

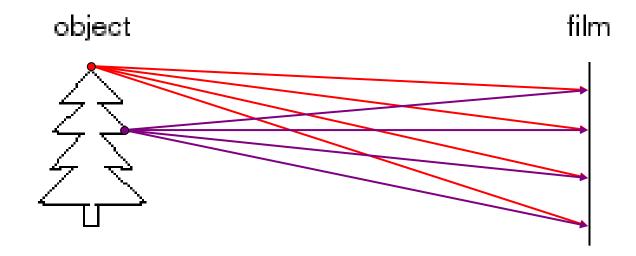
The Geometry of Image Formation

Mapping between image and world coordinates

- Pinhole camera model
- Projective geometry
 - Vanishing points and lines
- Projection matrix

What do you need to make a camera from scratch?

Image formation

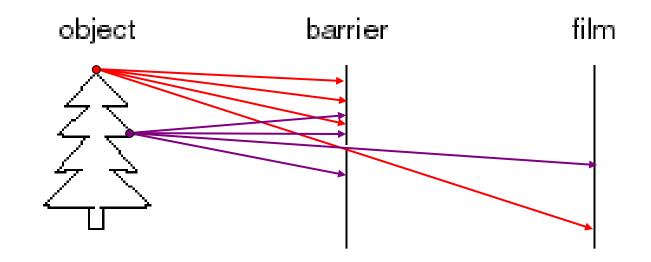


Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Slide source: Seitz

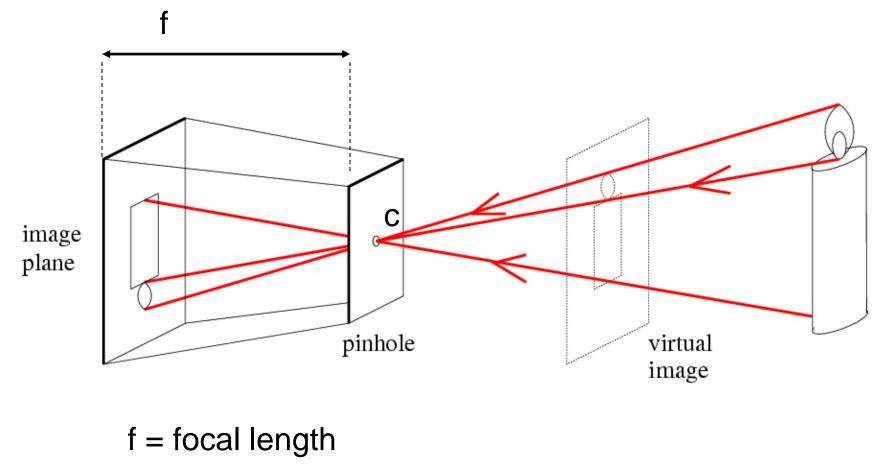
Pinhole camera



Idea 2: add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the **aperture**

Pinhole camera



c = center of the camera

Figure from Forsyth

Camera obscura: the pre-camera

• Known during classical period in China and Greece (e.g. Mo-Ti, China, 470BC to 390BC)

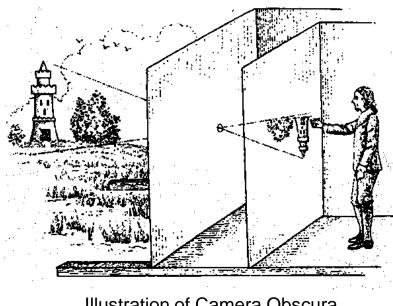
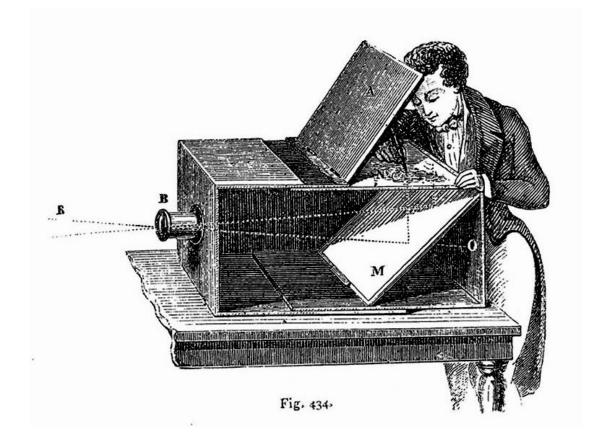


Illustration of Camera Obscura

Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys

Camera Obscura used for Tracing

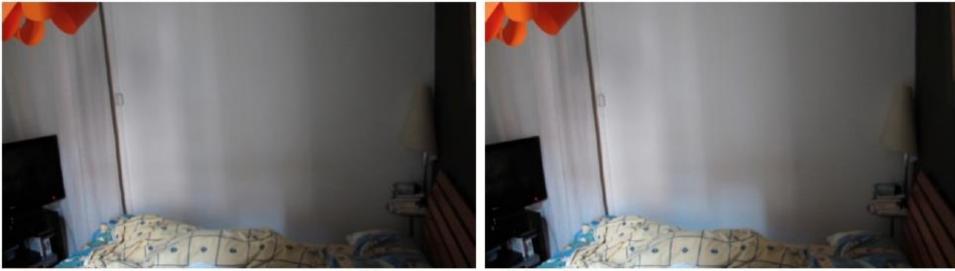


Lens Based Camera Obscura, 1568

Accidental Cameras

Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman

Accidental Cameras



a) Input (occluder present)

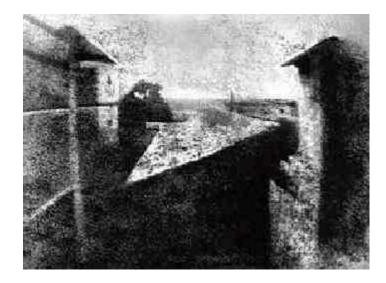
b) Reference (occluder absent)

c) Difference image (b-a) d) Crop upside down e) True view

First Photograph

Oldest surviving photograph

Took 8 hours on pewter plate

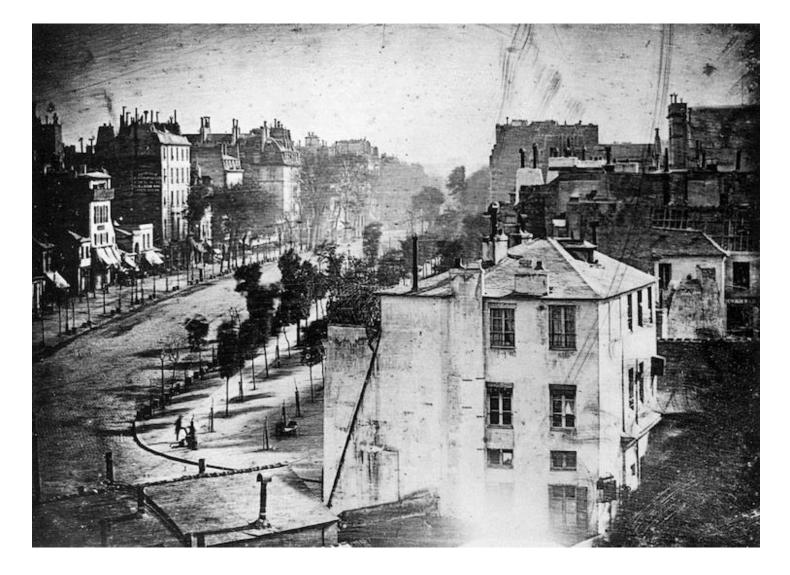


Joseph Niepce, 1826

Photograph of the first photograph

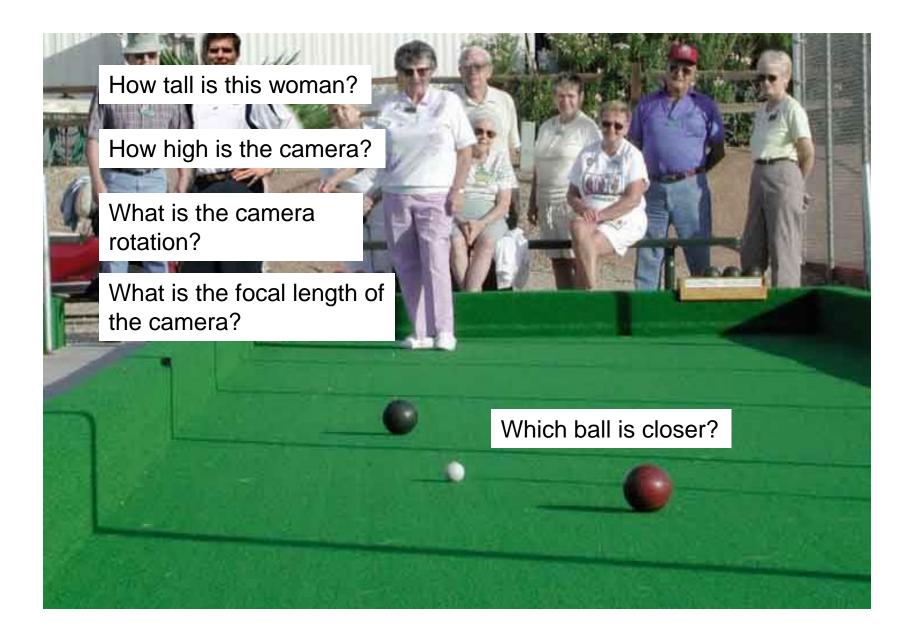
Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

