

The Geometry of Image Formation

Mapping between image and world coordinates

– Pinhole camera model

– Projective geometry

• Vanishing points and lines

– Projection matrix

What do you need to make a camera from scratch?

Image formation

Let’s design a camera
– Idea 1: put a piece of film in front of an object
– Do we get a reasonable image?

Slide source: Seitz

Pinhole camera

Idea 2: add a barrier to block off most of the rays

– This reduces blurring

– The opening known as the aperture

Slide source: Seitz

Pinhole camera

Figure from Forsyth

f

f = focal length

c = center of the camera

c

Camera obscura: the pre-camera

• Known during classical period in China and Greece (e.g. Mo-Ti, China,
470BC to 390BC)

Illustration of Camera Obscura Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys

Camera Obscura used for Tracing

Lens Based Camera Obscura, 1568

Accidental Cameras

Accidental Pinhole and Pinspeck Cameras
Revealing the scene outside the picture.

Antonio Torralba, William T. Freeman

Accidental Cameras

First Photograph

Oldest surviving photograph

– Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

“Louis Daguerre—the inventor of daguerreotype—shot what is not only the

world's oldest photograph of Paris, but also the first photo with humans. The 10-

minute long exposure was taken in 1839 in Place de la République and it's just

possible to make out two blurry figures in the left-hand corner.”
Source

https://mymodernmet.com/first-photograph-photography-history/

Camera and World Geometry

How tall is this woman?

Which ball is closer?

How high is the camera?

What is the camera

rotation?

What is the focal length of

the camera?

Point of observation

Figures © Stephen E. Palmer, 2002

Dimensionality Reduction Machine (3D to 2D)

3D world 2D image

Projection can be tricky…
Slide source: Seitz

Projection can be tricky…
Slide source: Seitz

Projective Geometry

What is lost?

• Length

Which is closer?

Who is taller?

Length and area are not preserved

Figure by David Forsyth

B’

C’

A’

Projective Geometry

What is lost?

• Length

• Angles

Perpendicular?

Parallel?

Projective Geometry

What is preserved?

• Straight lines are still straight

Vanishing points and lines

Parallel lines in the world intersect in the image at a “vanishing point”

Vanishing points and lines

o
Vanishing Point o

Vanishing Point

Vanishing Line

Vanishing points and lines

Vanishing
point

Vanishing
point

Vertical vanishing
point

(at infinity)

Slide from Efros, Photo from Criminisi

• Project 1 will be out soon

• Read Szeliski 2.1, especially 2.1.4

• Image projection

• Filtering

Projection: world coordinates→image coordinates

Camera

Center

(0, 0, 0)

















=

z

y

x

X.

.

. f

z

y









=

'

'

v

u
x

.
v’

u’

z

f
xu *' −=

z

f
yv *' −=

5

2
*2' −=u

5

2
*3' −=v

If X = 2, Y = 3,

Z = 5, and f = 2

What are U and V?

3
5

2
?

z

y

f

v
=

−

'

Projection: world coordinates→image coordinates

Camera

Center

(tx, ty, tz)

















=

Z

Y

X

P.

.

. f Z Y









=

v

u
p

.

Optical

Center

(u0, v0)

v

u

How do we handle the general case?

Interlude: why does this matter?

Relating multiple views

Projection: world coordinates→image coordinates

Camera

Center

(tx, ty, tz)

















=

Z

Y

X

P.

.

. f Z Y









=

v

u
p

.

Optical

Center

(u0, v0)

v

u

How do we handle the general case?

