

Deep Learning Neural Net Basics

Computer Vision
James Hays

Outline

- Neural Networks
- Convolutional Neural Networks
- Variants
 - Detection
 - Segmentation
 - Siamese Networks
- Visualization of Deep Networks

Supervised Learning

 $\{(x^i, y^i), i=1...P\}$ training dataset x^i i-th input training example y^i i-th target label P number of training examples

Goal: predict the target label of unseen inputs.

Supervised Learning: Examples

Classification

Denoising

OCR

Supervised Deep Learning

Classification

Denoising

Project 3: Scene Classification with Deep Nets

Dataset

The dataset to be used in this assignment is the 15-scene dataset, containing natural images in 15 possible scenarios like bedrooms and coasts. It was first introduced by Lazebnik et al, 2006 [1]. The images have a typical size of around 200 by 200 pixels, and serve as a good milestone for many vision tasks. A sample collection of the images can be found below:

Figure 1: Example scenes from each of the categories of the dataset.

Download the data (link at the top), unzip it and put the data folder in the proj4 directory.

1 Part 1: SimpleNet

Introduction

In this project, scene recognition with deep learning, we are going to train a simple convolutional neural net from scratch. We'll be starting with some modification to the dataloader used in this project to include a few extra pre-processing steps. Subsequently, you will define your own model and optimization function. A trainer class will be provided to you, and you will be able to test out the performance of your model with this complete pipeline of classification problem.

Figure 2: The base SimpleNet architecture for Part 1.

Outline

- Neural Networks
- Convolutional Neural Networks
- Variants
 - Detection
 - Segmentation
 - Siamese Networks
- Visualization of Deep Networks

Neural Networks

Assumptions (for the next few slides):

- The input image is vectorized (disregard the spatial layout of pixels)
- The target label is discrete (classification)

Neural Networks: example

- \boldsymbol{x} input
- h^1 1-st layer hidden units
- h^2 2-nd layer hidden units
- output

Example of a 2 hidden layer neural network (or 4 layer network, counting also input and output).

Def.: Forward propagation is the process of computing the output of the network given its input.

$$\boldsymbol{x} \in R^D \quad W^1 \in R^{N_1 \times D} \quad \boldsymbol{b^1} \in R^{N_1} \quad \boldsymbol{h^1} \in R^{N_1}$$

$$\boldsymbol{h}^1 = max(0, W^1 \boldsymbol{x} + \boldsymbol{b}^1)$$

 W^1 1-st layer weight matrix or weights

 $\boldsymbol{b}^{\mathbf{l}}$ 1-st layer biases

The non-linearity u = max(0, v) is called **ReLU** in the DL literature. Each output hidden unit takes as input all the units at the previous layer: each such layer is called "**fully connected**".

Ranzato

$$h^1 \in R^{N_1} \quad W^2 \in R^{N_2 \times N_1} \quad b^2 \in R^{N_2} \quad h^2 \in R^{N_2}$$

$$\boldsymbol{h^2} = max(0, W^2 \boldsymbol{h^1} + \boldsymbol{b^2})$$

 W^2 2-nd layer weight matrix or weights b^2 2-nd layer biases

$$h^2 \in R^{N_2} \ W^3 \in R^{N_3 \times N_2} \ b^3 \in R^{N_3} \ o \in R^{N_3}$$

$$\boldsymbol{o} = max(0, W^3 \boldsymbol{h}^2 + \boldsymbol{b}^3)$$

 W^3 3-rd layer weight matrix or weights b^3 3-rd layer biases

Alternative Graphical Representation

Question: Why do we need many layers?

Answer: When input has hierarchical structure, the use of a hierarchical architecture is potentially more efficient because intermediate computations can be re-used. DL architectures are efficient also because they use **distributed representations** which are shared across classes.

[0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 ...] truck feature

Exponentially more efficient than a 1-of-N representation (a la k-means)

[1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1...] motorbike
[0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 ...] truck

Question: What does a hidden unit do?

Answer: It can be thought of as a classifier or feature detector.

Question: What does a hidden unit do?