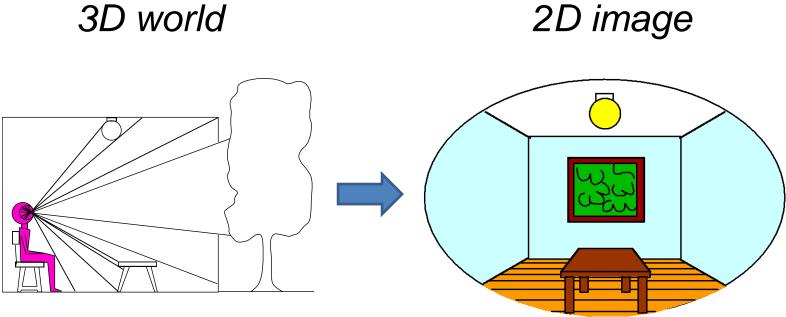


"Louis Daguerre—the inventor of daguerreotype—shot what is not only the world's oldest photograph of Paris, but also the first photo with humans. The 10minute long exposure was taken in 1839 in Place de la République and it's just possible to make out two blurry figures in the left-hand corner."

Camera and World Geometry



Dimensionality Reduction Machine (3D to 2D)



Point of observation

Figures © Stephen E. Palmer, 2002

Projection can be tricky...

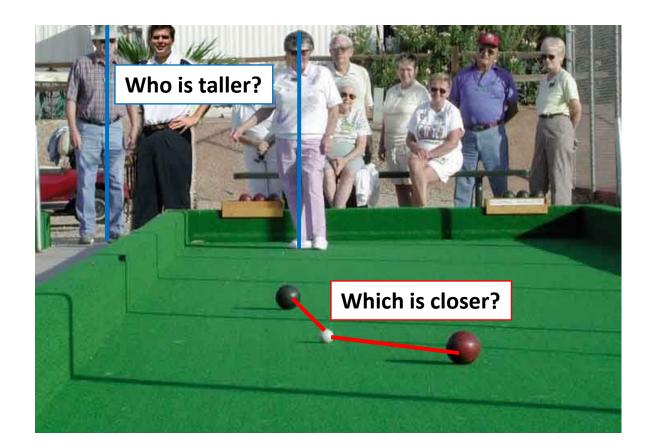
Slide source: Seitz

Projection can be tricky...

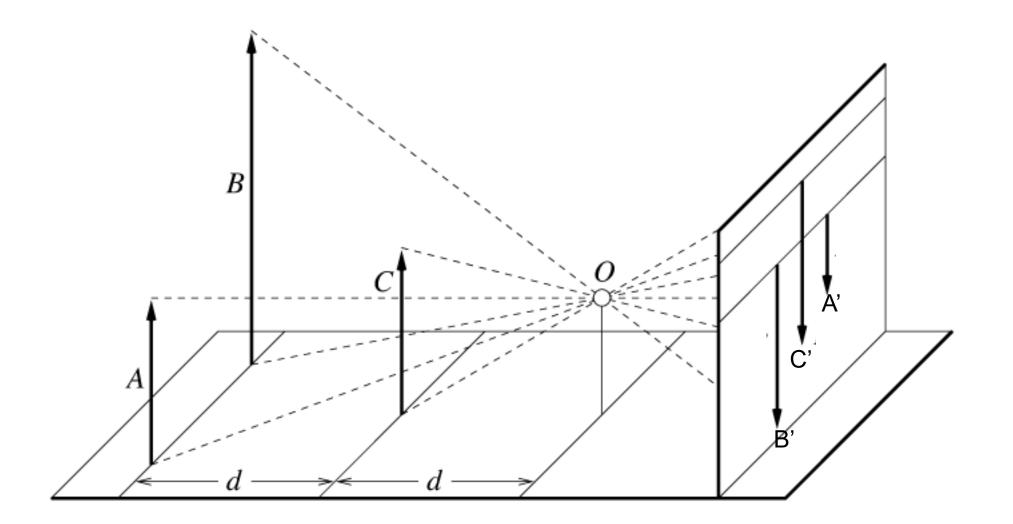
Projective Geometry

What is lost?

• Length



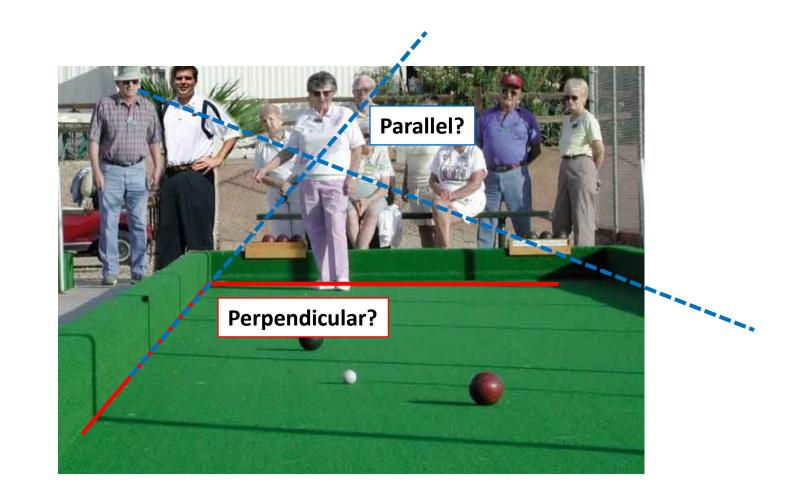
Length and area are not preserved



Projective Geometry

What is lost?

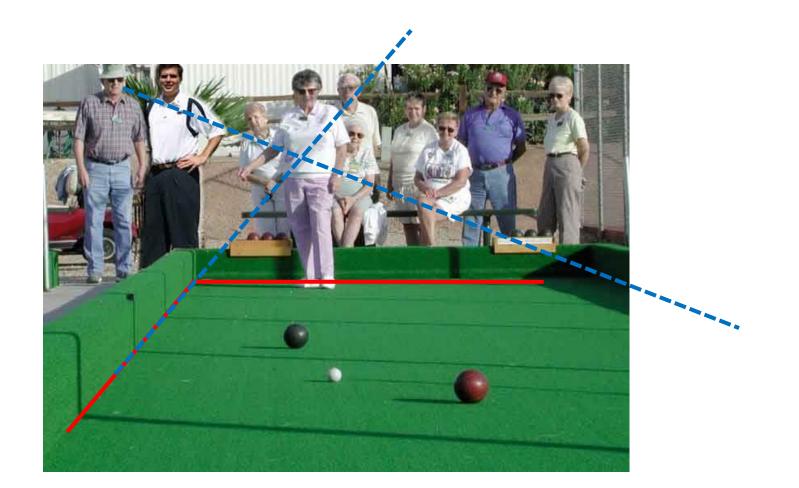
- Length
- Angles



Projective Geometry

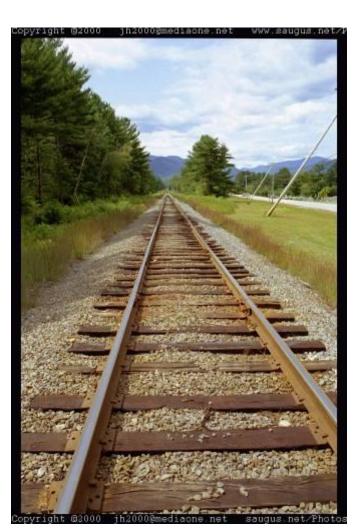
What is preserved?

