
Neural Volumetric Rendering

Many slides from ECCV 2022 Tutorial by Angjoo Kanazawa, 

Ben Mildenhall, Pratul Srinivasan, Matt Tancik



Capturing Reality

Earliest cave painting (45,500 years old) in Sulawesi, Indonesia



Capturing Reality

Monet’s Cathedral series: study of light 1893-1894



Capturing Reality

First self-portrait Cornelius 1839 First Movie - Muybridge 1878



Capturing Reality – in 3D

Building Rome in a Day, Agarwal et al. ICCV 2009



Capturing Reality – in 3D

Google Earth 2016~



2020: Neural Radiance Field (NeRF)

Mildenhall*, Srinivasan*, Tancik*, Barron, Ramamoorthi, Ng, ECCV 2020





• Original NeRF paper: 11000+ citations in 4 years





Robotics

Dex-NeRF: Using a Neural Radiance field to Grasp 

Transparent Objects, [Ichnowski and Avigal et al. CoRL 2021]
Vision-Only Robot Navigation in a Neural Radiance World 

[Adamkiewicz and Chen et al. ICRA 2022]

NeRF-Supervision: Learning Dense Object Descriptors from Neural 

Radiance Fields, [Yen-Chen et al. ICRA 2022]



Birds Eye View

• What is NeRF?

• How is it different or similar to existing approaches?

• What is its historical context?



Output:

A 3D scene representation that 

renders novel views

Input:

A set of calibrated Images

Problem Statement





Three Key Components

Neural Volumetric 3D 

Scene Representation

(x, y, z, θ, ϕ) (r, g, b, σ)

FΩ

3D volume

Camera

Differentiable Volumetric 

Rendering Function

Objective: Synthesize 

all training views

Optimization via 

Analysis-by-Synthesis



Representing a 3D scene as a continuous 5D function

MLP

9 layers,

256 channels

(x, y, z, θ, ϕ) (r, g, b, σ)

FΩ

Spatial 

location

Viewing 

direction

Output 

color

Output 

density

{

What kind of a 3D representation is this?



It is not a Mesh

Not a point cloud 

either

It is volumetric

It’s continuous voxels made of shiny transparent cubes









What is the problem that is being solved?



Plenoptic Function

Q: What is the set of all things that we can ever see? 

A: The Plenoptic Function (Adelson & Bergen ‘91)

Slide credit: 

Alyosha Efros

Figure by Leonard McMillan

Let’s start with a stationary person and try to 

parameterize everything that they can see…



Grayscale Snapshot

• is intensity of light
• Seen from a single position (viewpoint)

• At a single time

• Averaged over the wavelengths of the visible spectrum

Slides from Alyosha Efros

P()



Color snapshot

• is intensity of light
• Seen from a single position (viewpoint)

• At a single time

• As a function of wavelength
Slides from Alyosha Efros

P()



A movie

P(,t)

• is intensity of light
• Seen from a single position (viewpoint)

• Over time

• As a function of wavelength
Slides from Alyosha Efros



A holographic movie

Slides from Alyosha Efros

P(,t,Vx,Vy,Vz)

• is intensity of light
• Seen from ANY position and direction

• Over time

• As a function of wavelength



The plenoptic function

Slides from Alyosha Efros

P(,t,Vx,Vy,Vz)

7D function, that can reconstruct every position & direction, 

at every moment, at every wavelength

= it recreates the entirety of our visual reality!



Goal: Plenoptic Function from a set of images

• Objective: Recreate the visual reality

• All about recovering photorealistic pixels, not about 

recording 3D point or surfaces

—Image Based Rendering aka Novel View Synthesis



Goal: Plenoptic Function from a set of images

It is a conceptual device

Adelson & Bergen do not discuss how to solve this



An example of a sparse plenoptic function

If street view  was super dense 

(360 view from any view  point) 

