








The Geometry of Image Formation

Mapping between image and world coordinates

– Pinhole camera model

– Projective geometry

• Vanishing points and lines

– Projection matrix



What do you need to make a camera from scratch?



Image formation

Let’s design a camera
– Idea 1:  put a piece of film in front of an object
– Do we get a reasonable image?

Slide source: Seitz



Pinhole camera

Idea 2: add a barrier to block off most of the rays

– This reduces blurring

– The opening known as the aperture

Slide source: Seitz



Pinhole camera

Figure from Forsyth

f

f = focal length

c = center of the camera

c



Camera obscura: the pre-camera

• Known during classical period in China and Greece (e.g.  Mo-Ti, China, 
470BC to 390BC)

Illustration of Camera Obscura Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys



Camera Obscura used for Tracing

Lens Based Camera Obscura, 1568



Accidental Cameras

Accidental Pinhole and Pinspeck Cameras 
Revealing the scene outside the picture. 

Antonio Torralba, William T. Freeman



Accidental Cameras





First Photograph

Oldest surviving photograph

– Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes



“Louis Daguerre—the inventor of daguerreotype—shot what is not only the 

world's oldest photograph of Paris, but also the first photo with humans. The 10-

minute long exposure was taken in 1839 in Place de la République and it's just 

possible to make out two blurry figures in the left-hand corner.”
Source

https://mymodernmet.com/first-photograph-photography-history/


Camera and World Geometry

How tall is this woman?

Which ball is closer?

How high is the camera?

What is the camera 

rotation?

What is the focal length of 

the camera?



Point of observation

Figures © Stephen E. Palmer, 2002

Dimensionality Reduction Machine (3D to 2D)

3D world 2D image



Projection can be tricky…
Slide source: Seitz



Projection can be tricky…
Slide source: Seitz



Projective Geometry

What is lost?

• Length

Which is closer?

Who is taller?



Length and area are not preserved

Figure by David Forsyth
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Projective Geometry

What is lost?

• Length

• Angles

Perpendicular?

Parallel?



Projective Geometry

What is preserved?

• Straight lines are still straight



Vanishing points and lines

Parallel lines in the world intersect in the image at a “vanishing point”



Vanishing points and lines

o
Vanishing Point o

Vanishing Point

Vanishing Line



Vanishing points and lines

Vanishing
point

Vanishing
point

Vertical vanishing
point

(at infinity)

Slide from Efros, Photo from Criminisi



• Project 1 will be out soon

• Read Szeliski 2.1, especially 2.1.4 

• Image projection 

• Filtering





Projection: world coordinates→image coordinates
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Projection: world coordinates→image coordinates

Camera 

Center 

(tx, ty, tz)
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How do we handle the general case?



Interlude: why does this matter?



Relating multiple views





Projection: world coordinates→image coordinates
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How do we handle the general case?



Homogeneous coordinates

Conversion

Converting to homogeneous coordinates

homogeneous image 

coordinates

homogeneous scene 

coordinates

Converting from homogeneous coordinates



Homogeneous coordinates

Invariant to scaling

Point in Cartesian is ray in Homogeneous
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Slide Credit: Savarese

Projection matrix

 XtRKx =
x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3) 

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)
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Slide Credit: Savarese

Projection matrix

Intrinsic Assumptions

• Unit aspect ratio

• Optical center at (0,0)

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

X

x
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Projection matrix

Intrinsic Assumptions

• Unit aspect ratio

• Optical center at (0,0)

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

X

x



Remove assumption: known optical center
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Intrinsic Assumptions

• Unit aspect ratio

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)



Remove assumption: square pixels
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• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)



Remove assumption: non-skewed pixels
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Intrinsic Assumptions Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

Note: different books use different notation for parameters



Oriented and Translated Camera
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Allow camera translation
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• No rotation



3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:
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Slide Credit: Saverese



Allow camera rotation

 XtRKx =
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Degrees of freedom

 XtRKx =
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Field of View (Zoom, focal length)



Beyond Pinholes: Radial Distortion

Image from Martin Habbecke

Corrected Barrel Distortion



Things to remember

• Vanishing points and 
vanishing lines

• Pinhole camera model 
and camera projection 
matrix

• Homogeneous 
coordinates

Vanishing
point

Vanishing
line

Vanishing
point

Vertical vanishing
point

(at infinity)