• Straight lines are still straight

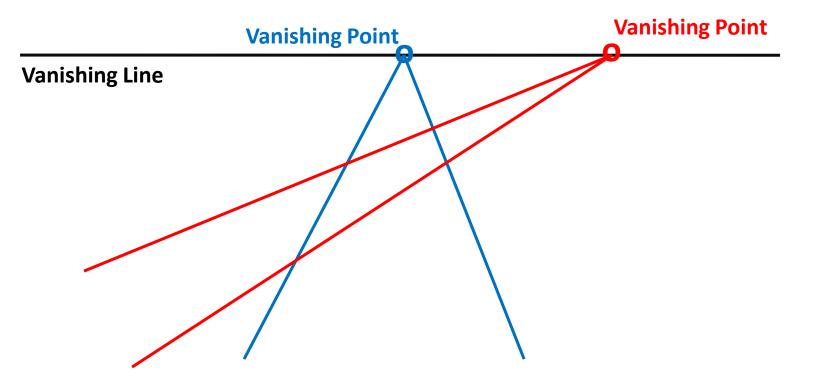


Vanishing points and lines

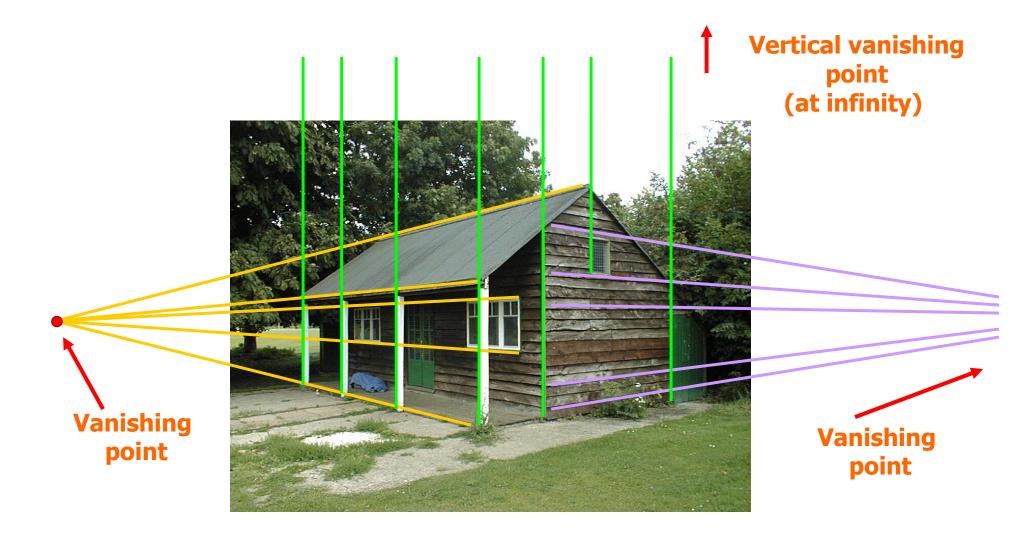
Parallel lines in the world intersect in the image at a "vanishing point"



Vanishing points and lines



Vanishing points and lines



Slide from Efros, Photo from Criminisi

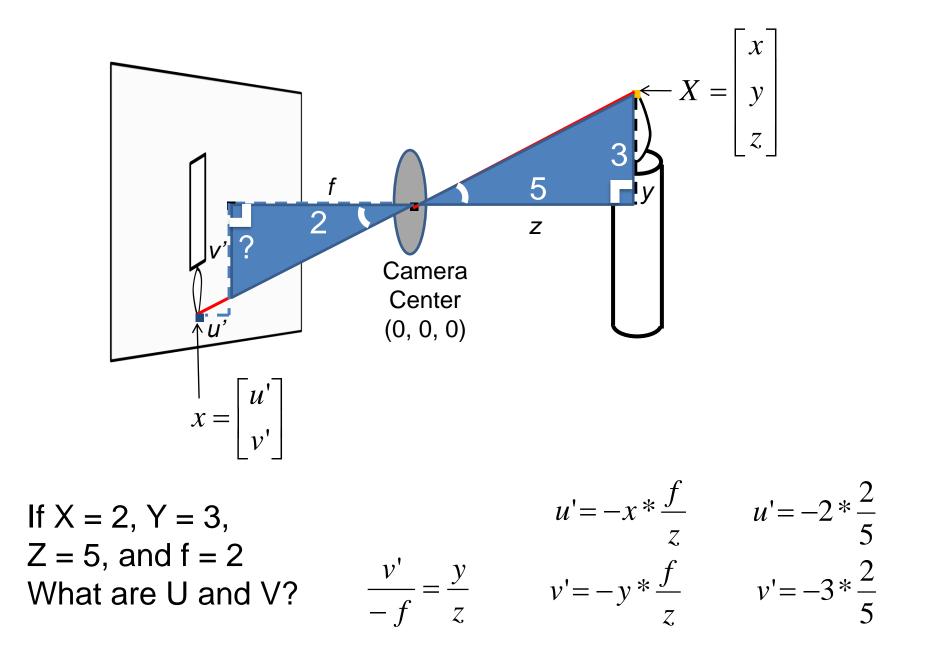
- Project 1 will be out soon
- Read Szeliski 2.1, especially 2.1.4
- Image projection
- Filtering

Chapter 2

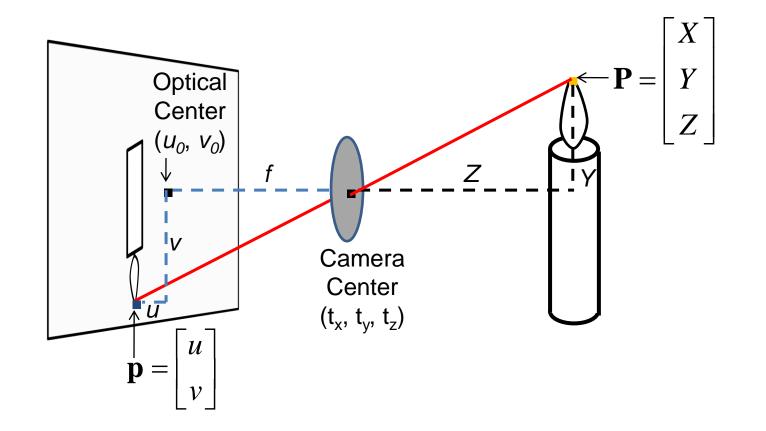
Image formation

2.1	Geometric primitives and transformations		36
	2.1.1	2D transformations	39
	2.1.2	3D transformations	43
	2.1.3	3D rotations	45
	2.1.4	3D to 2D projections	50
	2.1.5	Lens distortions	62
2.2	Photometric image formation		64
	2.2.1	Lighting	65
	2.2.2	Reflectance and shading	66
	2.2.3	Optics	73
2.3	The digital camera		78
	2.3.1	Sampling and aliasing	82
	2.3.2	Color	85
	2.3.3	Compression	97
2.4	Additi	onal reading	98
2.5	Exercises		

Projection: world coordinates \rightarrow image coordinates



Projection: world coordinates \rightarrow image coordinates



How do we handle the general case?

Interlude: why does this matter?

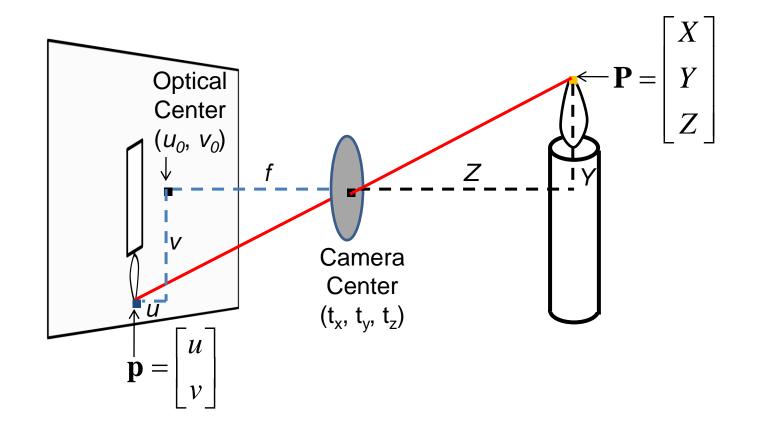
Relating multiple views

Photo Tourism Exploring photo collections in 3D

Noah SnavelySteven M. SeitzRichard SzeliskiUniversity of WashingtonMicrosoft Research

SIGGRAPH 2006

Projection: world coordinates \rightarrow image coordinates



How do we handle the general case?

