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“Flashed Face Distortion”
2nd Place in the 8th Annual

, VSS 2012


https://en.wikipedia.org/wiki/Best_Illusion_of_the_Year_Contest

Keep your eyes
on the cross
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Project 2

The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and
7 were incorrect (highlighted in red).

Project 2: Local Feature Matching



This section: correspondence and alighment

* Correspondence: matching points, patches, edges, or regions
across images




Overview of Keypoint Matching

. Find a set of
distinctive key-
points

. Define aregion
around each
keypoint

. Extract and
normalize the
region content

. Compute alocal
descriptor from the
normalized region

d(f,, fg)<T

5. Match local
descriptors

K. Grauman, B. Leibe



Review: Harris corner detector c0.)

* Define distinctiveness by local auto-
correlation.

* Approximate local auto-correlation by
second moment matrix

« Quantify distinctiveness (or cornerness)
as function of the eigenvalues of the
second moment matrix.

* But we don’t actually need to , %

compute the eigenvalues by
using the determinant and trace
of the second moment matrix.



Harris Detector [Harrisss]

e Second moment matrix
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5. Non-maxima suppression




Affine intensity change

RA

threshold
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« Only derivatives are used =>
Invariance to intensity shiftl > 1+Db

 [Intensity scaling: 1 > al
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W AVAN

X (image coordinate) X (image coordinate)

Partially invariant to affine intensity change




Image translation

| .

* Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation




Scaling
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Corner
All points will
be classified
as edges

Corner location is not covariant to scaling!




Image rotation

Second moment ellipse rotates but its shape
(l.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation




Orientation Normalization

 Compute orientation histogram lLowe, SIFT, 1999]
e Select dominant orientation
e Normalize: rotate to fixed orientation
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Maximally Stable Extremal Regions mats oz
* Based on Watershed segmentation algorithm
e Select regions that stay stable over a large parameter range

K. Grauman, B. Leibe



Example Results: MSER

31



Comparison ____Hessian




Local features: main components

1) Detection: Identify the
interest points

2) Description: Extract vector
feature descriptor surrounding X, =
each interest point.

3) Matching: Determine
correspondence between
descriptors in two views

Kristen Grauman



lmage representations

Ta ‘
 Templates
™%
— Intensity, gradients, etc. ' \ A

* Histograms

— Color, texture, SIFT descriptors, etc.



Image Representations: Histograms
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Global histogram

* Represent distribution of features

— Color, texture, depth, ...

Images from Dave Kauchak



Image Representations: Histograms

Histogram: Probability or count of data in each bin
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 Joint histogram Marginal histogram

— Requires lots of data * Requires independent features
— Loss of resolution to « More data/bin than

avoid empty bins joint histogram

Images from Dave Kauchak



Image Representations: Histograms

Clustering

feature 2
feature 2

feature 1 feature 1

Use the same cluster centers for all images

Images from Dave Kauchak



What kind of things do we compute
histograms of?

e Color

L*a*b* color space HSV color space

e Texture (filter banks or HOG over regions)



What kind of things do we compute histograms of?

* Histograms of oriented gradients
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Image gradients Keypoint descriptor

SIFT — Lowe 1JCV 2004
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SIFT vector formation

« Computed on rotated and scaled version of window
according to computed orientation & scale

— resample the window

» Based on gradients weighted by a Gaussian of
variance half the window (for smooth falloff)

Image gradients



SIFT vector formation

« 4x4 array of gradient orientation histogram weighted
by magnitude

8 orientations x 4x4 array = 128 dimensions

« Motivation: some sensitivity to spatial layout, but not
too much.

