Recognition Techniques, old and new
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Today's outline

 We've covered Deep Convolutional Networks. But what did
recognition techniques look like before AlexNet?
— Bag of words models
— Sliding window models

« What do more recent deep learning architectures look like?
— VGG Net

— Google Inception architectures
— ResNet



Recognition: Overview and History

Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce
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‘ But there’s really a “*heavy tail” of rarer object categories that

— humans can often understand after seeing few or no examples

< And nothing really fits neatly into categories
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Specific recognition tasks
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Svetlana Lazebnik



Scene categorization or classification

e outdoor/indoor

Svetlana Lazebnik



Image annotation / tagging / attributes

. street
* people
N»iga,,_- building

; 'tnq. 5;«:;”":‘ L mOuntaln
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“'_' tourism

- cloudy

Categories are exclusive. An instance belongs to one category.
Attributes are not exclusive. An instance can have many or none.
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Object detection

 find pedestrians

Svetlana Lazebnik



Image parsing / semantic segmentation
Sky
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“Segmentation” doesn’t count objects.
Not everything Is a countable object, anyway

Svetlana Lazebnik



Recognition Is all about modeling variability
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Variability of a single Camera position

object instance due to:  1/lumination
Shape parameters

@ Within-class variations among multiple object instances?

Svetlana Lazebnik



Within-class variations

Svetlana Lazebnik



History of ideas In recognition

« 1960s — early 1990s: the geometric era

Svetlana Lazebnik



Recall: Alignment

* Alignment: fitting a model to a transformation between pairs of
features (matches) in two images
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Svetlana Lazebnik



Recognition as an alignment problem:
Block world

L. G. Roberts, Machine
Perception of Three
Dimensional Solids, Ph.D.
thesis, MIT Department
of Electrical Engineering,
1963.

Fig. 1. A system for recognizing 3-d polyhedral scenes. a) L.G. Roberts. b)A blocks
world scene. c¢)Detected edges using a 2x2 gradient operator. d} A 3-d polyhedral
description of the scene, formed automatically from the single image. e) The 3-d scene
displayed with a viewpoint different from the original image to demonstrate its accuracy
and completeness. (b) - e) are taken from [64] with permission MIT Press.)

J. Mundy, Object Recognition in the Geometric Era: a Retrospective, 2006



http://www.di.ens.fr/~ponce/mundy.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/11589/33959125-MIT.pdf?sequence=2&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/11589/33959125-MIT.pdf?sequence=2&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/11589/33959125-MIT.pdf?sequence=2&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/11589/33959125-MIT.pdf?sequence=2&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/11589/33959125-MIT.pdf?sequence=2&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/11589/33959125-MIT.pdf?sequence=2&isAllowed=y

ABSTRACT

In order to make it possible for a computer to construct and
display a three-dimensional array of solid objects from a single
two-dimensional photograph, the rules and assumptions of depth
perception have been carefully analyzed and mechanized. It is assumed
that a photograph is a perspective projection of a set of objects which
can be constructed from transformations of known three-dimensional
models, and that the objects are supported by other visible objects or
by a ground plane. These assumptions enable a computer to obtain a
reasonable, three-dimensional description from the edge information
in a photograph by means of a topological, mathematical process.

A computer program has been written which can process a
photograph inte a line drawing, transform the line drawing into a three-
dimensional representation, and finally, display the three-dimensional
structure with all the hidden lines removed, from any point of view. The
2-D to 3-D construction and 3-D to 2-D display processes are sufficiently
general to handle most collections of planar-surfaced objects and provide
a valuable starting point for future investigation of computer-aided three-
dimensional systems.



referred to. Let us fix the real world coordinates by assuming that the
focal plane is the x=0 plane and the focal point is at x=f, y=0, =2=0.
In order that the picture not be a reflection, we choose the focal plane
in front of the camera. Then the objects seen will be in the -x half
space. 'i'hus, the focal plane is really the plane of the print, not the

negative. Figure 1 shows this arrangement.
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Figure 1:

A particular camera will have some focal distance f. We will
consider the square on the focal plane which was enlarged to create
the print, The center of this square will be at some coordinates y_., 2,

and the size of the square from the center to an edge will be some

It is not necessary to know the variables Vor %o f, and S
since they can be computed from the picture given other assumptions
later on. However, for the sake of simplicity we will assume S /i is

known and that y_ = 2z = 0.

o The numerical values of § and f alocne

are not necessary since this just affects the scale of the real world.
Thus, we can assume S = 1 and with r = S/ { obtain a simple transfor-

mation F.