then  it is the Plenoptic Function



• An approach for modeling the Plenoptic Function

• Take a lot of pictures from many views

• Interpolate the rays to render a novel view

Levoy and Hanrahan, SIGGRAPH 1996

Lightfield / Lumigraph
Gortler et al. SIGGRAPH 1996

Stanford Gantry 

128 cameras
Lytro camera



• An approach for modeling the Plenoptic Function

• Take a lot of pictures from many views

• Interpolate the rays to render a novel view

Levoy and Hanrahan, SIGGRAPH 1996

Lightfield / Lumigraph
Gortler et al. SIGGRAPH 1996

Stanford Gantry 

128 cameras
Lytro camera Figure from Marc Levoy



Levoy and Hanrahan, SIGGRAPH 1996

Lightfield / Lumigraph
Gortler et al. SIGGRAPH 1996

Figure from Marc Levoy

• An approach for modeling the Plenoptic Function

• Take a lot of pictures from many views

• Interpolate the rays to render a novel view

Stanford Gantry 

128 cameras
Lytro camera



Levoy and Hanrahan, SIGGRAPH 1996

Lightfield / Lumigraph
Gortler et al. SIGGRAPH 1996

shooting out from a pixel is never 

occluded.

Surface Camera

No Change in

Radiance

Lighting

Lightfields assume that the ray

Because of this it  only models the 

plenoptic surface:





5D function

• For every location (3D), all possible views (2D)

• NeRF models this space with a continuous view-dependent 

volume with opacity

• The color emitted by every point is composited to render a pixel

• Unlike a light field, the entire 5D plenoptic function can be 

modeled (you can fly through the world)



Visualizing the 2D function on the sphere

Outgoing radiance distribution 

for point on side of ship

Outgoing radiance distribution 

for point on water’s surface



Baking in Light

• NeRF can capture non-Lambertian (specular, shiny surfaces) because it 

models the color in a view-dependent manner

• This is hard to do with meshes unless you model the physical materials 

& lighting interactions

• But, with Image Based Rendering — All lighting effects are baked in



NeRF in a Slide

Volumetric 3D Scene 

Representation

Optimization via 

Analysis-by-Synthesis

Objective: Reconstruct 

all training views

3D volume

Camera

Differentiable Volumetric 

Rendering Function

Ray



Unmentioned caveat so far

• Training a NeRF requires a calibrated

camera!!!!

• Need to know the camera parameters: 

extrinsic (viewpoint) & intrinsics (focal 

length, distortion, etc)

How do we get this from images?



Structure from Motion
Or Photogrammetry (1850~) 

Long history in Computer Vision



NeRF is AFTER Structure from Motion

• In order to train NeRF you need to run SfM/SLAM on the images to 

estimate the camera parameters

• In this sense, the problem category is same as that of Multi-view Stereo

Colmap: Schönberger et al. 2016



Conventional 

Graphics Pipeline

NeRFs

Where NeRF stands

Appearance Based 

Reconstruction 

(Image Based 

Rendering)

Physics based 

Reconstruction 

(3D Surface 

Modeling)

One 3D Surface, 

Single Albedo
Texture

One 3D Surface, 

View-Dependent 

Texture Mapping

Lightfield/Lumigraph 

(No 3D representation)

Layered Depth 

Images (LDIs)

Multi-Plane 

Images (MPIs)

• can do Image Based Rendering well, 

while also being a 3D representation

• Does not suffer from limitations of surface

models

• Easy to optimize from images



Analysis by Synthesis Requires 

Differentiable Renderers

Next: Deep dive into Volumetric Rendering Function



Neural Volumetric Rendering



Neural Volumetric Rendering
computing color along rays 

through 3D space

What color is this pixel?



Cameras and rays



Cameras and rays

• We need the mathematical mapping 

from (camera, pixel) → ray

• Then can abstract underlying problem 

as learning the function ray → color 

(the “plenoptic function”)
Camera

Ray
Pixel



Coordinate frames + Transforms: world-to-camera

World coordinates Camera coordinates Image coordinates

Figure credit: Peter Hedman

Extrinsics (R, T)

Orientation + Location of 

the camera in the World

Intrinsics (K)

How the camera maps a 

point in 3D to image



World coordinates Camera coordinates Image coordinates

Figure credit: Peter Hedman

Extrinsics (R, T)

Orientation + Location of 

the camera in the World

Intrinsics (K)

How the camera maps a 

point in image to 3D

Coordinate frames + Transforms: camera-to-world



Calculating points along a ray

𝐨
𝐝

𝐨 + 𝑡𝐝

Scalar 𝑡 controls distance 

along the ray



Neural Volumetric Rendering



Neural Volumetric Rendering
continuous, differentiable rendering 

model without concrete ray/surface 

intersections



Surface vs. volume rendering

Ray

Camera Scene 

representation

Want to know how ray interacts with scene



Surface vs. volume rendering

Ray

Camera Scene 

representation

?