* ¥
| 2F

Image gradients Keypoint descriptor
showing only 2x2 here but is 4x4




Ensure smoothness

 (Gaussian weight

* Interpolation

— a glven gradient contributes to 8 bins:
4 In space times 2 In orientation

* ¥
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Image gradients Keypoint descriptor



Reduce effect of illumination

e 128-dim vector normalized to 1

 Threshold gradient magnitudes to avoid excessive

Influence of high gradients
— after normalization, clamp gradients >0.2
— renormalize

*
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Image gradients Keypoint descriptor



Local Descriptors: SURF

Fast approximation of SIFT idea

Efficient computation by 2D box filters &
integral images

= 6 times faster than SIFT

Equivalent quality for object identification

GPU implementation available

Feature extraction @ 200Hz
(detector + descriptor, 640480 img)

http://www.vision.ee.ethz.ch/~surf

[Bay, ECCV'06], [Cornelis, CVGPU'08]

K. Grauman, B. Leibe



Local Descriptors: Shape Context

Count the number of points
Inside each bin, e.g.:

Count =4

Count =10

Log-polar binning: more
precision for nearby points,
more flexibility for farther
points.

Belongie & Malik, ICCV 2001



Shape Context Descriptor




Self-similarity Descriptor
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Figure 1. These images of the same object (a heart) do NOT share

common image properties (colors, textures, edges), but DO share
a similar geometric layout of local internal self-similarities.

Matching Local Self-Similarities across Images
and Videos, Shechtman and Irani, 2007



Self-similarity Descriptor

Input image Correlation Image
surface descriptor

Image L

Matching Local Self-Similarities across Images
and Videos, Shechtman and Irani, 2007



Self-similarity Descriptor

Matching Local Self-Similarities across Images
and Videos, Shechtman and Irani, 2007




Learning Local Image Descriptors, Winder
and Brown, 2007
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Local Descriptors

* Most features can be thought of as templates, histograms

(counts), or combinations
* The ideal descriptor should be

— Robust

— Distinctive

— Compact

— Efficient
* Most available descriptors focus on edge/gradient information

— Capture texture information

— Color rarely used

K. Grauman, B. Leibe



Local features: main components

1) Detection: Identify the
interest points

2) Description: Extract vector
feature descriptor surrounding X, =
each interest point.

3) Matching: Determine
correspondence between
descriptors in two views

Kristen Grauman



Matching

* Simplest approach: Pick the nearest neighbor. Threshold on
absolute distance

* Problem: Lots of self similarity in many photos



Distance: 0.34, 0.30, 0.40 Distance: 0.61
Distance: 1.22



Nearest Neighbor Distance Ratio

NN1 . . . .
2 where NN1 is the distance to the first nearest neighbor

and NN2 is the distance to the second nearest neighbor.

e Sorting by this ratio (into ascending order) puts matches in
order of confidence (in descending order of confidence).



Matching Local Features

* Nearest neighbor (Euclidean distance)

* Threshold ratio of nearest to 2"9 nearest descriptor
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https://people.eecs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf

SIFT Repeatability
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6.4 Matching to large databases Image noise

An 1mportant remaining issue for measuring the distinctiveness of features is how the re-

liability of matching varies as a function of the number of features in the database being

matched. Most of the examples in this paper are generated using a database of 32 images

with about 40,000 keypoints. Figure 10 shows how the matching reliability varies as a func- Lowe IJCV 2004



https://people.eecs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf

SIFT Repeatability
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https://people.eecs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf

SIFT Repeatability

Correct nearest descriptor (%)
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https://people.eecs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf

Choosing a detector

 What do you want it for?
— Precise localization in x-y: Harris
— Good localization in scale: Difference of Gaussian
— Flexible region shape: MSER

e Best choice often application dependent
— Harris-/Hessian-Laplace/DoG work well for many natural categories
— MSER works well for buildings and printed things

* Why choose?
— Get more points with more detectors

* There have been extensive evaluations/comparisons
— [Mikolajczyk et al., 1JCV’05, PAMI’05]
— All detectors/descriptors shown here work well



Comparison of Keypoint Detectors

Table 7.1 Overview of feature detectors.
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Choosing a descriptor

e Again, need not stick to one

* For object instance recognition or stitching, SIFT or variant is a
good choice



Things to remember

* Keypoint detection: repeatable
and distinctive

— Corners, blobs, stable regions
— Harris, DoG

e Descriptors: robust and selective

— spatial histograms of orientation
— SIFT