Homogeneous coordinates

Conversion

Converting to homogeneous coordinates

$$(x,y) \Rightarrow \left[\begin{array}{c} x \\ y \\ \mathbf{1} \end{array} \right]$$

homogeneous image coordinates

$$(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

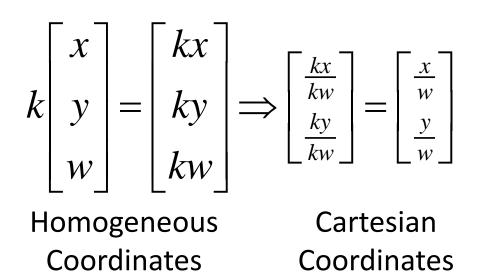
homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

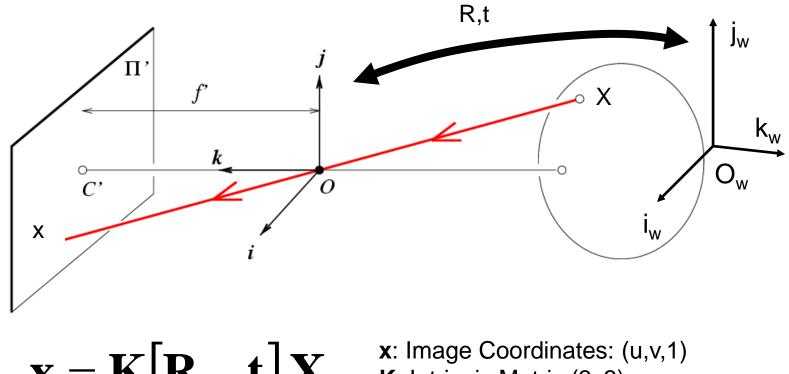
Homogeneous coordinates

Invariant to scaling



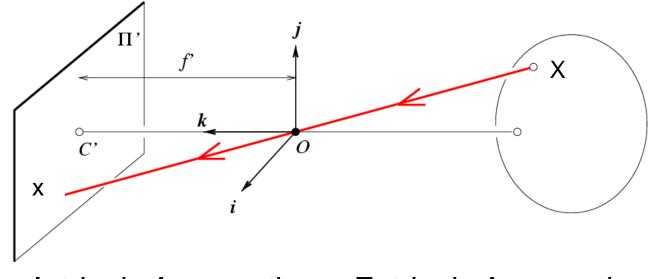
Point in Cartesian is ray in Homogeneous

Projection matrix



- $\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$
 - K: Intrinsic Matrix (3x3)
 R: Rotation (3x3)
 t: Translation (3x1)
 X: World Coordinates: (X,Y,Z,1)

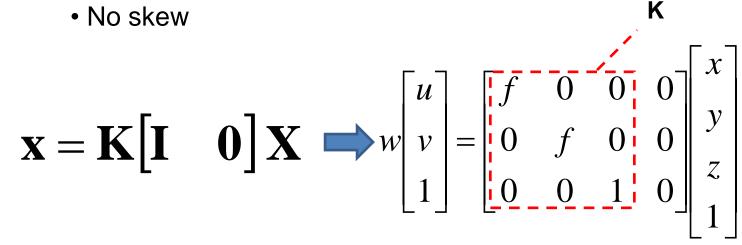
Projection matrix



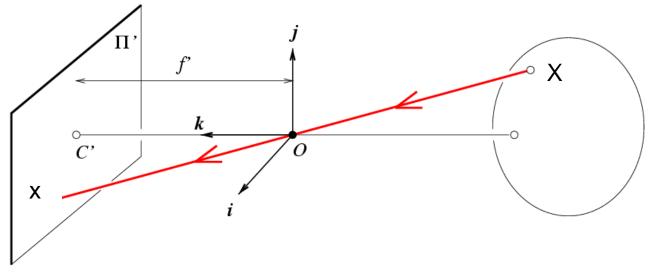
Intrinsic Assumptions Extrinsic Assumptions

- Unit aspect ratio
- Optical center at (0,0)
- No skew

- No rotation
- Camera at (0,0,0)



Projection matrix



Intrinsic Assumptions Extrinsic Assumptions

- Unit aspect ratio
- Optical center at (0,0)
- No skew

- No rotation
- Camera at (0,0,0)

$$\mathbf{X} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: known optical center

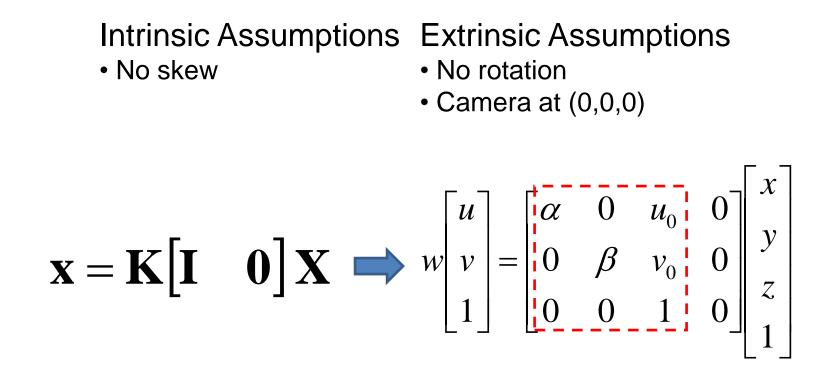
- Unit aspect ratio
- No skew

Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

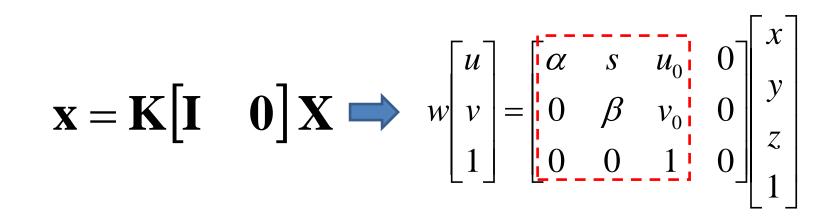
$$\mathbf{X} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & u_0 & 0 \\ 0 & f & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: square pixels



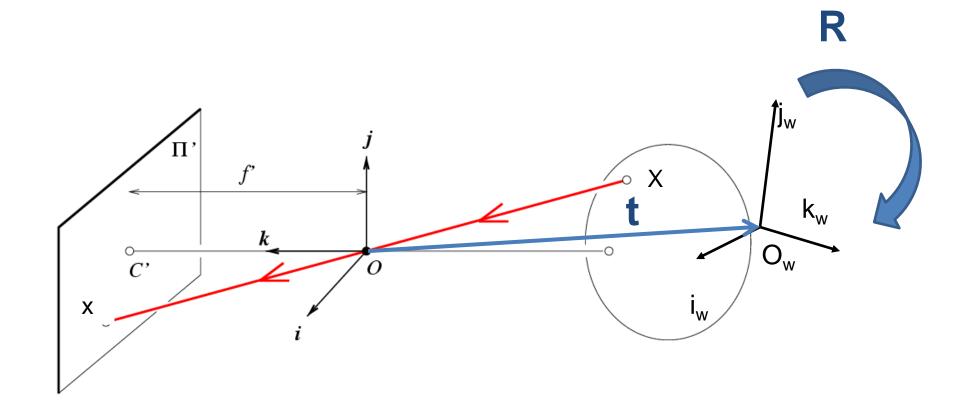
Remove assumption: non-skewed pixels

Intrinsic Assumptions Extrinsic Assumptions • No rotation • Camera at (0,0,0)



Note: different books use different notation for parameters

Oriented and Translated Camera



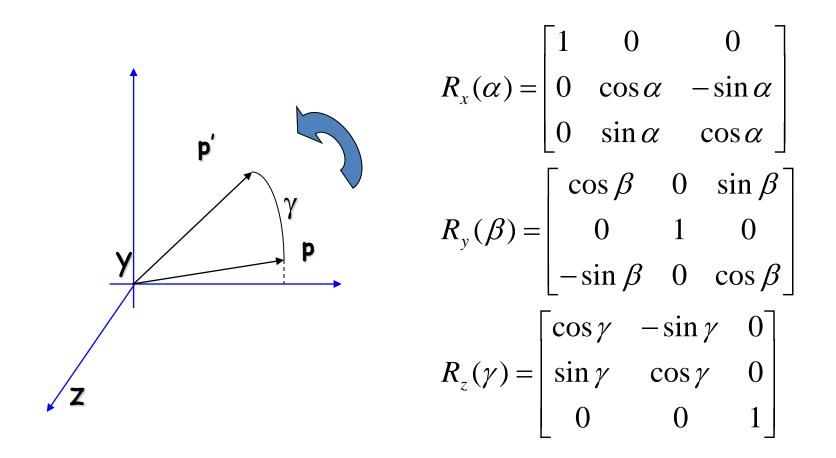
Allow camera translation

Intrinsic Assumptions Extrinsic Assumptions No rotation

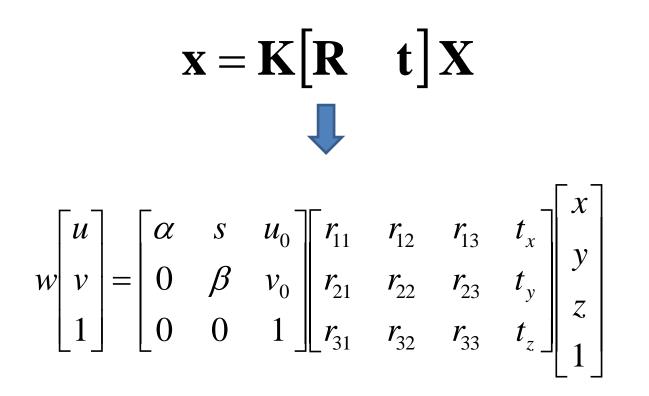
$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

