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Recap – 3D point processing

• Popular CNN backbones aren’t a direct fit for 
3D point processing tasks.

• It’s not clear how best to use deep learning on 
3D data
• Use a truly permutation invariant representation 

(PointNet)

• Use a voxel representation (VoxelNet)

• Use a bird’s a view representation (PointPillars)

• Create a range image

• With lidar, multi-modal approaches (adding 
images, radar) help surprisingly little compared 
to lidar-only approaches (~3 mAP).

BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird’s-Eye 
View Representation.
Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang, Huizi Mao, 
Daniela L. Rus, Song Han

https://paperswithcode.com/sota/3d-object-detection-on-nuscenes

https://paperswithcode.com/sota/3d-object-detection-on-nuscenes


Outline

• Context and Receptive Field

• Going Beyond Convolutions in…
• Text

• Point Clouds

• Images





Ground truth Prediction from Mseg









Language understanding

… serve …



Language understanding

… great serve from Djokovic …



Language understanding

… be right back after I serve these salads …







So how do we fix these problems?



Slide Credit: Frank Dellaert https://dellaert.github.io/19F-4476/resources/receptiveField.pdf



Dilated Convolution

Figure source: https://github.com/vdumoulin/conv_arithmetic



Receptive field could also be an issue in 3D
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From https://medium.com/lsc-psd/introduction-of-self-attention-layer-in-transformer-fc7bff63f3bc



From https://medium.com/lsc-psd/introduction-of-self-attention-layer-in-transformer-fc7bff63f3bc





Complexity Comparison





Transformer Architecture
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Point Transformer. Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, Vladlen Koltun





https://paperswithcode.com/sota/3d-point-cloud-classification-on-modelnet40

https://paperswithcode.com/sota/3d-point-cloud-classification-on-modelnet40
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Supervised training on 300M labeled images







When trained on mid-sized datasets such 
as ImageNet, such models yield modest 
accuracies of a few percentage points 
below ResNets of comparable size. This 
seemingly discouraging outcome maybe 
expected: Transformers lack some of the 
inductive biases inherent to CNNs, such 
as translation equivariance and locality, 
and therefore do not generalize well 
when trained on insufficient amounts of 
data.

However, the picture changes if the 
models are trained on larger datasets 
(14M-300M images). We find that large 
scale training trumps inductive bias.

Dosovitskiy et al.

https://paperswithcode.com/sota/image-classification-on-imagenet

https://paperswithcode.com/sota/image-classification-on-imagenet






• This can’t be ideal, right?



Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo



https://paperswithcode.com/sota/instance-segmentation-on-coco

https://paperswithcode.com/sota/instance-segmentation-on-coco








CLIP



• “weakly supervised” contrastive learning on 400M text / image pairs

• ViT architecture trained from scratch













DinoV2 Datasets

• 140 M total images

• No labels used

• Self-supervised with image level 
strategies (like SimCLR) and patch 
level strategies (like MAE, 
masked auto-encoder)

• Smaller models are distilled from 
the largest model







Semantic Segmentation







Summary

• “Attention” models outperform recurrent models and convolutional 
models for sequence processing. They allow long range interactions.

• These models do best with LOTS of training data

• Naïve attention mechanisms have quadratic complexity with the 
number of input tokens, but there are often workarounds for this.

• Attentional models seem to succeed when they copy the inductive 
biases of convolutional models.

• For “traditional” image processing, it is not clear if Transformers 
outperform convolutional networks.

• More than ever, you should start with one of these pre-trained 
models – CLIP if you want language support, DinoV2 if you want 
spatial reasoning
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