRKx =



















































=

















1
100

0

1 333231

232221

131211

0

0

z

y

x

trrr

trrr

trrr

v

us

v

u

w

z

y

x





This is not the camera

center -C. It is –RC

(because a point will

be rotated before tx, ty,

and tz are added)

This, m4, is K * t

Q

So K-1 m4 is t

So we need

-R-1 K-1 m4 to get C

Q is K * R. So we just

need -Q-1 m4

Estimate of camera center

1.5706 -0.1490 0.2598

 -1.5282 0.9695 0.3802

 -0.6821 1.2856 0.4078

 0.4124 -1.0201 -0.0915

 1.2095 0.2812 -0.1280

 0.8819 -0.8481 0.5255

 -0.9442 -1.1583 -0.3759

 0.0415 1.3445 0.3240

 -0.7975 0.3017 -0.0826

 -0.4329 -1.4151 -0.2774

 -1.1475 -0.0772 -0.2667

 -0.5149 -1.1784 -0.1401

 0.1993 -0.2854 -0.2114

 -0.4320 0.2143 -0.1053

 -0.7481 -0.3840 -0.2408

 0.8078 -0.1196 -0.2631

 -0.7605 -0.5792 -0.1936

 0.3237 0.7970 0.2170

 1.3089 0.5786 -0.1887

 1.2323 1.4421 0.4506

1.0486 -0.3645

 -1.6851 -0.4004

 -0.9437 -0.4200

 1.0682 0.0699

 0.6077 -0.0771

 1.2543 -0.6454

 -0.2709 0.8635

 -0.4571 -0.3645

 -0.7902 0.0307

 0.7318 0.6382

 -1.0580 0.3312

 0.3464 0.3377

 0.3137 0.1189

 -0.4310 0.0242

 -0.4799 0.2920

 0.6109 0.0830

 -0.4081 0.2920

 -0.1109 -0.2992

 0.5129 -0.0575

 0.1406 -0.4527

Computer Vision

James Hays

Stereo:

Intro

Slides by
Kristen Grauman

Multiple views

Hartley and Zisserman

Lowe

stereo vision

structure from motion

optical flow

Why multiple views?

• Structure and depth are inherently ambiguous from

single views.

Images from Lana Lazebnik

Why multiple views?

• Structure and depth are inherently ambiguous from

single views.

Optical center

P1

P2

P1’=P2’

• What cues help us to perceive 3d shape and depth?

Shading

[Figure from Prados & Faugeras 2006]

Shading from multiple light sources:

Photometric stereo

Focus/defocus

[figs from H. Jin and P. Favaro, 2002]

Images from

same point of

view, different

camera

parameters

3d shape / depth

estimates

Texture

[From A.M. Loh. The recovery of 3-D structure using visual texture patterns. PhD thesis]

http://www.csse.uwa.edu.au/~angie/thesis.pdf

Perspective effects

Image credit: S. Seitz

Motion

Figures from L. Zhang http://www.brainconnection.com/teasers/?main=illusion/motion-shape

Occlusion

Rene Magritt'e famous

painting Le Blanc-

Seing (literal translation:

"The Blank Signature")

roughly translates as

"free hand“. 1965

If stereo were critical for depth

perception, navigation, recognition,

etc., then this would be a problem

Stereo photography and stereo viewers

Invented by Sir Charles Wheatstone, 1838
Image from fisher-price.com

Take two pictures of the same subject from two slightly

different viewpoints and display so that each eye sees

only one of the images.

http://www.johnsonshawmuseum.org

http://www.johnsonshawmuseum.org

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

http://www.well.com/~jimg/stereo/stereo_list.html

http://www.well.com/~jimg/stereo/stereo_list.html

Autostereograms

Images from magiceye.com

Exploit disparity as

depth cue using single

image.

(Single image random

dot stereogram, Single

image stereogram)

Images from magiceye.com

Autostereograms

Parallax and our universe

Look again at that dot. That's here. That's

home. That's us. On it everyone you love,

everyone you know, everyone you ever heard

of, every human being who ever was, lived

out their lives. The aggregate of our joy and

suffering, thousands of confident religions,

ideologies, and economic doctrines, every

hunter and forager, every hero and coward,

every creator and destroyer of civilization,

every king and peasant, every young couple

in love, every mother and father, hopeful

child, inventor and explorer, every teacher of

morals, every corrupt politician, every

"superstar," every "supreme leader," every

saint and sinner in the history of our species

lived there--on a mote of dust suspended in a

sunbeam.

— Carl Sagan

https://en.wikipedia.org/wiki/Pale_Blue_Dot

Motion of Sun (yellow), Earth (blue), and

Mars (red). At left, Copernicus' heliocentric

motion. At right, traditional geocentric motion,

including the retrograde motion of Mars.

geocentric model (often

exemplified specifically by the

Ptolemaic system)

Nicolaus Copernicus

https://en.wikipedia.org/wiki/Heliocentrism

https://en.wikipedia.org/wiki/Sun
https://en.wikipedia.org/wiki/Earth
https://en.wikipedia.org/wiki/Mars
https://en.wikipedia.org/wiki/Heliocentrism
https://en.wikipedia.org/wiki/Geocentrism
https://en.wikipedia.org/wiki/Apparent_retrograde_motion

It was one of Tycho Brahe's principal objections to Copernican

heliocentrism that for it to be compatible with the lack of observable

stellar parallax, there would have to be an enormous and unlikely

void between the orbit of Saturn and the eighth sphere (the fixed

stars).