3D Rotation of Points

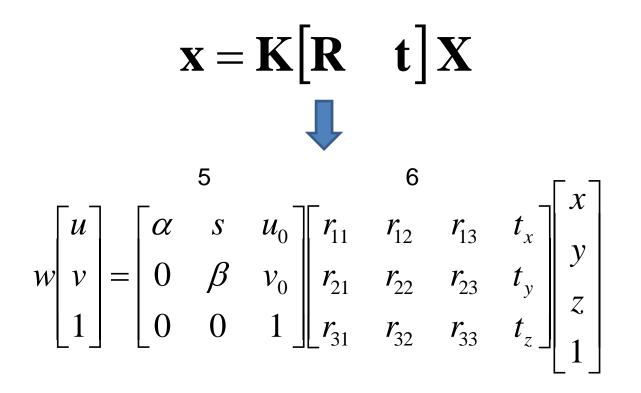
Rotation around the coordinate axes, counter-clockwise:



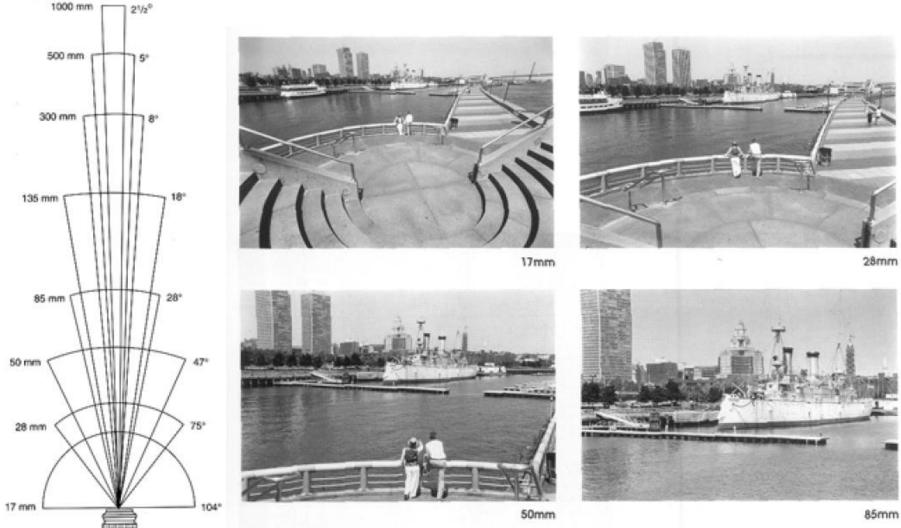
Allow camera rotation



Degrees of freedom

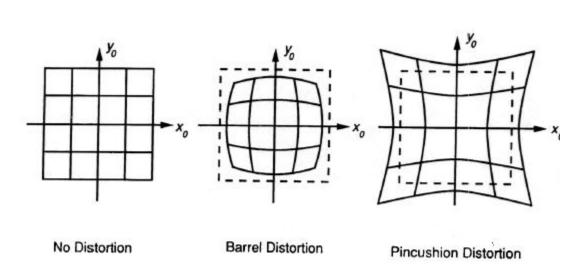


Field of View (Zoom, focal length)



From London and Upton

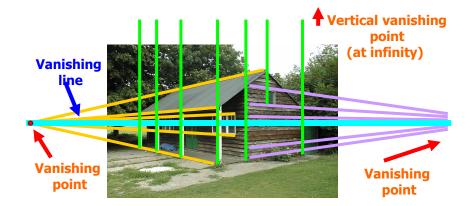
Beyond Pinholes: Radial Distortion

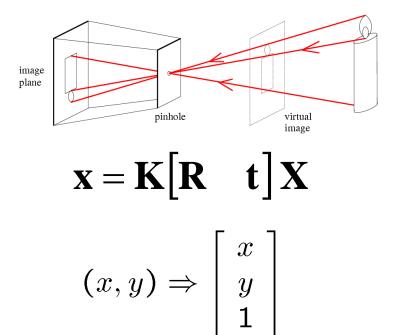


Corrected Barrel Distortion

Things to remember

- Vanishing points and vanishing lines
- Pinhole camera model and camera projection matrix
- Homogeneous coordinates





Reminder: read your book

- Lectures have assigned readings
- Szeliski 2.1 and especially 2.1.4 cover the geometry of image formation

2 minute break

Computer Vision

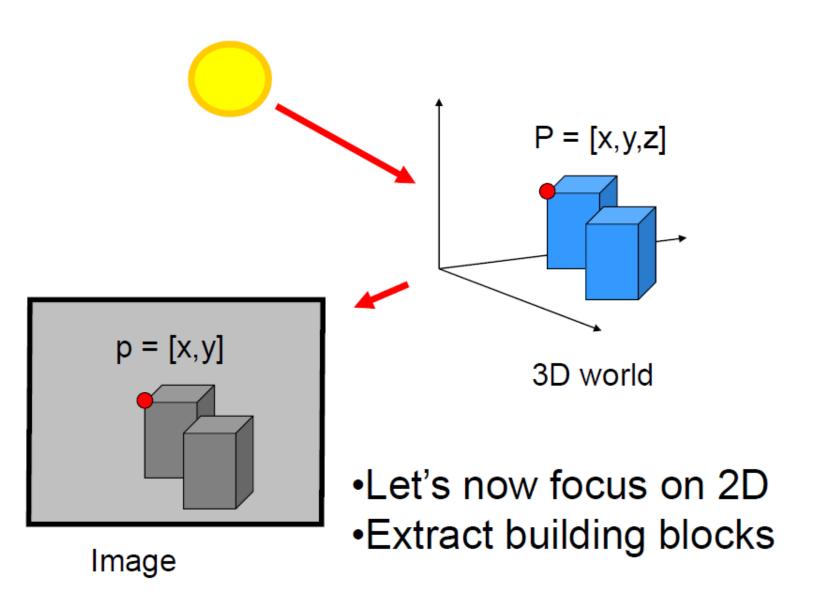
James Hays

Many slides by Derek Hoiem

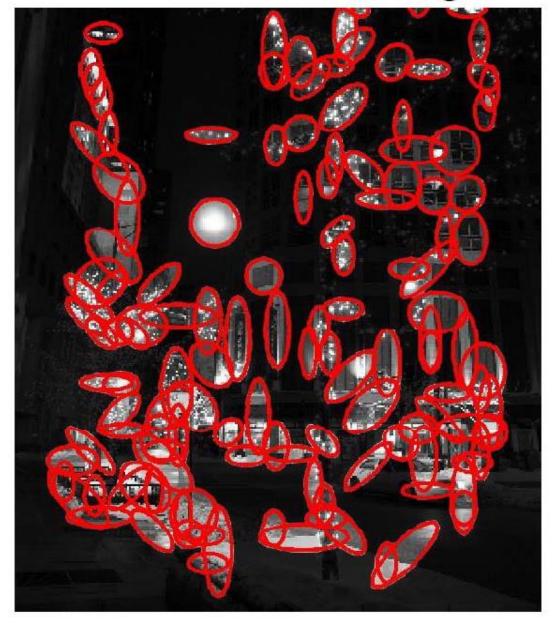


BBC Clip: https://www.youtube.com/watch?v=OlumoQ05gS8

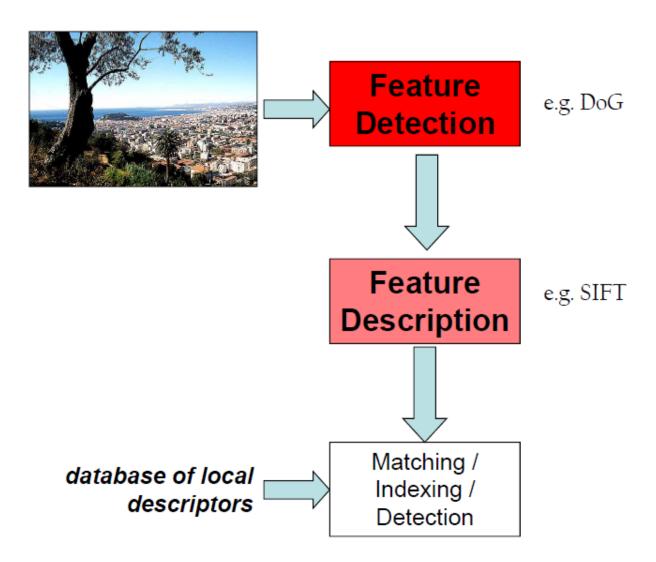
From the 3D to 2D



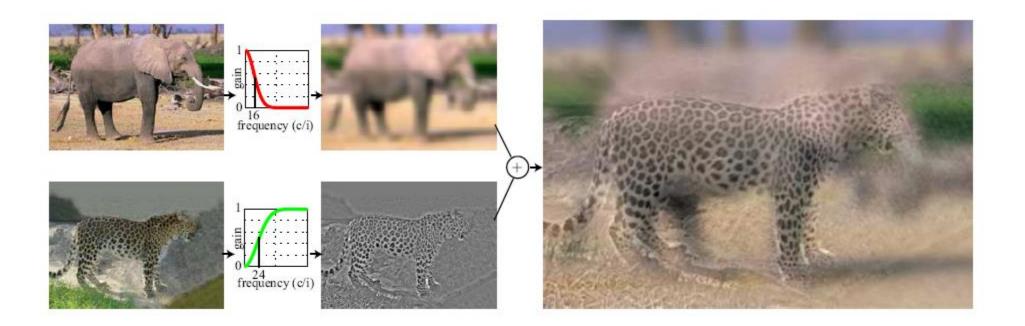
Extract useful building blocks



The big picture...