If v is a point in real space, then vP is a point in a perspective
space such that its Y and Z coordinates are the original point's
projection on the picture plane. The X a:f_:nénrdinate of vP is also
obtained and will be useful for hidden line computation during display

of 3-D objects.



A, Original Picture B. Differentiated Picture

Hotated View

C. Line Drawing D.



A. Original Picture B. Dhiffereatiated Pictuarae

C. Line Drawing D. Rotated View



The input program has about 5000 instructions and uses over
40,000 registers of data storage for its pictures and lists. It takes -
about one minute to process a picture into a line drawing of which half
is for differentiation. The 3-D construction and display programs are
each about 3000 instructions and use from 5000 to 40, 000 registers of
data storage depending upon the number of objects. Both construction
and display take about one second per object. All told, a rotated view of

the objects in a photograph might be obtained in two minutes.



As far as machine depth perception, the only work I know of
is on binocular images. Julesz has reported a procedure which shifts
the binocular pictures to find the areas at different depths. 2 This
procedure uses only texture, not edges, to develop the depth information
and shows that the binocular information alone is sufficient for depth
perception. This work is similar in goal but completely different in
procedure from mine. Other work in machine photograph processing
has mainly been in the field of information reduction for bandwidth com-

pression and my paper in this area summarizes this work.
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Representing and recognizing object categories
IS harder...

Binford (1971), Nevatia & Binford (1972), Marr & Nishihara (1978)



Russia Covering Aircraft With Tires Is
About Confusing Image-Matching
Missile Seekers U.S. Military Confirms

Russia's efforts to befuddle cruise missiles and drones with imaging-matching seeker
capabilities speaks to issues that go beyond the war in Ukraine.

JOSEPH TREVITHICK / UPDATED ON SEP 13, 2024 7:50 PM EDT / 153

Schuyler Moore, U.S. Central Command’s (CENTCOM) first-ever Chief
Technology Officer, mentioned the Russian use of tires to disrupt

incoming attacks on air bases during a broader live-streamed roundtable

talk on artificial intelligence (AI) and related technologies that the Center

for Strategic & International Studies (CSIS) think tank hosted today.

Before taking up her current role, Moore had been Chief Strategy Officer

for U.S. Naval Forces Central Command’s (NAVCENT) Task Force 59,
| which is tasked with experimenting with integrating new Al-driven and
uncrewed capabilities into day-to-day naval operations in the Middle

East.

A “sort of classic unclassified example that exists is like a picture of a

© plane from the top, and you're looking for a plane, and then if you put
tires on top of the wings, all of a sudden, a lot of computer vision models
have difficulty identifying that that’s a plane,” Moore said as part of a

larger discussion about AI models and data sets.
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https://www.twz.com/air/russia-covering-its-aircraft-in-tires-is-about-befuddling-image-matching-seekers-u-s-military-confirms
https://www.twz.com/air/russia-covering-its-aircraft-in-tires-is-about-befuddling-image-matching-seekers-u-s-military-confirms
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http://en.wikipedia.org/wiki/Recognition by Components Theory

Svetlana Lazebnik


http://en.wikipedia.org/wiki/Recognition_by_Components_Theory

General shape primitives?

Generalized cylinders
Ponce et al. (1989)

Forsyth (2000)

Svetlana Lazebnik

Zisserman et al. (1995)



History of ideas In recognition

« 1960s — early 1990s: the geometric era
« 1990s: appearance-based models

Svetlana Lazebnik



Empirical models of image variability

Appearance-based techniques

Turk & Pentland (1991); Murase & Nayar (1995); etc.