Homogeneous coordinates

Conversion

Converting to homogeneous coordinates

homogeneous image

coordinates

homogeneous scene

coordinates

Converting from homogeneous coordinates

Homogeneous coordinates

Invariant to scaling

Point in Cartesian is ray in Homogeneous









=


























=

















w

y

w
x

kw

ky

kw
kx

kw

ky

kx

w

y

x

k

Homogeneous
Coordinates

Cartesian
Coordinates

Slide Credit: Savarese

Projection matrix

 XtRKx =
x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

Ow

iw

kw

jw
R,t

X

x

 X0IKx =


































=

















1
0100

000

000

1
z

y

x

f

f

v

u

w

K

Slide Credit: Savarese

Projection matrix

Intrinsic Assumptions

• Unit aspect ratio

• Optical center at (0,0)

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

X

x

 X0IKx =


































=

















1
0100

000

000

1
z

y

x

f

f

v

u

w

Slide Credit: Savarese

Projection matrix

Intrinsic Assumptions

• Unit aspect ratio

• Optical center at (0,0)

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

X

x

Remove assumption: known optical center

 X0IKx =


































=

















1
0100

00

00

1

0

0

z

y

x

vf

uf

v

u

w

Intrinsic Assumptions

• Unit aspect ratio

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

Remove assumption: square pixels

 X0IKx =


































=

















1
0100

00

00

1

0

0

z

y

x

v

u

v

u

w 



Intrinsic Assumptions
• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

Remove assumption: non-skewed pixels

 X0IKx =


































=

















1
0100

00

0

1

0

0

z

y

x

v

us

v

u

w 



Intrinsic Assumptions Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

Note: different books use different notation for parameters

Oriented and Translated Camera

Ow

iw

kw

jw

t

R

X

x

Allow camera translation

 XtIKx =


















































=

















1
100

010

001

100

0

0

1

0

0

z

y

x

t

t

t

v

u

v

u

w

z

y

x





Intrinsic Assumptions Extrinsic Assumptions
• No rotation

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:















 −

=

















−

=

















−=

100

0cossin

0sincos

)(

cos0sin

010

sin0cos

)(

cossin0

sincos0

001

)(

















z

y

x

R

R

R

p

p’



y

z

Slide Credit: Saverese

Allow camera rotation

 XtRKx =



















































=

















1
100

0

1 333231

232221

131211

0

0

z

y

x

trrr

trrr

trrr

v

us

v

u

w

z

y

x





Degrees of freedom

 XtRKx =



















































=

















1
100

0

1 333231

232221

131211

0

0

z

y

x

trrr

trrr

trrr

v

us

v

u

w

z

y

x





5 6

Field of View (Zoom, focal length)

Beyond Pinholes: Radial Distortion

Image from Martin Habbecke

Corrected Barrel Distortion

Things to remember

• Vanishing points and
vanishing lines

• Pinhole camera model
and camera projection
matrix

• Homogeneous
coordinates

Vanishing
point

Vanishing
line

Vanishing
point

Vertical vanishing
point

(at infinity)

 XtRKx =

Reminder: read your book

• Lectures have assigned readings

• Szeliski 2.1 and especially 2.1.4 cover the geometry of image
formation

2 minute break

Image Filtering

Computer Vision

James Hays
Many slides by Derek Hoiem

Project 1

BBC Clip: https://www.youtube.com/watch?v=OlumoQ05gS8

https://www.youtube.com/watch?v=OlumoQ05gS8

Slide credit Fei Fei Li

Slide credit Fei Fei Li

Slide credit Fei Fei Li

Hybrid Images

• A. Oliva, A. Torralba, P.G. Schyns,
“Hybrid Images,” SIGGRAPH 2006

http://cvcl.mit.edu/hybridimage.htm

Upcoming classes: two views of filtering

• Image filters in spatial domain

– Filter is a mathematical operation of a grid of numbers

– Smoothing, sharpening, measuring texture

• Image filters in the frequency domain

– Filtering is a way to modify the frequencies of images

– Denoising, sampling, image compression

Image filtering

• Image filtering: compute function of local
neighborhood at each position

• Really important!

– Enhance images
• Denoise, resize, increase contrast, etc.

– Extract information from images
• Texture, edges, distinctive points, etc.

– Detect patterns
• Template matching

– Deep Convolutional Networks

111

111

111

Slide credit: David Lowe (UBC)

],[g 

Example: box filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

?