Hybrid Images



• A. Oliva, A. Torralba, P.G. Schyns, <u>"Hybrid Images,"</u> SIGGRAPH 2006

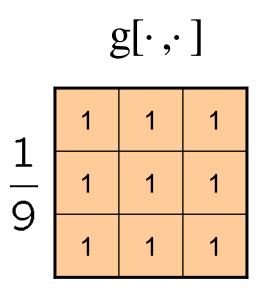
Upcoming classes: two views of filtering

- Image filters in spatial domain
 - Filter is a mathematical operation of a grid of numbers
 - Smoothing, sharpening, measuring texture

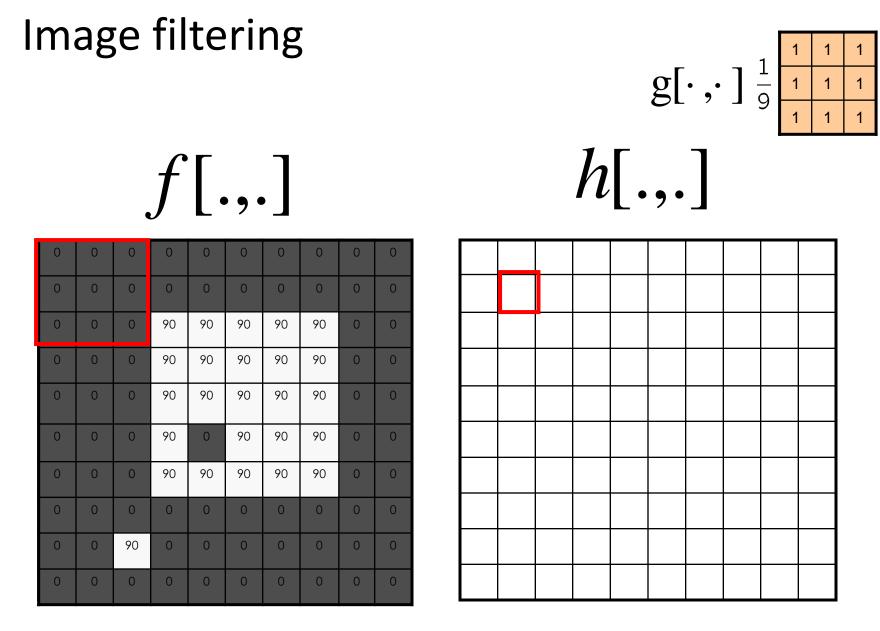
- Image filters in the frequency domain
 - Filtering is a way to modify the frequencies of images
 - Denoising, sampling, image compression

- Image filtering: compute function of local neighborhood at each position
- Really important!
 - Enhance images
 - Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching
 - Deep Convolutional Networks

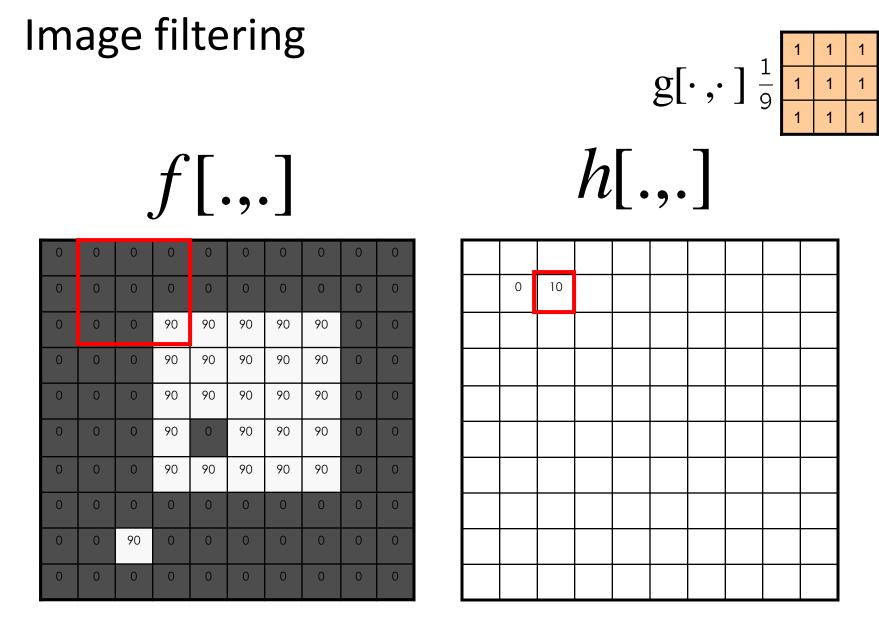
Example: box filter



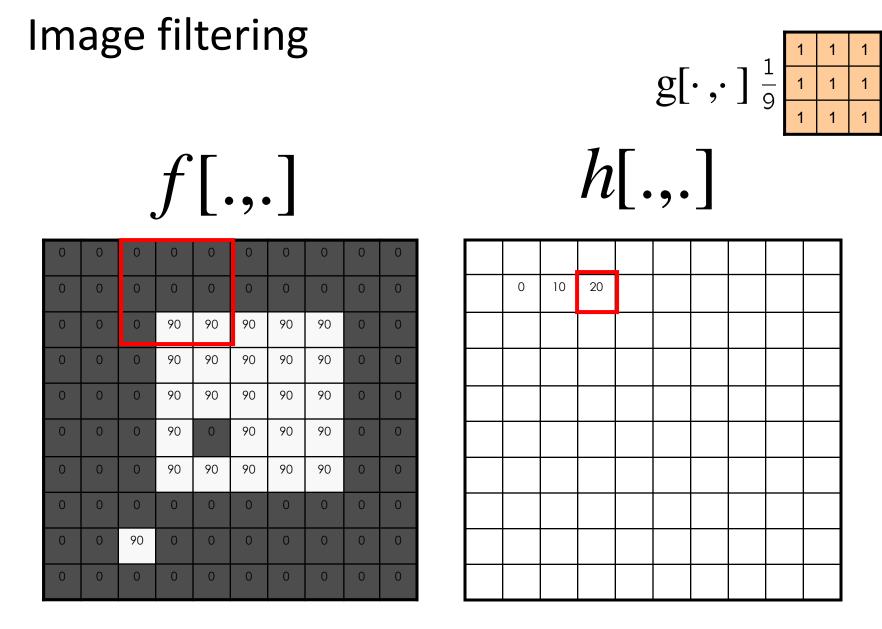
Slide credit: David Lowe (UBC)



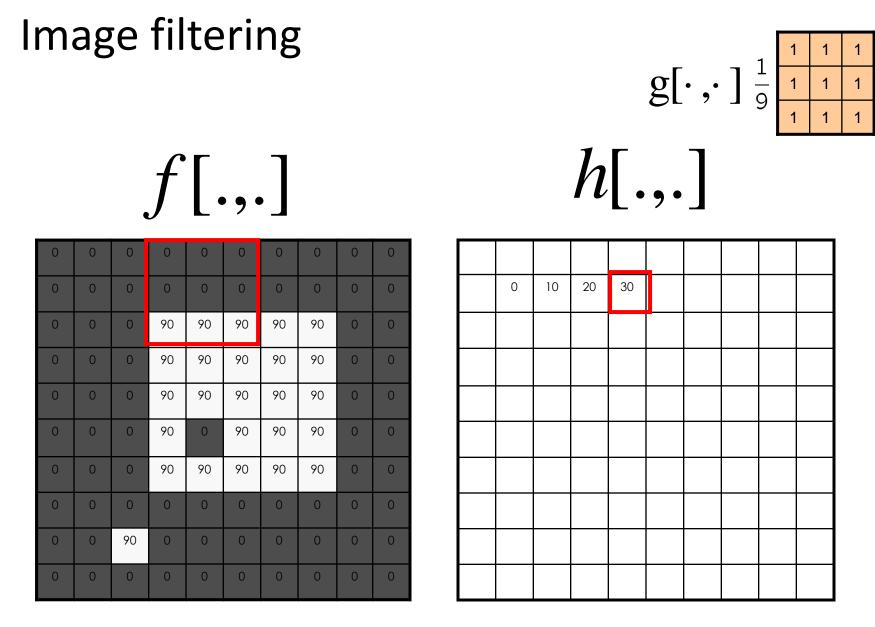
 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$