Svetlana Lazebnik



Eigenfaces (Turk & Pentland, 1991)

Experimental Correct/ Unknown Recogunition Percentage
Condition Lighting | Orientation Scale
Forced classification 06 /() 2510 64 /()
Forced 1007 accuracy 1001/19 100,39 100/ 6l
Forced 20% unknown rate | 100/20 a4 /20 74/20

Svetlana Lazebnik



Color Histograms

-----
........

Swain and Ballard, Color Indexing, IJCV 1991.

Svetlana Lazebnik


http://www.inf.ed.ac.uk/teaching/courses/av/LECTURE_NOTES/swainballard91.pdf

History of ideas In recognition

« 1960s — early 1990s: the geometric era
« 1990s: appearance-based models
« 1990s — present: sliding window approaches

Svetlana Lazebnik



Sliding window approaches




Sliding window approaches

« Turk and Pentland, 1991

« Belhumeur, Hespanha, &
Kriegman, 1997

« Schneiderman & Kanade 2004
* Viola and Jones, 2000

« Schneiderman & Kanade, 2004
« Argawal and Roth, 2002
« Poggio et al. 1993




History of ideas In recognition

1960s — early 1990s: the geometric era
1990s: appearance-based models
Mid-1990s: sliding window approaches
Late 1990s: local features

Svetlana Lazebnik



Local features for object instance
recognition

D. Lowe (1999, 2004)



arge-scale image search
Combining local features, indexing, and spatial constraints

Model images

or exemplars \//‘%3 ng‘:‘Jj

E P P .__—-'-'*
- o \;mza im7 im97
Q im10 im99 im33 im99 im13 im71
im101 im22 im22 im7
Input features in Local feature descriptors Candidate matches based
new image from model images on descriptor similarity

Image credit: K. Grauman and B. Leibe



arge-scale image search
Combining local features, indexing, and spatial constraints

Philbin et al. ‘07



History of ideas In recognition

1960s — early 1990s: the geometric era
1990s: appearance-based models
Mid-1990s: sliding window approaches
Late 1990s: local features

Early 2000s: parts-and-shape models



Parts-and-shape models

* Model:
— Object as a set of parts
— Relative locations between parts
— Appearance of part

MOUTH

Figure from [Fischler & Elschlager 73]



Discriminatively trained part-based models
I

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, "Object Detection
with Discriminatively Trained Part-Based Models," PAMI 2009



History of ideas In recognition

1960s — early 1990s: the geometric era
1990s: appearance-based models
Mid-1990s: sliding window approaches
Late 1990s: local features

Early 2000s: parts-and-shape models
Mid-2000s: bags of features

Svetlana Lazebnik



Bag-of-features models

Svetlana Lazebnik



Bag-of-features models

Bag of
‘words’

Object q

Svetlana Lazebnik



Objects as texture

« All of these are treated as being the same

* No distinction between foreground and
background. No concern about spatial layout.

Svetlana Lazebnik



Origin 1.

exture recognition

« Texture is characterized by the repetition of basic elements or

textons

* For stochastic textures, it is the identity of the textons, not
their spatial arrangement, that matters

O A Y

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Origin 1: Texture recognition

- I I I histogram
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Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Origin 2: Bag-of-words models

* Orderless document representation: frequencies of words
from a dictionary saiton & McGill (1983)



Origin 2. Bag-of-words models

* Orderless document representation: frequencies of words
from a dictionary saiton & McGill (1983)

2007-01-23: State of the Union Address
George W. Bush (2001-)

abandon accountable affordable afghanistan africa ally anbar armed army baghdad biess challenges chamber chaos
choices civilians coalition commanders commitment confident confront congressman constitution corps debates deduction

deficit deliver democratic deploy dikembe diplomacy disruptions earmarks E"CDnomy einstein €lections eliminates
expand extremists failing famities freedom fuel funding god haven ideology immigration impose

L
insurgents iran ] ra q islam julie lebanon love madam marine math medicare neighborhoods nuclear offensive

palestinian payroll anda radical regimes resolve retreat rieman sacrifices science sectarian senate