Answer: It can be thought of as a classifier or feature detector.

Question: How many layers? How many hidden units?

Answer: Cross-validation or hyper-parameter search methods are the answer. In general, the wider and the deeper the network the more complicated the mapping.

Question: What does a hidden unit do?

Answer: It can be thought of as a classifier or feature detector.

Question: How many layers? How many hidden units?

Answer: Cross-validation or hyper-parameter search methods are the answer. In general, the wider and the deeper the network the more complicated the mapping.

Question: How do I set the weight matrices?

Answer: Weight matrices and biases are learned.

First, we need to define a measure of quality of the current mapping.

Then, we need to define a procedure to adjust the parameters.

How Good is a Network?

Probability of class k given input (softmax):

$$p(c_k=1|\mathbf{x}) = \frac{e^{o_k}}{\sum_{j=1}^{C} e^{o_j}}$$

(Per-sample) **Loss**; e.g., negative log-likelihood (good for classification of small number of classes):

$$L(\boldsymbol{x}, y; \boldsymbol{\theta}) = -\sum_{i} y_{i} \log p(c_{i}|\boldsymbol{x})$$

Training

Learning consists of minimizing the loss (plus some regularization term) w.r.t. parameters over the whole training set.

$$\boldsymbol{\theta}^* = arg min_{\boldsymbol{\theta}} \sum_{n=1}^{P} L(\boldsymbol{x}^n, y^n; \boldsymbol{\theta})$$

Training

Learning consists of minimizing the loss (plus some regularization term) w.r.t. parameters over the whole training set.

$$\boldsymbol{\theta}^* = arg min_{\boldsymbol{\theta}} \sum_{n=1}^{P} L(\boldsymbol{x}^n, y^n; \boldsymbol{\theta})$$

Question: How to minimize a complicated function of the parameters?

Answer: Chain rule, a.k.a. **Backpropagation!** That is the procedure to compute gradients of the loss w.r.t. parameters in a multi-layer neural network.

Key Idea: Wiggle To Decrease Loss

Let's say we want to decrease the loss by adjusting $W_{i,j}^1$. We could consider a very small $\epsilon = 1\text{e-}6$ and compute:

$$L(\boldsymbol{x}, y; \boldsymbol{\theta})$$

$$L(\boldsymbol{x}, y; \boldsymbol{\theta} \setminus W_{i,j}^1, W_{i,j}^1 + \epsilon)$$

Then, update:

$$W_{i,j}^{1} \leftarrow W_{i,j}^{1} + \epsilon \, sgn(L(\boldsymbol{x}, y; \boldsymbol{\theta}) - L(\boldsymbol{x}, y; \boldsymbol{\theta} \setminus W_{i,j}^{1}, W_{i,j}^{1} + \epsilon))$$
Banzato

Derivative w.r.t. Input of Softmax

$$p(c_k=1|\mathbf{x}) = \frac{e^{o_k}}{\sum_{j} e^{o_j}}$$

$$L(x, y; \theta) = -\sum_{j} y_{j} \log p(c_{j}|x)$$
 $y = [0.0.010.0]$

By substituting the fist formula in the second, and taking the derivative w.r.t. *o* we get:

$$\frac{\partial L}{\partial \rho} = p(c|\mathbf{x}) - \mathbf{y}$$

Given $\partial L/\partial \mathbf{o}$ and assuming we can easily compute the Jacobian of each module, we have:

$$\frac{\partial L}{\partial W^3} = \frac{\partial L}{\partial \boldsymbol{o}} \frac{\partial \boldsymbol{o}}{\partial W^3}$$

$$\frac{\partial L}{\partial \boldsymbol{h}^2} = \frac{\partial L}{\partial \boldsymbol{o}} \frac{\partial \boldsymbol{o}}{\partial \boldsymbol{h}^2}$$