Tycho Brahe

If the apparent motion of the planets is caused by parallax, why aren’t

we seeing parallax for stars?

The angles involved in these calculations are very small and thus

difficult to measure. The nearest star to the Sun (and also the star

with the largest parallax), Proxima Centauri, has a parallax of

0.7685 ± 0.0002 arcsec.[1] This angle is approximately that

subtended by an object 2 centimeters in diameter located 5.3

kilometers away. First reliable measurements of parallax were not

made until 1838, by Friedrich Bessel

https://en.wikipedia.org/wiki/Stellar_parallax

https://en.wikipedia.org/wiki/Stellar_parallax

Two cameras, simultaneous

views

Single moving camera and

static scene

Stereo vision

Modern stereo depth estimation example

79

Multi-view geometry problems

• Stereo correspondence: Given a point in one of the

images, where could its corresponding points be in the

other images?

Camera 3

R3,t3

Camera 1
Camera 2

R1,t1 R2,t2
Slide credit:

Noah Snavely

Multi-view geometry problems

• Structure: Given projections of the same 3D point in two

or more images, compute the 3D coordinates of that point

Camera 3

R3,t3 Slide credit:

Noah Snavely

?

Camera 1
Camera 2

R1,t1 R2,t2

Multi-view geometry problems

• Motion: Given a set of corresponding points in two or

more images, compute the camera parameters

Camera 1
Camera 2 Camera 3

R1,t1 R2,t2
R3,t3

? ? ? Slide credit:

Noah Snavely

Estimating depth with stereo

• Stereo: shape from “motion” between two views

• We’ll need to consider:

• Info on camera pose (“calibration”)

• Image point correspondences

scene point

optical

center

image plane

Camera parameters

Camera

frame 1

Intrinsic parameters:

Image coordinates relative to

camera → Pixel coordinates

Extrinsic parameters:

Camera frame 1 → Camera frame 2

Camera

frame 2

• Extrinsic params: rotation matrix and translation vector

• Intrinsic params: focal length, pixel sizes (mm), image center

point, radial distortion parameters

We’ll assume for now that these parameters are

given and fixed.

Geometry for a simple stereo system

• First, assuming parallel optical axes, known camera

parameters (i.e., calibrated cameras):

baseline

optical

center

(left)

optical

center

(right)

Focal

length

World

point

image point

(left)

image point

(right)

Depth of p

• Assume parallel optical axes, known camera parameters

(i.e., calibrated cameras). What is expression for Z?

Similar triangles (pl, P, pr) and

(Ol, P, Or):

Geometry for a simple stereo system

Z

T

fZ

xxT rl =
−

+−

disparity
lr xx

T
fZ

−
=

lr xx

T
fZ

−
=

lr xx

T
fZ

−
=

lr xx

T
fZ

−
=

-

To be continued

	Slide 1: Miniature faking
	Slide 2: Miniature faking
	Slide 3: Miniature faking
	Slide 4: Review
	Slide 5
	Slide 6
	Slide 7: Review: 2D image transformations
	Slide 8: Rough count of mentions in recent literature
	Slide 9: This section – multiple views
	Slide 10: Recap: Oriented and Translated Camera
	Slide 11: Recap: Degrees of freedom
	Slide 12: This Lecture: How to calibrate the camera?
	Slide 13
	Slide 14
	Slide 15: How do we calibrate a camera?
	Slide 16: World vs Camera coordinates
	Slide 23
	Slide 25
	Slide 26: Remove assumption: known optical center
	Slide 27: Remove assumption: square pixels
	Slide 28: Remove assumption: non-skewed pixels
	Slide 29: Oriented and Translated Camera
	Slide 30: Allow camera translation
	Slide 31: 3D Rotation of Points
	Slide 32: Allow camera rotation
	Slide 33: Degrees of freedom
	Slide 34: Beyond Pinholes: Radial Distortion
	Slide 35: How to calibrate the camera?
	Slide 36: Calibrating the Camera
	Slide 37: How do we calibrate a camera?
	Slide 38: Estimate of camera center
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Calibration with linear method
	Slide 44: Can we factorize M back to K [R | T]?
	Slide 45: For project 3, we want the camera center
	Slide 46: Estimate of camera center
	Slide 47: Oriented and Translated Camera
	Slide 48: Recovering the camera center
	Slide 49: Estimate of camera center
	Slide 50
	Slide 51: Multiple views
	Slide 52: Why multiple views?
	Slide 53
	Slide 54: Why multiple views?
	Slide 55
	Slide 56: Shading
	Slide 57
	Slide 58: Focus/defocus
	Slide 59: Texture
	Slide 60: Perspective effects
	Slide 61: Motion
	Slide 62: Occlusion
	Slide 63
	Slide 64: Stereo photography and stereo viewers
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70: Autostereograms
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82: Multi-view geometry problems
	Slide 83: Multi-view geometry problems
	Slide 84: Multi-view geometry problems
	Slide 94: Estimating depth with stereo
	Slide 95: Camera parameters
	Slide 96: Geometry for a simple stereo system
	Slide 97
	Slide 98
	Slide 99: To be continued