.eptember shia stays strength students succeed sunni TaX terro r] Sts threats uphold victory

violence viclent Wal washington weapons wesley

US Presidential Speeches Tag Cloud
http://chir.ag/phernalia/preztags/



Origin 2. Bag-of-words models

* Orderless document representation: frequencies of words
from a dictionary saiton & McGill (1983)

2007-01-23: State of the Union Address
George W. Bush (2001-)

abandon

, 1962-10-22: Soviet Missiles in Cuba
choices g John F. Kennedy (1961-63)

expand | abandon achieving adversaries aggression agricultural appropriate armaments @115 assessments atlantic ballistic berlin

buildup burdens college commitment communist constitution consumers cooperation crisis C U b d da ngers

nsurger

> deficit depended disarmament divisions domination doubled economic education
elimination emergence endangered equals europe expand exports fact false family forum frEEdom fulfill gromyko
halt hazards hemisphere hospitals ideals independent industries inflation labor latin limiting i: mlSS]lE’.'S
modernization neglect nUClear nas obligation observer Offens'ive peril pledged predicted purchasing quarantine quote

L
recession retaliatory safeguard sites solution SOV.I et space spur stability standby St reﬂgth

surveillance tax treaty undertakings unemployment Wal warhead WEd pO NS welfare western widen withdraw

US Presidential Speeches Tag Cloud
http://chir.ag/phernalia/preztags/



Origin 2. Bag-of-words models

* Orderless document representation: frequencies of words
from a dictionary saiton & McGill (1983)

2007-01-23: State of the Union Address

George W. Bush (2001-)

abandond 4962-10-22: Soviet Missiles in Cuba

choices g John F. Kennedy (1961-63)

abandy 1941-12-08: Request for a Declaration of War

build Franklin D. Roosevelt (1933-45)
abandoning acknowledze aggression aggressors airplanes armaments armed army assault assembly authorizations bombing
britain british cheerfully claiming constitution curtail december defeats defending delays democratic dictators disclose

economic empire endanger faCtS false forgotten fortunes france fI'EEdDm fulfilled fullness fundamental gangsters
german germany god guam harbor hawaii hemisphere hint hitler hostilities immune improving indies innumerable

invasion 15l@ands isolate J a pa n ese labor metals midst midway Navy nazis obligation offensive

officially paCIfIC partisanship patriotism pearl peril perpetual philippine preservation privilege reject
repaired resisting retain revealing rumaors seas soldiers speaks speedy stamina strength sunday sunk supremacy tanks taxes

treachery true tyranny undertaken victory Wa r wartime washington

US Presidential Speeches Tag Cloud
http://chir.ag/phernalia/preztags/



Bag-of-features steps

W e

Extract features

Learn “visual vocabulary”

Quantize features using visual vocabulary
Represent images by frequencies of “visual words”




1. Feature extraction

* Regular grid or interest regions
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1. Feature extraction

Compute

descriptor Normalize
patch

Detect patches

Slide credit: Josef Sivic



1. Feature extraction

Slide credit: Josef Sivic



2. Learning the visual vocabulary
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Slide credit: Josef Sivic




2. Learni

ng the visual vocabulary

©
o0
o O
oo _o
o.'
®
o0 >
®
® Clustering
0

Slide credit: Josef Sivic



2. Learni

ng the visual vocabulary
Visual vocabulary
@
©

®
o0 -

®

.o‘ Clustering

Slide credit: Josef Sivic



But what about layout?
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All of these images have the same color histogram



Spatial pyramid
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Compute histogram in each spatial bin



Spatial pyramid representation

« Extension of a bag of features
« Locally orderless representation at several levels of resolution

level O

Lazebnik, Schmid & Ponce (CVPR 2006)



Spatial pyramid representation

« Extension of a bag of features
« Locally orderless representation at several levels of resolution

level O level 1

Lazebnik, Schmid & Ponce (CVPR 2006)



Spatial pyramid representation

Extension of a bag of features
Locally orderless representation at several levels of resolution

level O
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level 1

Lazebnik, Schmid & Ponce (CVPR 2006)

level 2



Scene category dataset

]\1tchen living room bed100m

[
1 st

industrial tall building 1n>1de c1ty

CO'lbt open countl y mountain

Multi-class classification results
(100 training images per class)