Suppose $\mathbf{f}: \mathbf{R}^n \to \mathbf{R}^m$ is a function such that each of its first-order partial derivatives exist on \mathbf{R}^n . This function takes a point $\mathbf{x} \in \mathbf{R}^n$ as input and produces the vector $\mathbf{f}(\mathbf{x}) \in \mathbf{R}^m$ as output. Then the Jacobian matrix of \mathbf{f} is defined to be an $m \times n$ matrix, denoted by \mathbf{J} , whose (i,j)th entry is $\mathbf{J}_{ij} = \frac{\partial f_i}{\partial x_i}$, or explicitly

$$\mathbf{J} = egin{bmatrix} rac{\partial \mathbf{f}}{\partial x_1} & \cdots & rac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = egin{bmatrix}
abla^{\mathrm{T}} f_1 \ dots \
abla^{\mathrm{T}} f_m \end{bmatrix} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots \
abla^{\mathrm{T}} f_m \end{bmatrix} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_n}{\partial x_n} \
abla^{\mathrm{T}} & \cdots & rac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Given $\partial L/\partial \mathbf{o}$ and assuming we can easily compute the Jacobian of each module, we have:

$$\frac{\partial L}{\partial W^3} = \frac{\partial L}{\partial \boldsymbol{o}} \frac{\partial \boldsymbol{o}}{\partial W^3}$$

$$\frac{\partial L}{\partial \boldsymbol{h}^2} = \frac{\partial L}{\partial \boldsymbol{o}} \frac{\partial \boldsymbol{o}}{\partial \boldsymbol{h}^2}$$

Given $\partial L/\partial \mathbf{o}$ and assuming we can easily compute the Jacobian of each module, we have:

$$\frac{\partial L}{\partial W^3} = \frac{\partial L}{\partial o} \frac{\partial o}{\partial W^3} \qquad \frac{\partial L}{\partial h^2} = \frac{\partial L}{\partial o} \frac{\partial o}{\partial h^2}$$

$$\frac{\partial L}{\partial W^3} = (p(c|\mathbf{x}) - \mathbf{y}) h^{2T} \qquad \frac{\partial L}{\partial h^2} = W^{3T} (p(c|\mathbf{x}) - \mathbf{y})_{23}$$

Given $\frac{\partial L}{\partial \mathbf{h}^2}$ we can compute now:

$$\frac{\partial L}{\partial W^2} = \frac{\partial L}{\partial \boldsymbol{h}^2} \frac{\partial \boldsymbol{h}^2}{\partial W^2} \qquad \frac{\partial L}{\partial \boldsymbol{h}^1} = \frac{\partial L}{\partial \boldsymbol{h}^2} \frac{\partial \boldsymbol{h}^2}{\partial \boldsymbol{h}^1}$$

Given $\frac{\partial L}{\partial \mathbf{h}^1}$ we can compute now:

$$\frac{\partial L}{\partial W^1} = \frac{\partial L}{\partial \boldsymbol{h}^1} \frac{\partial \boldsymbol{h}^1}{\partial W^1}$$

Question: Does BPROP work with ReLU layers only?

Answer: Nope, any a.e. differentiable transformation works.

Question: Does BPROP work with ReLU layers only?

Answer: Nope, any a.e. differentiable transformation works.

Question: What's the computational cost of BPROP?

Answer: About twice FPROP (need to compute gradients w.r.t. input and parameters at every layer).

Optimization

Stochastic Gradient Descent (on mini-batches):

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \frac{\partial L}{\partial \boldsymbol{\theta}}, \eta \in (0, 1)$$

Stochastic Gradient Descent with Momentum:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \boldsymbol{\Delta}$$

$$\Delta \leftarrow 0.9 \Delta + \frac{\partial L}{\partial \theta}$$

Note: there are many other variants...

Toy Example: Synthetic Data

Toy Example: Synthetic Data

Outline

- Supervised Neural Networks
- Convolutional Neural Networks
- Examples
- Tips

Outline

- Supervised Neural Networks
- Convolutional Neural Networks
- Examples
- Tips

Fully Connected Layer

Locally Connected Layer

Locally Connected Layer

Key Ideas

A standard neural net applied to images:

- scales quadratically with the size of the input
- does not leverage stationarity

Solution:

- connect each hidden unit to a small patch of the input
- share the weight across space

This is called: **convolutional layer.**

A network with convolutional layers is called convolutional network.