?
?

?

?

? ?
?

?

?

???
?

?

Surface rendering — loop over geometry, check for ray hits



Surface vs. volume rendering

Ray

Camera Scene 

representation

Volume rendering — loop over ray points, query geometry

? ?
? ?

?



History of volume rendering



Early computer graphics

Kajiya 1984, Ray Tracing Volume Densities

Chandrasekhar 1950, Radiative Transfer

‣ Theory of volume rendering co-opted from physics in the 1980s: 

absorption, emission, out-scattering/in-scattering

‣ Adapted for visualising medical data and linked with alpha 

compositing

‣ Modern path tracers use sophisticated Monte Carlo methods to 

render volumetric effects

Ray tracing simulated cumulus cloud [Kajiya]



Alpha compositing

Porter and Duff 1984, Compositing Digital Images

Alpha compositing [Porter and Duff]

‣ Theory of volume rendering co-opted from physics in the 1980s: 

absorption, emission, out-scattering/in-scattering

‣ Alpha rendering developed for digital compositing in VFX 

movie production

‣ Modern path tracers use sophisticated Monte Carlo methods to 

render volumetric effects



Volume rendering for visualization

Levoy 1988, Display of Surfaces from Volume Data

Max 1995, Optical Models for Direct Volume Rendering

Kajiya 1984, Ray Tracing Volume Densities

Chandrasekhar 1950, Radiative Transfer

Porter and Duff 1984, Compositing Digital Images

‣ Theory of volume rendering co-opted from physics in the 1980s: 

absorption, emission, out-scattering/in-scattering

‣ Alpha rendering developed for digital compositing in VFX 

movie production

‣ Volume rendering applied to visualise 3D medical scan data in 

1990s 

Medical data visualisation [Levoy]



Volume rendering derivations



Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering

http://commons.wikimedia.org

Absorption

http://wikipedia.org

Scattering Emission



Simplify

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering

http://commons.wikimedia.org

Absorption

http://wikipedia.org

Scattering Emission



Volumetric formulation for NeRF

Scene is a cloud of tiny colored particles

Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral



Volumetric formulation for NeRF

If a ray traveling through the scene hits a 

particle at distance 𝑡 along the ray, we 

return its color 𝐜(𝑡)

Camera

Ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝

𝑡

𝐜(𝑡)



What does it mean for a ray to “hit” the volume?

This notion is probabilistic: chance that ray hits a 

particle in a small interval around 𝑡 is 𝜎(𝑡)𝑑𝑡.

𝜎 is called the “volume density”

𝑃[hit at 𝑡] = 𝜎(𝑡)𝑑𝑡𝑡



Probabilistic interpretation

To determine if 𝑡 is the first hit along the ray, 

need to know 𝑇(𝑡): the probability that the ray 

makes it through the volume up to 𝑡.

𝑇(𝑡) is called “transmittance”

𝑃[no hits before 𝑡] = 𝑇(𝑡)

𝑡



Probabilistic interpretation

The product of these probabilities tells us how much you see the 

particles at 𝑡:

𝑃[first hit at 𝑡] = 𝑃[no hit before 𝑡] × 𝑃[hit at 𝑡]
= 𝑇(𝑡)𝜎(𝑡)𝑑𝑡

𝑃[hit at 𝑡] = 𝜎(𝑡)𝑑𝑡
𝑃[no hits before 𝑡] = 𝑇(𝑡)

𝑡



𝑃[no hits before 𝑡] = 𝑇(𝑡)

𝑡

If 𝜎 is known, T can be computed… How?

Calculating 𝑇 given 𝜎



Calculating 𝑇 given 𝜎

𝜎 and 𝑇 are related by the probabilistic fact that

𝑃[no hit before 𝑡 + 𝑑𝑡] = 𝑃[no hit before 𝑡] × 𝑃[no hit at 𝑡]

𝑃[hit at 𝑡] = 𝜎(𝑡)𝑑𝑡
𝑃[no hits before 𝑡] = 𝑇(𝑡)

𝑡



𝜎 and 𝑇 are related by the probabilistic fact that

𝑃[no hit before𝑡 + 𝑑𝑡] = 𝑃[no hit before𝑡] × 𝑃[no hit at𝑡]