Strong features
(vocabulary size: 200)
| Single-level ~ Pyramid

122 =<0.6

779 £0.6  79.0 £0.5
794 +£0.3  81.1 0.3
12204 80.7=x0.3




Caltech101 dataset

http://www.vision.caltech.edu/Image Datasets/Caltechl0l/Caltechl0l.html

Multi-class classification results (30 training images per class)

- Strong features (200)

| Single-level  Pyramid
41.2 +1.2

559 0.9  57.0 =0.8
63.6 £0.9  64.6 £0.8
60.3 =0.9  64.6 =0.7




History of ideas In recognition

1960s — early 1990s: the geometric era
1990s: appearance-based models
Mid-1990s: sliding window approaches
Late 1990s: local features

Early 2000s: parts-and-shape models
Mid-2000s: bags of features

Present trends: deep learning

Svetlana Lazebnik



Beyond AlexNet



Recap: Convolutional Network, AlexNet

Layer 3 Layer 4 Layer 5



Recap: Convolutional Network Interpretation
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Object detectors emerge within CNN trained to classify
scenes, without any object supervision!



Beyond AlexNet



VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-
SCALE IMAGE RECOGNITION

Karen Simonyan & Andrew Zisserman 2015

These are the “VGG” networks.
“Perceptual Loss” in generative deep learning refers to these networks



ConvNet Configuration

A A-LRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
mput (224 x 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool

conv3-128

conv3-128

conv3-128
conv3-128

conv3i-128
conv3i-128

conv3i-128
convi-128

conv3-128
conv3-128

maxpool

conv3-256
conv3-256

conv3-256
conv3-256

conv3-256
conv3-256

conv3i-256
conv3i-256
convl-256

conv3-256
conv3-256
conv3-256

conv3-256
conv3-256
conv3-256
conv3-256

maxpool

conv3i-512
convi-512

conv3-512
conv3-512

conv3-512
convi-512

conv3i-S512
conv3i-512
convl-512

conv3-512
convi-512
conv3-512

conv3-512
conv3-512
conv3-512
conv3-512

maxpool

convi-512
conv3i-512

convi-512
conv3-512

conv3-512
conv3-512

conv3i-S512
conv3i-S512

convi-S512
convi3-S512

conv3-512
conv3-512

convl-512 | conv3-512 | conv3-512
conv3-512
maxpool
FC-4096
FC-4096
FC-1000
soft-max
Table 2: Number of parameters (in millions).
Network ALA-LRN B C D E
Number of parameters 133 133 | 134 | 138 | 144




Table 4: ConvNet performance at multiple test scales.

ConvNet config. (Table

smallest image side

top-1 val. error (%)

top-5 val. error (%)

train (.5) test (())
B 256 224,256,288 28.2 9.6
256 224,256,288 27.7 9.2
C 384 352,384,416 27.8 9.2
1256; 512] | 256,384,512 26.3 8.2
256 224,256,288 26.6 8.6
D 384 352,384,416 26.5 8.6
1256; 512] | 256,384,512 24.8 7.5
256 224,256,288 26.9 8.7
E 384 352,384,416 26.7 8.6
1256; 512] [ 256,384,512 24.8 7.5




(A)

(B)

L2 VGG VGG S-CNN MMD
Trained Random Random

Samples Mean Image

“VGG” networks are commonly used as the basis for “Perceptual Loss”.
The images on the right are as close as possible to all images on the left in various feature spaces.