],[],[],[
,

lnkmflkgnmh
lk

++=

0 10 20 30 30

50

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

?

],[],[],[
,

lnkmflkgnmh
lk

++=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

[.,.]h[.,.]f

Image filtering
111

111

111],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

What does it do?

• Replaces each pixel with

an average of its

neighborhood

• Achieve smoothing effect

(remove sharp features)

111

111

111

Slide credit: David Lowe (UBC)

],[g 

Box Filter

Smoothing with box filter

Practice with linear filters

000

010

000

Original

?

Source: D. Lowe

Practice with linear filters

000

010

000

Original Filtered

(no change)

Source: D. Lowe

Practice with linear filters

000

100

000

Original

?

Source: D. Lowe

Practice with linear filters

000

100

000

Original Shifted left

By 1 pixel

Source: D. Lowe

Practice with linear filters

Original

111

111

111

000

020

000

- ?

(Note that filter sums to 1)

Source: D. Lowe

Practice with linear filters

Original

111

111

111

000

020

000

-

Sharpening filter

- Accentuates differences with local

average

Source: D. Lowe

Sharpening

Source: D. Lowe

Other filters

-101

-202

-101

Vertical Edge

(absolute value)

Sobel

Other filters

-1-2-1

000

121

Horizontal Edge

(absolute value)

Sobel

Filtering vs. Convolution

• 2d filtering
– h=filter2(f,I); or h=imfilter(I,f);

• 2d convolution
– h=conv2(f,I);

],[],[],[
,

lnkmIlkfnmh
lk

−−=

I=imagef=filter

],[],[],[
,

lnkmIlkfnmh
lk

++=

Key properties of linear filters

Linearity:
imfilter(I, f1 + f2) =

imfilter(I,f1) + imfilter(I,f2)

Shift invariance: same behavior regardless of
pixel location
imfilter(I,shift(f)) = shift(imfilter(I,f))

Any linear, shift-invariant operator can be
represented as a convolution

Source: S. Lazebnik

More properties
• Commutative: a * b = b * a

– Conceptually no difference between filter and signal

– But particular filtering implementations might break this equality

• Associative: a * (b * c) = (a * b) * c
– Often apply several filters one after another: (((a * b1) * b2) * b3)

– This is equivalent to applying one filter: a * (b1 * b2 * b3)

• Distributes over addition: a * (b + c) = (a * b) + (a * c)

• Scalars factor out: ka * b = a * kb = k (a * b)

• Identity: unit impulse e = [0, 0, 1, 0, 0],
a * e = a

Source: S. Lazebnik

• Weight contributions of neighboring pixels by nearness

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5 x 5,  = 1

Slide credit: Christopher Rasmussen

Important filter: Gaussian

Smoothing with Gaussian filter

Smoothing with box filter

Gaussian filters

• Remove “high-frequency” components from the image (low-
pass filter)
– Images become more smooth

• Convolution with self is another Gaussian
– So can smooth with small-width kernel, repeat, and get same result

as larger-width kernel would have

– Convolving two times with Gaussian kernel of width σ is same as
convolving once with kernel of width σ√2

• Separable kernel
– Factors into product of two 1D Gaussians

Source: K. Grauman

Separability of the Gaussian filter

Source: D. Lowe

Separability example

*

*

=

=

2D convolution

(center location only)

Source: K. Grauman

The filter factors

into a product of 1D

filters:

Perform convolution

along rows:

Followed by convolution

along the remaining column:

Separability

• Why is separability useful in practice?

Some practical matters

How big should the filter be?
• Values at edges should be near zero

• Rule of thumb for Gaussian: set filter half-width to
about 3 σ

Practical matters

Practical matters

• What about near the edge?

– the filter window falls off the edge of the image

– need to extrapolate

– methods:

• clip filter (black)

• wrap around

• copy edge

• reflect across edge

Source: S. Marschner

To be continued…

Next class: Light and Color and
Thinking in Frequency

