





e Stereo and lidar can fall victim to reflections?
* Yes, there’s no easy way around that
* https://youtu.be/pBzU8TD1iks



https://youtu.be/pBzU8TD1iks

Previous lecture: World vs Camera coordinates




Previous lecture:
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4 Part 4: Camera projection matrix

Introduction

The goal is to compute the projection matrix that goes from world 3D coordinates to 2D image coordinates.
Recall that using homogeneous coordinates the equation for moving from 3D world to 2D camera coordinates

is:
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Another way of writing this equation is:
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Previous Lecture: Geometry for a
simple stereo system

« Assume parallel optical axes, known camera parameters
(.e., calibrated cameras). What is expression for Z?

Similar triangles (p,, P, p,) and
(O, P, O)):




Depth from disparity

image I(x,y) Disparity map D(x,y) image I'(x",y’)

(XY )=(x+D(X,y), ¥)

So if we could find the corresponding points in two images,
we could estimate relative depth...



If we have a 2D point of interest, where do we need to
search for its corresponding point in another view?




Today’s Outline

* Epipolar Geometry
— Finding epipolar relationship between two images
— Using epipolar geometry to rule out outliers
— Finding dense correspondence along epipolar lines



Epipolar Geometry and
Stereo Vision

Chapter 11.3 in Szeliski

Many slides adapted from Derek Hoiem, Lana Lazebnik, Silvio Saverese, Steve Seitz, many figures from Hartley & Zisserman



* Epipolar geometry

— Relates cameras from two positions



Depth from Stereo

e Goal: recover depth by finding image coordinate x’ that corresponds to
X

C Baseline C’
B



Depth from Stereo

e Goal: recover depth by finding image coordinate x” that
corresponds to x
e Sub-Problems

1. Calibration: How do we recover the relation of the cameras (if
not already known)?

2. Correspondence: How do we search for the matching point x’?

X




Correspondence Problem

* We have two images taken from cameras with different
intrinsic and extrinsic parameters

* How do we match a point in the first image to a point in the
second? How can we constrain our search?



Key idea: Epipolar constraint



Key idea: Epipolar constraint

Potential matches for x have to lie on the corresponding line /’.

Potential matches for x” have to lie on the corresponding line |.



Wouldn’t it be nice to know where
matches can live? To constrain our 2d
search to 1d.



VLFeat’s 800 most confident matches
among 10,000+ local features.




Epipolar geometry: notation

X

4
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» Baseline — line connecting the two camera centers
* Epipoles

= intersections of baseline with image planes

= projections of the other camera center

* Epipolar Plane — plane containing baseline (1D family)



Epipolar geometry: notation
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» Baseline — line connecting the two camera centers
* Epipoles

= intersections of baseline with image planes

= projections of the other camera center

* Epipolar Plane — plane containing baseline (1D family)

» Epipolar Lines - intersections of epipolar plane with image
planes (always come in corresponding pairs)




Example: Converging cameras




Example: Motion or displacement parallel
to image plane




Example: Forward motion

What would the epipolar lines look like if the camera moves
forward?




Example: Forward motion

e

Epipole has same coordinates in both
images.

Points move along lines radiating from e:
“Focus of expansion”




Epipolar constraint: Calibrated case

X

(@)

Given the intrinsic parameters of the cameras:

1. Convert to normalized coordinates by pre-multiplying all points with the
inverse of the calibration matrix; set first camera’s coordinate system to
world coordinates

\/ -1 ol -1,/ /
X=K7Xx=X _ X =K™7x =X
: 3D int
Homogeneous 2d point \ seene poin R
(3D ray towards X) 2D pixel coordinate 3D scene point in 2

(homogeneous) camera’s 3D coordinates



Epipolar constraint: Calibrated case

X

(@)

Given the intrinsic parameters of the cameras:

1. Convert to normalized coordinates by pre-multiplying all points with the

inverse of the calibration matrix; set first camera’s coordinate system to
world coordinates

2. Define some R and t that relate X to X’ as below
/ for some scale factor

% = Kx =X K X



Epipolar constraint: Calibrated case

X

X=K™*x=X X'=K'™x'=X'

R=R'+t m)  R-[tx(RX)]=0

(because X, Rx’', and t are co-planar)




Essential matrix

!!

L e el

g tx(RE)]=0 ®mm) RK'ERXR’ =0 with E=[t] R

: .

Essential Matrix
(Longuet-Higgins, 1981)




Properties of the Essential matrix

X

(@)

R-[tx(RR)]=0 mm) K'EX'=0 with

Drop * below to simplify notation

E x” is the epipolar line associated with x” (/ = E x’)
E'x is the epipolar line associated with x (I’ = E'x)
Ee’=0 and E'e=0

E is singular (rank two)

E has five degrees of freedom
— (3 forR, 2 for t because it’s up to a scale)

Skew-
symmetric
matrix



The Fundamental Matrix

Without knowing K and K’, we can define a similar
relation using unknown normalized coordinates

o1y T X FX'=0 with F=K'EK'™
K!—l l

Fundamental Matrix
(Faugeras and Luong, 1992)




Properties of the Fundamental matrix

X FxX'=0 with F=K TEK'™

« F x’=0is the epipolar line associated with x’

 FT™x =0 is the epipolar line associated with x

« Fe’'=0 and F'e=0

» Fis singular (rank two): det(F)=0

 F has seven degrees of freedom: 9 entries but defined up to scale, det(F)=0



Estimating the Fundamental Matrix

e 8-point algorithm
— Least squares solution using SVD on equations from 8 pairs of correspondences
— Enforce det(F)=0 constraint using SVD on F

e 7-point algorithm
— Use least squares to solve for null space (two vectors) using SVD and 7 pairs of
correspondences

— Solve for linear combination of null space vectors that satisfies det(F)=0

* Minimize reprojection error
— Non-linear least squares

Note: estimation of F (or E) is degenerate for a planar scene.