Understanding and Simplifying Perceptual Distances. Dan Amir and Yair Weiss. CVPR 2021



Generative Image Dynamics

Zhengaqi Li, Richard Tucker, Noah Snavely, Aleksander Holynski https://generative-dynamics.github.io/
Google Research

CVPR 2024 Best Paper Award

4 *s o

' We jointly train the feature extractor and synthesis net-
1 works with start and target frames (/y, /;) randomly sampled
{ from real videos, using the estimated flow field from I to

' (T 1
-,
-~ ,-h-u‘l—ulib.!
{ <

__ ¥

Our method automatically turns single still images into seamless looping videos.


https://generative-dynamics.github.io/

Going Deeper with Convolutions

Christian Szegedy, Wei Liu, Yangging Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
2015

This is the “Inception” architecture or “GooglLeNet”

*The architecture blocks are called “Inception” modules
and the collection of them into a particular net is “GoogLeNet”
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Filter
concatenation

1x1 convolutions

3x3 convolutions

5x5 convolutions

Previous layer

1x1 convolutions

Filter
concatenation

(a) Inception module, naive version

o

3x3 max pooling

ﬂ‘\

3x3 convolutions

5x5 convolutions

1x1 convolutions

[

1x1 convolutions

1x1 convolutions

1

3x3 max pooling

Previous layer

(b) Inception module with dimensionality reduction




type pa;;:ggize/ Olslg)eut depth | #1x1 ig:ci #3x3 féijci #5%5 523; params ops
convolution TXT/2 112x112x64 1 2.7K 34M
max pool 3x3/2 56x56x64 0

convolution 3x3/1 56 x56x192 2 64 192 112K | 360M
max pool 3x3/2 28x28x192 0

inception (3a) 28 x28x 256 2 64 96 128 16 32 32 159K | 128M
inception (3b) 28 %28 x480 2 128 128 192 32 96 64 380K | 304M
max pool 3x3/2 14x14x480 0

inception (4a) 14x14%x512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14x14x512 2 128 128 256 24 64 64 463K | 100M
inception (4d) 14x14x528 2 112 144 288 32 64 64 580K | 119M
inception (4e) 14x14x832 2 256 160 320 32 128 128 840K | 170M
max pool 3x3/2 TxTx832 0

inception (5a) TXTx832 2 256 160 320 32 128 128 | 1072K | 54M
inception (5b) TxT7x1024 2 384 192 384 48 128 128 | 1388K | 7IM
avg pool TxT7/1 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 1x1x1000 | 1000K IM
softmax 1x1x1000 0

Only 6.8 million parameters. AlexNet ~60 million, VGG up to 138 million
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Team Year | Place | Error Uses external
(top-5) data

SuperVision || 2012 | 1st 16.4% no
SuperVision || 2012 | Ist 15.3% Imagenet 22k
Clarifai 2013 | 1Ist 11.7% no
Clarifai 2013 | 1Ist 11.2% Imagenet 22k
MSRA 2014 | 3rd 7.35% no
VGG 2014 | 2nd 7.32% no
GoogLeNet || 2014 | 1st 6.67% no

Table 2: Classification performance.
Number Number Cost Top-5 compared
of models || of Crops error to base
1 1 1 10.07% | base
1 10 10 9.15% -0.92%
1 144 144 7.89% -2.18%
7 1 7 8.09% -1.98%
7 10 70 7.62% -2.45%
7 144 1008 6.67% -3.45%




ConvNet Depth 28.2

25.8

16.4

11.7

22 layers 19 layers

6.7 7.3

ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)



Surely it would be ridiculous to go any
deeper...



Deep Residual Learning
for Image Recognition

Kaiming He, Xiangyu Zhang, Shaoqging Ren, JianSun

work done at
Microsoft Research Asia
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Cited 255,503 times as of 3/5/2025

Publication

Nature

The New England Journal of Medicine

Science

IEEE/CVF Conference on Computer Vision and Pattern Recognition
The Lancet

Advanced Materials

Nature Communications

Cell

International Conference on Learning Representations
Neural Information Processing Systems

JAMA

Chemical Reviews

Proceedings of the National Academy of Sciences
Angewandte Chemie

Chemical Society Reviews

Journal of the American Chemical Society

IEEE/CVF International Conference on Computer Vision
Nucleic Acids Research

International Conference on Machine Learning

h5-index h5-median
444 667
432 780
401 614
389 627
354 635
312 418
307 428
300 505
286 533
278 436
267 425
265 444
256 364
245 332
244 386
242 344
239 415
238 550
237 421