Calculating transmittance 𝑇

𝑇(𝑡 + 𝑑𝑡) 𝑇(𝑡) (1 − 𝜎(𝑡)𝑑𝑡)

𝑃[hit at 𝑡] = 𝜎(𝑡)𝑑𝑡
𝑃[no hits before 𝑡] = 𝑇(𝑡)

𝑡



Calculating transmittance 𝑇

𝑇(𝑡 + 𝑑𝑡) = 𝑇(𝑡)(1 − 𝜎(𝑡)𝑑𝑡)

𝜎 and 𝑇 are related by the probabilistic fact that

𝑃[no hit before 𝑡 + 𝑑𝑡] = 𝑃[no hit before 𝑡] × 𝑃[no hit at 𝑡]



Solve for 𝑇

𝑇(𝑡 + 𝑑𝑡) = 𝑇(𝑡)(1 − 𝜎(𝑡)𝑑𝑡)

Split up differential⇒ 𝑇(𝑡) + 𝑇′(𝑡)𝑑𝑡 = 𝑇(𝑡) − 𝑇(𝑡)𝜎(𝑡)𝑑𝑡

Rearrange⇒
𝑇′(𝑡)

𝑇(𝑡)
𝑑𝑡 = −𝜎(𝑡)𝑑𝑡 

Integrate⇒ log𝑇(𝑡) = −∫𝑡0

𝑡
𝜎(𝑠)𝑑𝑠 

Exponentiate⇒ 𝑇(𝑡) = exp −∫𝑡0

𝑡
𝜎(𝑠)𝑑𝑠  



𝑇(𝑡 + 𝑑𝑡) = 𝑇(𝑡)(1 − 𝜎(𝑡)𝑑𝑡)

Rearrange⇒
𝑇′(𝑡)

𝑇(𝑡)
𝑑𝑡 = −𝜎(𝑡)𝑑𝑡 

Integrate⇒ log𝑇(𝑡) = −∫𝑡0

𝑡
𝜎(𝑠)𝑑𝑠 

Exponentiate⇒ 𝑇(𝑡) = exp −∫𝑡0

𝑡
𝜎(𝑠)𝑑𝑠  

Taylor expansion for T⇒ 𝑇(𝑡) + 𝑇′(𝑡)𝑑𝑡 = 𝑇(𝑡) − 𝑇(𝑡)𝜎(𝑡)𝑑𝑡

Solve for 𝑇



Taylor expansion for T⇒ 𝑇(𝑡) + 𝑇′(𝑡)𝑑𝑡 = 𝑇(𝑡) − 𝑇(𝑡)𝜎(𝑡)𝑑𝑡

𝑇(𝑡 + 𝑑𝑡) = 𝑇(𝑡)(1 − 𝜎(𝑡)𝑑𝑡)

Rearrange⇒
𝑇′(𝑡)

𝑇(𝑡)
𝑑𝑡 = −𝜎(𝑡)𝑑𝑡 

Integrate⇒ log𝑇(𝑡) = −∫𝑡0

𝑡
𝜎(𝑠)𝑑𝑠 

Exponentiate⇒ 𝑇(𝑡) = exp −∫𝑡0

𝑡
𝜎(𝑠)𝑑𝑠  

Solve for 𝑇



𝑇(𝑡 + 𝑑𝑡) = 𝑇(𝑡)(1 − 𝜎(𝑡)𝑑𝑡)

Rearrange⇒
𝑇′(𝑡)

𝑇(𝑡)
𝑑𝑡 = −𝜎(𝑡)𝑑𝑡 

Taylor expansion for T⇒ 𝑇(𝑡) + 𝑇′(𝑡)𝑑𝑡 = 𝑇(𝑡) − 𝑇(𝑡)𝜎(𝑡)𝑑𝑡

Integrate⇒ log𝑇(𝑡) = −∫𝑡0

𝑡
𝜎(𝑠)𝑑𝑠 

Exponentiate⇒ 𝑇(𝑡) = exp −∫𝑡0

𝑡
𝜎(𝑠)𝑑𝑠  

Solve for 𝑇



Taylor expansion for T⇒ 𝑇(𝑡) + 𝑇′(𝑡)𝑑𝑡 = 𝑇(𝑡) − 𝑇(𝑡)𝜎(𝑡)𝑑𝑡

𝑇(𝑡 + 𝑑𝑡) = 𝑇(𝑡)(1 − 𝜎(𝑡)𝑑𝑡)