 XtRKx =



Reminder: read your book

• Lectures have assigned readings

• Szeliski 2.1 and especially 2.1.4 cover the geometry of image 
formation



2 minute break



Image Filtering

Computer Vision

James Hays
Many slides by Derek Hoiem



Project 1

BBC Clip: https://www.youtube.com/watch?v=OlumoQ05gS8

https://www.youtube.com/watch?v=OlumoQ05gS8


Slide credit Fei Fei Li



Slide credit Fei Fei Li



Slide credit Fei Fei Li



Hybrid Images

• A. Oliva, A. Torralba, P.G. Schyns, 
“Hybrid Images,” SIGGRAPH 2006

http://cvcl.mit.edu/hybridimage.htm


Upcoming classes: two views of filtering

• Image filters in spatial domain

– Filter is a mathematical operation of a grid of numbers

– Smoothing, sharpening, measuring texture

• Image filters in the frequency domain

– Filtering is a way to modify the frequencies of images

– Denoising, sampling, image compression



Image filtering

• Image filtering: compute function of local 
neighborhood at each position

• Really important!

– Enhance images
• Denoise, resize, increase contrast, etc.

– Extract information from images
• Texture, edges, distinctive points, etc.

– Detect patterns
• Template matching

– Deep Convolutional Networks
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Slide credit: David Lowe (UBC)

],[g 

Example: box filter



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=



0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=



0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

?

],[],[],[
,

lnkmflkgnmh
lk

++=



0 10 20 30 30

50

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

?

],[],[],[
,

lnkmflkgnmh
lk

++=



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

[.,.]h[.,.]f

Image filtering
111

111

111],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=



What does it do?

• Replaces each pixel with 

an average of its 

neighborhood

• Achieve smoothing effect 

(remove sharp features)
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Slide credit: David Lowe (UBC)
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Box Filter



Smoothing with box filter



Practice with linear filters
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Source: D. Lowe



Practice with linear filters
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Source: D. Lowe



Practice with linear filters
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Source: D. Lowe



Practice with linear filters

000

100

000

Original Shifted left

By 1 pixel

Source: D. Lowe



Practice with linear filters
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(Note that filter sums to 1)

Source: D. Lowe



Practice with linear filters
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Sharpening filter

- Accentuates differences with local 

average

Source: D. Lowe



Sharpening

Source: D. Lowe



Other filters
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Other filters
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Filtering vs. Convolution

• 2d filtering
– h=filter2(f,I); or h=imfilter(I,f);

• 2d convolution
– h=conv2(f,I);
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Key properties of linear filters

Linearity:
imfilter(I, f1 + f2) = 

imfilter(I,f1) + imfilter(I,f2)

Shift invariance: same behavior regardless of 
pixel location
imfilter(I,shift(f)) = shift(imfilter(I,f))

Any linear, shift-invariant operator can be 
represented as a convolution

Source: S. Lazebnik



More properties
• Commutative: a * b = b * a

– Conceptually no difference between filter and signal

– But particular filtering implementations might break this equality

• Associative: a * (b * c) = (a * b) * c
– Often apply several filters one after another: (((a * b1) * b2) * b3)

– This is equivalent to applying one filter: a * (b1 * b2 * b3)

• Distributes over addition: a * (b + c) = (a * b) + (a * c)

• Scalars factor out: ka * b = a * kb = k (a * b)

• Identity: unit impulse e = [0, 0, 1, 0, 0],
a * e = a

Source: S. Lazebnik



• Weight contributions of neighboring pixels by nearness

0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.003

5 x 5,  = 1

Slide credit: Christopher Rasmussen

Important filter: Gaussian



Smoothing with Gaussian filter



Smoothing with box filter



Gaussian filters

• Remove “high-frequency” components from the image (low-
pass filter)
– Images become more smooth

• Convolution with self is another Gaussian
– So can smooth with small-width kernel, repeat, and get same result 

as larger-width kernel would have

– Convolving two times with Gaussian kernel of width σ is same as 
convolving once with kernel of width  σ√2 

• Separable kernel
– Factors into product of two 1D Gaussians

Source: K. Grauman



Separability of the Gaussian filter

Source: D. Lowe



Separability example

*

*

=

=

2D convolution

(center location only)

Source: K. Grauman

The filter factors

into a product of 1D

filters:

Perform convolution

along rows:

Followed by convolution

along the remaining column:



Separability

• Why is separability useful in practice?



Some practical matters



How big should the filter be?
• Values at edges should be near zero

• Rule of thumb for Gaussian: set filter half-width to 
about 3 σ

Practical matters



Practical matters

• What about near the edge?

– the filter window falls off the edge of the image

– need to extrapolate

– methods:

• clip filter (black)

• wrap around

• copy edge

• reflect across edge

Source: S. Marschner



To be continued…



Next class: Light and Color and
Thinking in Frequency