ResNet @ [LSVRC & COCO 2015 Competitions

1st places in all five main tracks

* ImageNet Classification: “Ultra-deep” 152-layer nets
* ImageNet Detection: 16% better than 2nd

* ImageNet Localization: 27% better than 2nd
* COCO Detection: 11% better than 2nd
* COCO Segmentation: 12% better than 2nd

*improvements are relative numbers



Revolution of Depth 282
{152 Iayers} '

\ 16.4

\ 11.7
22 layers 19 Iayers

‘67

3.57 I I 8 layers 8 layers

ILSVRC'15 ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)



Revolution of Depth

-

-

Engines of
visual recognition

~

J

Discriminatively trained part-based models

IR a

101 layers

58

16 layers

e
-
-

VGG ResNet
(RCNN) (Faster RCNN)*

ject Detection mAP (%)

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, "Object Detection

with Discriminatively Trained Part-Based Models," PAMI 2009

*w/ other improvements & moredata



Revolution of Depth

AlexNet, 8layers 11x11 conv, 96, /4, pool/2

(ILSVRC 2012) \ 4
5x5 conv, 256, pool/2

\

3x3 conyv, 384

\

3x3 conyv, 384

\

3x3 conv, 256, pool/2

\

fc, 4096

\

fc, 4096

\

fc, 1000




Revolution of Depth

AlexNet, 8layers
(ILSVRC 2012)

[ 11x11 conv, 96, /4, pool/2

[ 5x5 conv, 256, pool/2

[ 3x3 conv, 384

[ 3x3 conv, 384

[ 3x3 conv, 256, pool/2

| fc, 4096

| fc, 4096

| fc, 1000

VGG, 19 layers
(ILSVRC 2014)
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GoogleNet, 22layers
(ILSVRC 2014)



Revolution of Depth

AlexNet, 8layers
(ILSVRC 2012)

—

VGG, 19 layers
(ILSVRC 2014)

|

ResNet, 152 layers
(ILSVRC 2015)
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s learning better networks
as simple as stacking more layers?



Simply stacking layers?

20r

101

train error (%)

CIFAR-10

56-layer

20-layer

1 2 3
iter. (1e4)

4

6

* Plain nets: stacking 3x3 conv layers...
* 56-layer net has higher training error and test error than 20-layer net

201

101

test error (%)

20-layer

3 7 5 6
iter. (1e4)



Simply stacking layers?

CIFAR-10 ImageNet-1000
; e A WS
56-layer \-\_LW__1
/ A4-layer “ _
S 32-layer <
é’lo 20-layer gm Q M/%-Iayer
5 plain-2 30 S
plain-31 -
_p:a:2:42 | | | . | solid: test/val _E:Z:E_:lgj | | | | 18-layer
g 1 2 e (Led) * ° ° dashed:train % 10 20 30 40 50

iter. (1ed)

* “Overly deep” plain nets have higher training error
* A general phenomenon, observed in many datasets



a shallower

model

(18 layers)

7x7 conv, 64, /2

3x3 conv, 64
3x3 conv, 64
3x3 conv, 64
3x3 conv, 64

3x3 ,128
3x3 v, 128
b4
3x3 conv, 256, /2
3x3 conv, 256
3x3 convy, 256
3x3 conv, 256
Y
3x3 cony, 512, /2
3x3 conv, 512
3x3 cony, 512
3x3 conv, 512

7x7 conv, 64, /2
3x3 conv, 64
w
3x3 conv, 64
3
3x3 conv, 64
w
ke,
3x3 conv, 128, /2
w

3x3 conv, 128
3x3 conv, 128
“axtra” ez
I aye rs 3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 cony, 256
3x3 conv, 256
r
3x3 conv, 512, /2
3x3 conv, 512
3x3 conv, 512
ol
3x3 conv, 512
n

a deeper
counterpart
(34 layers)

* Richer solutionspace

A deeper model should not have higher
training error

e A solution by construction:
e original layers: copied froma
learned shallower model
* extra layers: set as identity
* atleast the same training error

* Optimization difficulties: solvers cannot
find the solution when going deeper...