Rearrange⇒
𝑇′(𝑡)

𝑇(𝑡)
𝑑𝑡 = −𝜎(𝑡)𝑑𝑡 

Integrate⇒ log𝑇(𝑡) = −∫𝑡0

𝑡
𝜎(𝑠)𝑑𝑠 

Exponentiate⇒ 𝑇(𝑡) = exp −∫𝑡0

𝑡
𝜎(𝑠)𝑑𝑠  

Solve for 𝑇



PDF for ray termination

Finally, we can write the probability that a ray terminates at 𝑡 as a function of only sigma

𝑃[first hit at 𝑡] = 𝑃[no hit before 𝑡] × 𝑃[hit at 𝑡]

𝑃[hit at 𝑡] = 𝜎(𝑡)𝑑𝑡
𝑃[no hits before 𝑡] = 𝑇(𝑡)

𝑡

= exp −∫𝑡0

𝑡
𝜎(𝑠)𝑑𝑠 𝜎(𝑡)𝑑𝑡 

= 𝑇(𝑡)𝜎(𝑡)𝑑𝑡



Expected value of color along ray

This means the expected color returned by the ray will be 

∫𝑡0

𝑡1
𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡

Note the nested integral!



Approximating the nested integral

We use quadrature to approximate the nested integral, 



Approximating the nested integral

We use quadrature to approximate the nested integral, 

splitting the ray up into 𝑛 segments with endpoints {𝑡1, 𝑡2, … , 𝑡𝑛+1}

𝑡𝑁

𝑡1

𝑡𝑛+1

𝑡𝑖



Approximating the nested integral

We use quadrature to approximate the nested integral, 

splitting the ray up into 𝑛 segments with endpoints {𝑡1, 𝑡2, … , 𝑡𝑛+1}
with lengths 𝛿𝑖 = 𝑡𝑖+1 − 𝑡𝑖

𝑡𝑁
𝛿𝑖

𝑡1

𝑡𝑛+1

𝑡𝑖



Approximating the nested integral

We assume volume density and color 

are roughly constant within each interval

𝑡𝑁

𝐜𝑖 , 𝜎𝑖

𝑡𝑖



Deriving quadrature estimate

This allows us to break the outer integral into a 

sum of analytically tractable integrals

∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
𝑖=1

𝑛

∫𝑡𝑖

𝑡𝑖+1𝑇(𝑡)𝜎𝑖𝐜𝑖𝑑𝑡



Deriving quadrature estimate

∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
𝑖=1

𝑛

∫𝑡𝑖

𝑡𝑖+1𝑇(𝑡)𝜎𝑖𝐜𝑖𝑑𝑡

This allows us to break the outer integral into a 

sum of analytically tractable integrals



Summary: volume rendering integral estimate

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume

𝑡1

𝑡𝑁

Camera

Ray

colors

weights

𝐜 ≈ ∑
𝑖=1

𝑛

𝑇𝑖𝛼𝑖𝐜𝑖

𝑇𝑖 = ∏
𝑗=1

𝑖−1

(1 − 𝛼𝑗)

𝛼𝑖 = 1 − exp(−𝜎𝑖𝛿𝑖)

𝑡𝑛+1

𝑡1 𝑇𝑖

𝛼𝑖

𝑡𝑖



Volume rendering is trivially differentiable

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume

𝑡1

𝑡𝑁

Camera

Ray

colors

weights

𝐜 ≈ ∑
𝑖=1

𝑛

𝑇𝑖𝛼𝑖𝐜𝑖

𝑇𝑖 = ∏
𝑗=1

𝑖−1

(1 − 𝛼𝑗)

𝛼𝑖 = 1 − exp(−𝜎𝑖𝛿𝑖)

𝑡𝑛+1

𝑡1 𝑇𝑖

𝛼𝑖

𝑡𝑖

differentiable w.r.t. 𝐜, 𝜎



Density as geometry

154

Normal vectors (from analytic gradient of density)















https://youtu.be/T_kXY43VZnk?si=Ro2JF-gCz08W8vQH

https://youtu.be/T_kXY43VZnk?si=Ro2JF-gCz08W8vQH


Reminder: 

Quiz in class on Wednesday
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