8-point algorithm

1. Solve a system of homogeneous linear equations

a. Write down the system of equations

X'Fx'=0
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8-point algorithm

1. Solve a system of homogeneous linear equations
a. Write down the system of equations
b. Solve f from Af=0 using SVD

Matlab:

[U, S, V] = svd(Ad);

f V(:, end);

F reshape (£, [3 31)';

For python, see
numpy.linalg.svd



Need to enforce singularity constraint

Fundamental matrix has rank 2 : det(F) = 0.

‘e \\

Left : Uncorrected F — epipolar lines are not coincident.

A

Wl Sl

Right: Epipolar lines from corrected F.



8-point algorithm

1. Solve a system of homogeneous linear equations
a. Write down the system of equations

b. Solve f from Af=0 using SVD

Matlab:
[U, S, V] = svd(A);

f =V(:, end);
F reshape (f, [3 3])’;

2. Resolve det(F) = 0 constraint using SVD

Matlab:
(U, S, V] = svd(F); h
S(3,3) = 0; For python, see

F = U*S*V’; numpy.linalg.svd



5 Part 5: Fundamental matrix

epipolar plane

Figure 2: Two-camera setup. Reference: Szelisld, p. 682

The next part of thi= project is estimating the mapping of points in one image to lines in another by
means of the fundamental matrix. This will require you to use similar methods to thosze in part 4. We will
make nse of the corresponding point locations listed in pre2d-pic_a.txt and preid-pic_b.txc. Recall that
the definition of the fundamental matrix is:

fuu fiz fis\ [fu
{'TI' 'L-"' l]l le fzz fg;g kA - D {g}
far fa2 fas 1

for a point (u, v, 1) in image A, and a point (u',v", 1) in image B. See Appendix A for the full derivation.
Note: the fundamental matrix is sometimes defined as the transpose of the above matrix with the left and
right image points swapped. Both are valid fundamental matrices, but the visualization functions in the
starter code assume you use the above form.

Another way of writing this matrix equations is:

Fuu+ frav + fia
ET.LF v 1} fgl'ﬂ + fzg‘l.' + fg;{_ =1 {lﬂ}
Fau+ faav + fay

Which iz the same as:

(fuauw' + fravu' + fisu' + forur’ + faovv" + fagv' + faru+ faav + faz) =0 (11}




Problem with eight-point algorithm
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Problem with eight-point algorithm
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Poor numerical conditioning

Can be fixed by rescaling the data
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The normalized eight-point algorithm

(Hartley, 1995)

« Center the image data at the origin, and scale it so
the mean squared distance between the origin and
the data points is 2 pixels

« Use the eight-point algorithm to compute F from the
normalized points

« Enforce the rank-2 constraint (for example, take SVD
of F and throw out the smallest singular value)

« Transform fundamental matrix back to original units:
If T and T’ are the normalizing transformations in the
two images, than the fundamental matrix in original
coordinatesis TTF T



But which 8 points do we choose?



VLFeat’s 800 most confident matches
among 10,000+ local features.




6 Part 6: Fundamental matrix with RANSAC

For two photographs of a scene it’s unlikely that vou'd have perfect point correspondence with which to
do the regression for the fundamental matrix. So, next vou are going to compute the fundamental matrix
with point correspondences computed using SIFT. As discussed in class, least squares regression alone is not
appropriate in this scenario due to the presence of multiple outliers. In order to estimate the fundamental
matrix from this noisy data vou'll need to use RANSAC in conjunction with your fundamental matrix esti-
mation.

You'll use these putative point correspondences and RANSAC to find the “best” fundamental matrix. You
will iteratively choose some number of point correspondences (8, 9, or some small number), solve for the
fundamental matrix using the function vou wrote for part 5, and then count the number of inliers. In-
liers in this context will be point correspondences that “agree”™ with the estimated fundamental matrix.
In order to count how many inliers a fundamental matrix has, you'll need a distance metric based on the
fundamental matrix. (Hint: For a point correspondence (r, ') what properties does the fundamental ma-
trix have?). You'll need to pick a threshold between inliers and outliers and your results are very sensitive
to this threshold, so explore a range of values. You don't want to be too permissive about what you con-
sider an inlier, nor do you want to be too conservative. Return the lundamental matrix with the most inliers.

Recall from lecture the expected number of iterations of RANSAC to find the “right” solution in the presence
of outliers. For example, if half of your input correspondences are wrong, then vou have a (0.5)% = 0.39%




How to test for outliers?
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Epipolar lines




Keep only the matches at are “inliers” with

respect to the “best” fundamental matrix
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The scale of algorithm name quality

better RANSAC
SIFT

Deep Learning

Optical Flow
Hough Transform

Neural Networks
Essential and Fundamental Matrix

wOrse Dynamic Programming



In class written Quiz format

* 15 to 20 short answer or multiple-choice questions
e Typically can be done in half an hour
* No calculators needed

* Closed book

* Only covers material discussed in class, not book. But the book
is still a useful resource

e Covers all material through the quiz date
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