Deep Residual Learning

* Plain net H(x) is any desired mapping,
X l hope the 2 weight layers fit H(x)
weight layer
any two
stacked layers v relu

weight layer

relu
H(x) 'l'



Deep Residual Learning

e Residual net

X

weight layer

F(x)

lrelu

weight layer

Hx)=F(x)+x

identity
X

H(x) is any desired mapping,
| he 2 waicht | it H e
hope the 2 weight layers fit F(x)
let H(x) = F(x) + x



Deep Residual Learning

* F(x)is a residual mapping w.rt. identity

weight layer

F(x)

relu

Y

weight layer

Hx)=F(x)+x

identity
X

* |f identity wereoptimal,
easy to set weights as 0

* If optimal mapping iscloser to identity,
easier to find small fluctuations



Network “Design”
e Keep it simple

* Our basic design (VGG-style)
e all 3x3 conv (almost)

* spatial size /2 => # filters x2
e Simple design; justdeep!

plain net
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ResNet



CIFAR-10 experiments

CIFAR-10 plain nets

error (%)

[~ plain-2
plain-32
plain-44
0__glgin-§( , ,
0 1 2 3 4 6
iter. (1e4)

56-layer
/ 44-layer
32-layer
20-layer

bold: test
thin: train

error (%)

20

CIFAR-10 ResNets

ResNet-20
ResNet-32
ResNet-44
= ResNet-56
= ResNet-11(

20-layer
32-layer

44-layer
56-layer
110-layer

iter. (1e4)

 Deep ResNets can be trained without difficulties
* Deeper ResNets have lower training error, and also lower test error



ImageNet experiments

ImageNet plainnets

e WA WA

1
S
|

S
< L 34-layer
T = M /

30 —

olain-18 solid: test
— plain-34 | dashe(.:lz train | | ]_8-|ayer
200 10 20 30 40 50
iter. (1e4)
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N
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ImageNet ResNets

18-layer

w
o

Ve

20

ResNet-18 M ) S

= ResNet-34

34-layer

0

10 20 30 40 50
iter. (1e4)

 Deep ResNets can be trained without difficulties
* Deeper ResNets have lower training error, and also lower test error



ImageNet experiments

this model has
lower time complexity
than VGG-16/19

|

ResNet-152

: I

Deeper ResNets have lower error

ResNet-101 ResNet-50
10-crop testing, top-5 val error (%)

ResNet-34

()}

w



Beyond classification

A treasure from ImageNet is on learning features.

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv2015.



”Features matter. ” (quote [Girshick et al. 2014], the R-CNN paper)

2nd- place margin
winner (relative)

ImageNet Localization (wps erron) 12.0 27%

ImageNet Detection mares) 53.6 absolute g 1 16%
8.5% better!

COCO Detection (mare@.s:95) 33. 7.3 11%

COCO Segmentation mare.s.9s) 25.1 28.2 12%

e Qur results are all based on ResNet-101
e Qur features are well transferrable

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



classifier

Object Detection (brief)

Rolpooling

e Simply “Faster R-CNN + ResNet” proposals g 4
vk 4
f~7

baseline

VGG-16 41.5 21.5
ResNet-101 48.4 27.2 o

feature map

COCO detection results
(ResNet has 28% relative gain) CNN

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
Shaoging Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.
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*the original imageis fromthe COCO dataset
Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
Shaoging Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.



Why does ResNet work so well?

* The architecture is somehow easier We argue that this optimization difficulty is unlikely to
to optimize. be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated

* The authors argue it prObabW isn’t signals to have non-zero variances. We also verify that the
because it solves the “vanishin g backward propagated gradients exhibit healthy norms with

. ) BN. So neither forward nor backward signals vanish. In
gradient” problem.

* While the gradients might not be
“vanishing” in “plain” nets, they
don’t seem as stable and
trustworthy, according to follow up
work, e.g.

Visualizing the Loss Landscape of
Neural NetS. Hao Ll, Zheng XU ’ GaVin (a) without skip connections (b) with skip connections
Taylor’ ChnStOph StUder’ Tom Goldstein. Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter

NeurlPS 2018. normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.
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