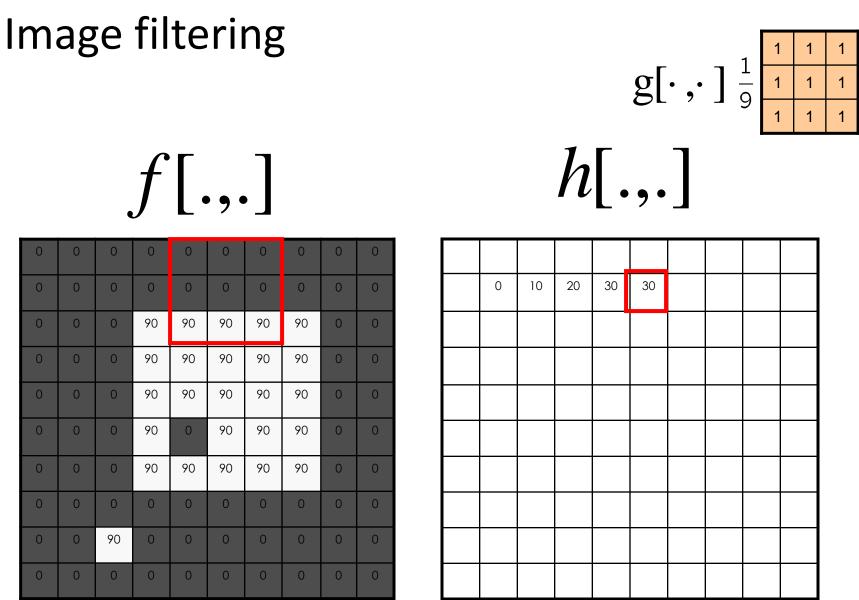
 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$



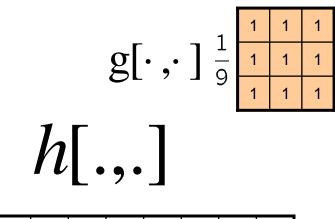
 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

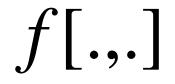


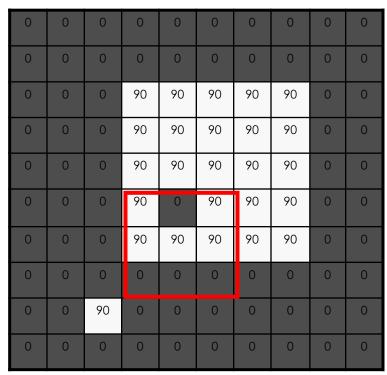
 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

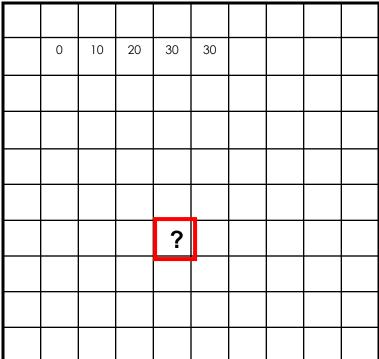


 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

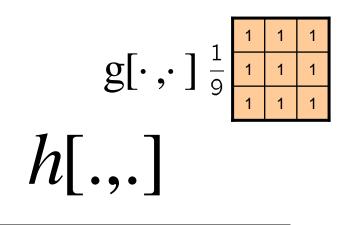


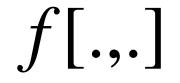




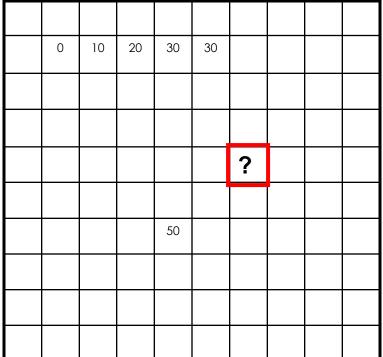


 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

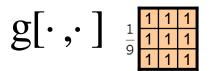




0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$





0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

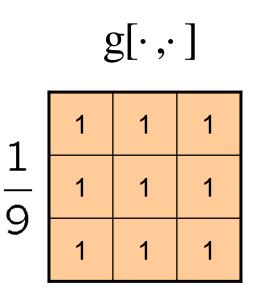
0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

 $h[m,n] = \sum_{k=1}^{\infty} g[k,l] f[m+k,n+l]$ k,l

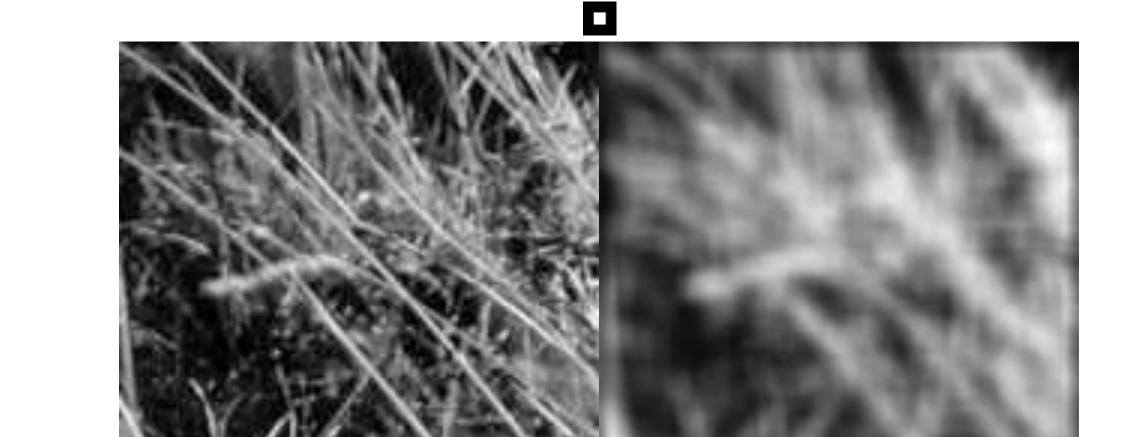
Box Filter

What does it do?

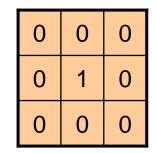
- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)



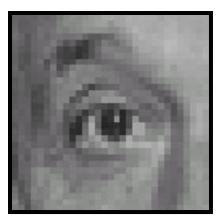
Smoothing with box filter



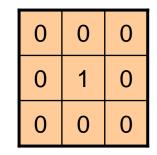
Original



9

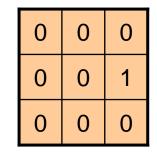


Original



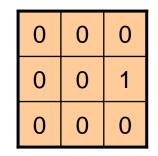
Filtered (no change)

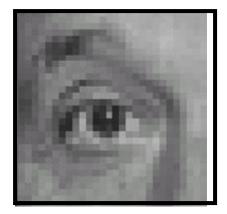
Original



9

Original

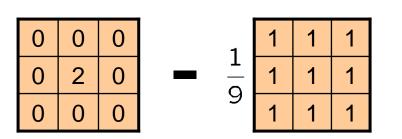




Shifted left By 1 pixel

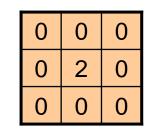
Source: D. Lowe

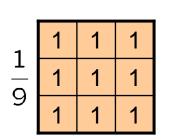
Original



(Note that filter sums to 1)