Pooling Layer

Pooling Layer

Pooling Layer: Examples

Max-pooling:

$$h_{j}^{n}(x, y) = max_{\bar{x} \in N(x), \bar{y} \in N(y)} h_{j}^{n-1}(\bar{x}, \bar{y})$$

Average-pooling:

$$h_{j}^{n}(x, y) = 1/K \sum_{\bar{x} \in N(x), \bar{y} \in N(y)} h_{j}^{n-1}(\bar{x}, \bar{y})$$

L2-pooling:

$$h_{j}^{n}(x, y) = \sqrt{\sum_{\bar{x} \in N(x), \bar{y} \in N(y)} h_{j}^{n-1}(\bar{x}, \bar{y})^{2}}$$

L2-pooling over features:

$$h_{j}^{n}(x, y) = \sqrt{\sum_{k \in N(j)} h_{k}^{n-1}(x, y)^{2}}$$

Pooling Layer: Receptive Field Size

If convolutional filters have size KxK and stride 1, and pooling layer has pools of size PxP, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size:

Pooling Layer: Receptive Field Size

If convolutional filters have size KxK and stride 1, and pooling layer has pools of size PxP, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size:

Local Contrast Normalization

$$h^{i+1}(x,y) = \frac{h^{i}(x,y) - m^{i}(N(x,y))}{\sigma^{i}(N(x,y))}$$

Local Contrast Normalization

Local Contrast Normalization

Performed also across features and in the higher layers..

Effects:

- improves invariance
- improves optimization
- increases sparsity

Note: computational cost is negligible w.r.t. conv. layer.

ConvNets: Typical Stage

One stage (zoom)

ConvNets: Typical Stage

One stage (zoom)

Conceptually similar to: SIFT, HoG, etc.

ConvNets: Typical Architecture

One stage (zoom)

Whole system

ConvNets: Typical Architecture

Whole system Input Image To stage 1st stage 2nd stage 3rd stage

Conceptually similar to:

SIFT \rightarrow K-Means \rightarrow Pyramid Pooling \rightarrow SVM

Lazebnik et al. "...Spatial Pyramid Matching..." CVPR 2006

SIFT \rightarrow Fisher Vect. \rightarrow Pooling \rightarrow SVM

Sanchez et al. "Image classifcation with F.V.: Theory and practice" IJCV 2012

Learning method	Ease of configuration
Neural Network	1
Nearest Neighbor	10
Linear SVM	10
Non-linear SVM	5
Decision Tree or Random Forest	4

Learning method	Ease of configuration	Ease of interpretation
Neural Network	1	1
Nearest Neighbor	10	10
Linear SVM	10	9
Non-linear SVM	5	4
Decision Tree or Random Forest	4	4

Learning method	Ease of configuration	Ease of interpretation	Speed / memory when training
Neural Network	1	1	1
Nearest Neighbor	10	10	8
Linear SVM	10	9	10
Non-linear SVM	5	4	2
Decision Tree or Random Forest	4	4	4

Learning method	Ease of configuration	Ease of interpretation	Speed / memory when training	Speed / memory at test time
Neural Network	1	1	1	6
Nearest Neighbor	10	10	8	4
Linear SVM	10	9	10	10
Non-linear SVM	5	4	2	2
Decision Tree or Random Forest	4	4	4	8

Learning method	Ease of configuration	Ease of interpretation	Speed / memory when training	Speed / memory at test time	Accuracy w/ lots of data
Neural Network	1	1	1	6	10
Nearest Neighbor	10	10	8	4	7
Linear SVM	10	9	10	10	5
Non-linear SVM	5	4	2	2	8
Decision Tree or Random Forest	4	4	4	8	7

Learning method	Ease of configu		Ease of interpretation	Speed / memory when training	Speed / memory at test time	Accuracy w/ lots of data	
Neural Network	1		1	1	6	10	
Nearest Neighbor	10		10	8	4	7	
Linear SVM	10	Re	Representation design matters				
Non-linear SVM	5	more for all of these					
Decision Tree or Random Forest	4						