9



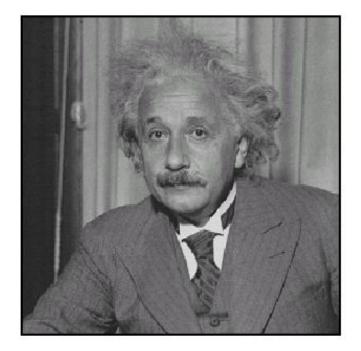


Original

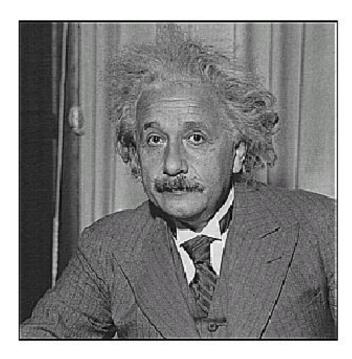
Sharpening filter

- Accentuates differences with local average

Sharpening

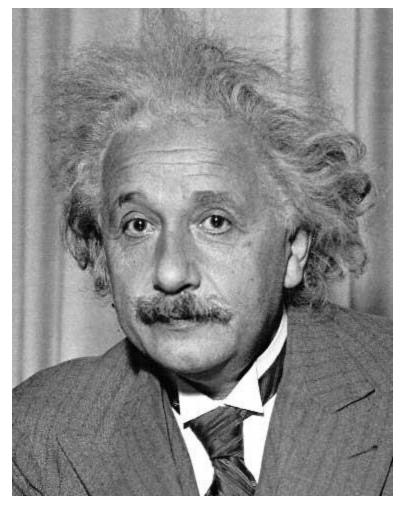


before



after

Other filters



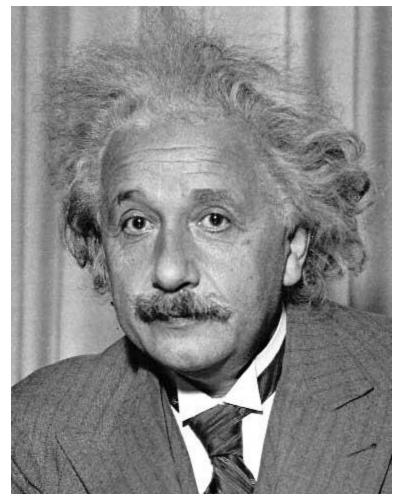
1	0	-1	
2	0	-2	
1	0	-1	

Sobel



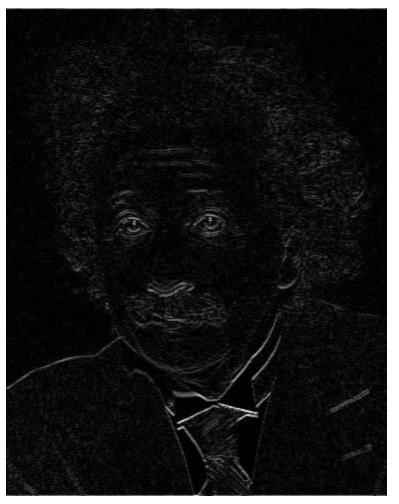
Vertical Edge (absolute value)

Other filters



1	2	1	
0	0	0	
-1	-2	-1	

Sobel



Horizontal Edge (absolute value)

Filtering vs. Convolution

• 2d filtering - h=filter2(f,I); or h=imfilter(I,f);

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

- 2d convolution
 - -h=conv2(f,I);

$$h[m,n] = \sum_{k,l} f[k,l] I[m-k,n-l]$$

Key properties of linear filters

Linearity:

imfilter(I, f₁ + f₂) =
 imfilter(I, f₁) + imfilter(I, f₂)

Shift invariance: same behavior regardless of pixel location imfilter(I, shift(f)) = shift(imfilter(I, f))

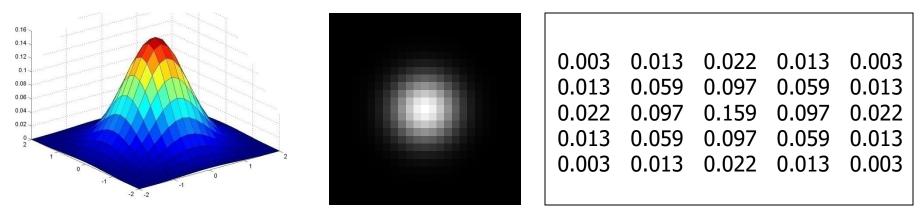
Any linear, shift-invariant operator can be represented as a convolution

More properties

- Commutative: *a* * *b* = *b* * *a*
 - Conceptually no difference between filter and signal
 - But particular filtering implementations might break this equality
- Associative: *a* * (*b* * *c*) = (*a* * *b*) * *c*
 - Often apply several filters one after another: $((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse *e* = [0, 0, 1, 0, 0],
 a * *e* = *a*

Important filter: Gaussian

• Weight contributions of neighboring pixels by nearness

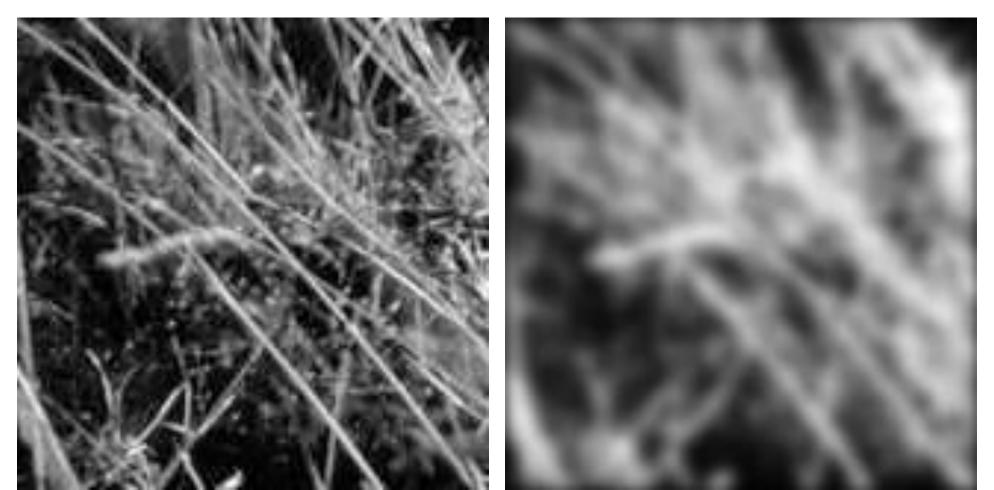


 $5 \times 5, \sigma = 1$

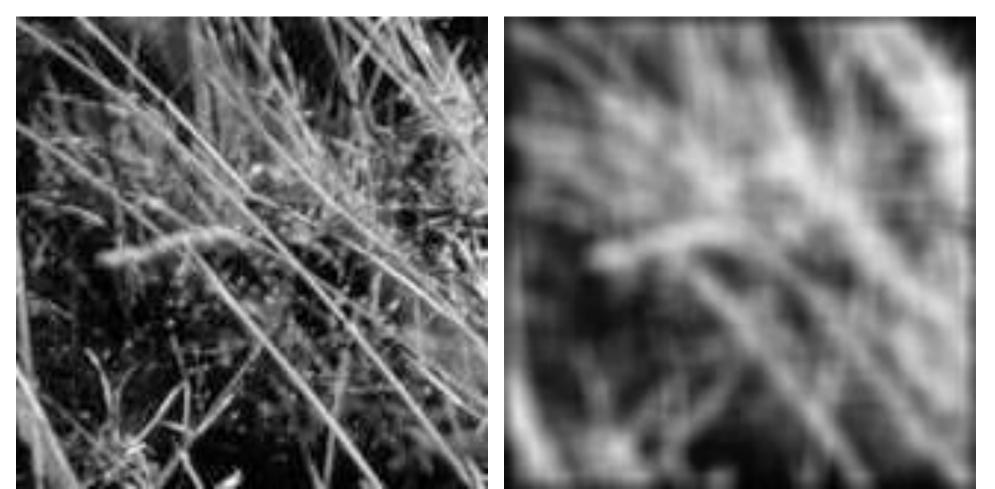
$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

Slide credit: Christopher Rasmussen

Smoothing with Gaussian filter



Smoothing with box filter



Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
 - Images become more smooth
- Convolution with self is another Gaussian
 - So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
 - Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width σ V2
- Separable kernel
 - Factors into product of two 1D Gaussians

Separability of the Gaussian filter

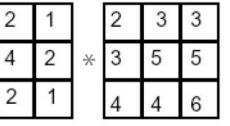
$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Separability example

2D convolution (center location only)

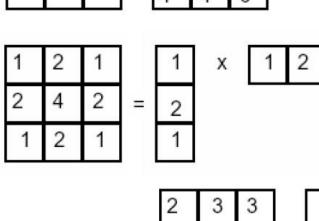


2

1

The filter factors into a product of 1D filters:

Perform convolution along rows:



*

2

1

3

4

5

4

3 11 5 = 18 6 18

Followed by convolution along the remaining column:

Separability

• Why is separability useful in practice?

Some practical matters

Practical matters

How big should the filter be?

- Values at edges should be near zero
- Rule of thumb for Gaussian: set filter half-width to about 3 σ

Practical matters

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

To be continued...

Next class: Light and Color and Thinking in Frequency

