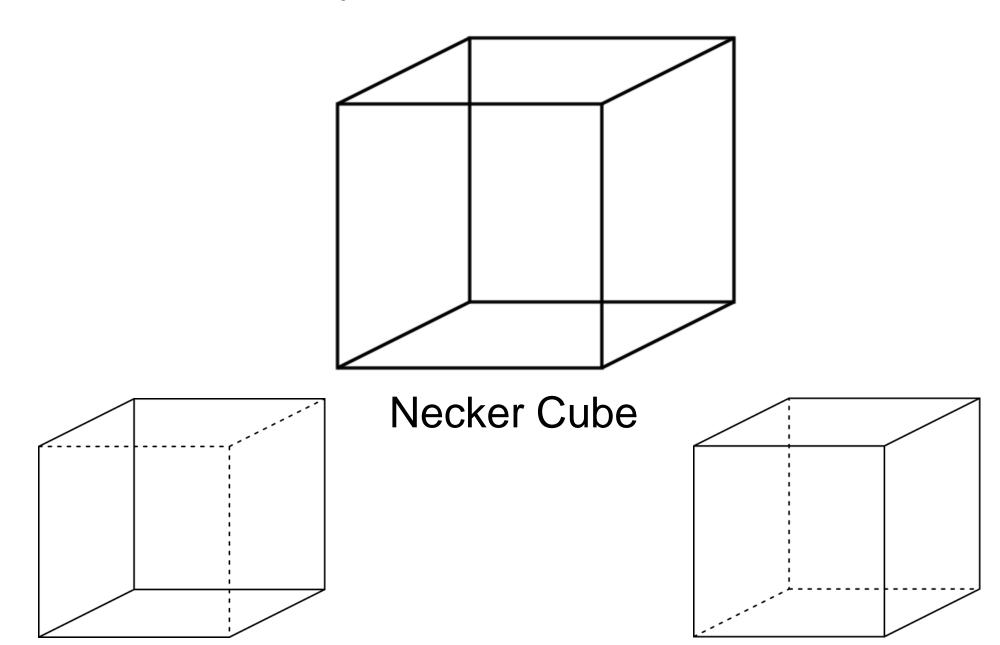
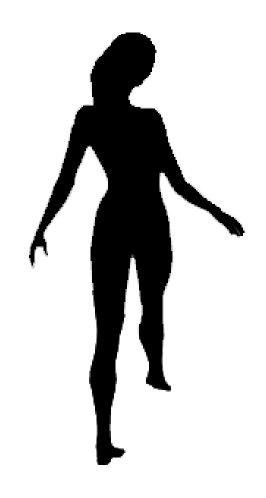
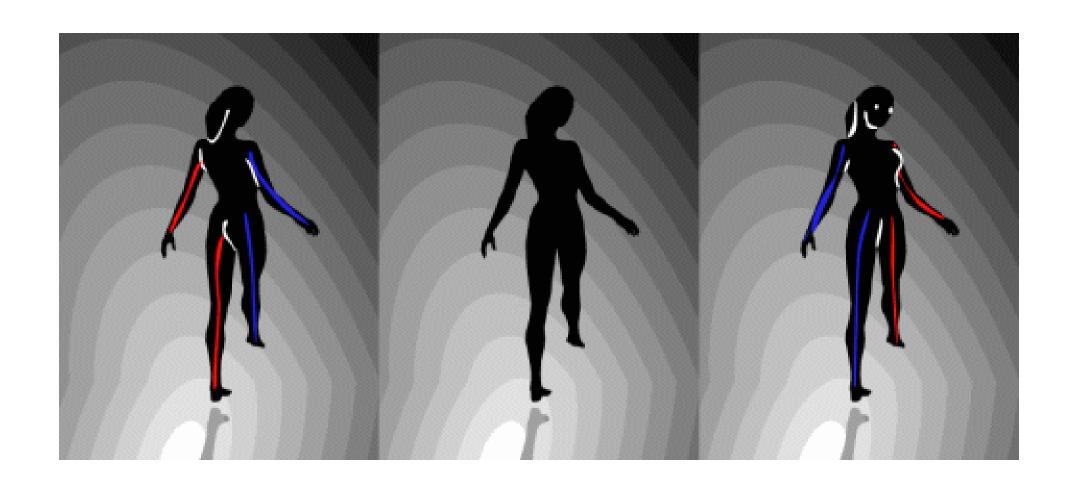
Multi-stable Perception







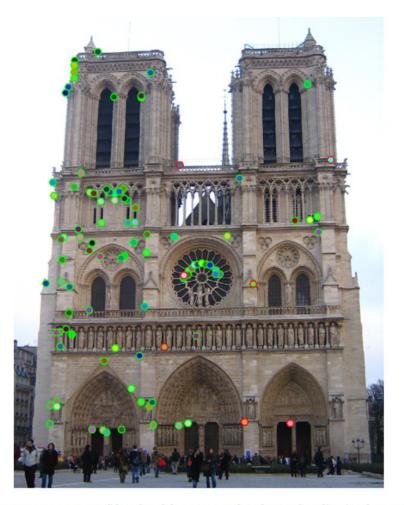
Feature Matching and Robust Fitting

Read Szeliski 7.4.2 and 2.1

Computer Vision

James Hays

Project 2

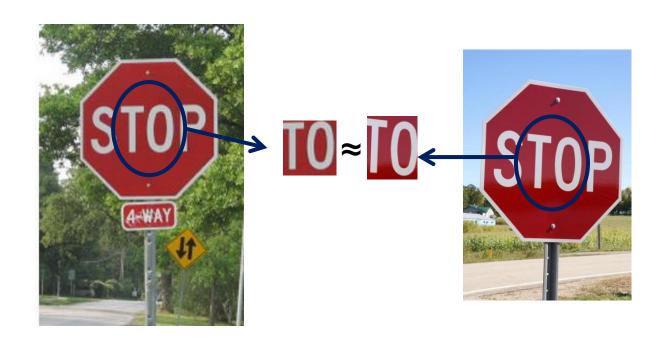


The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and 7 were incorrect (highlighted in red).

Project 2: Local Feature Matching

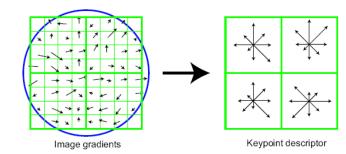
This section: correspondence and alignment

 Correspondence: matching points, patches, edges, or regions across images



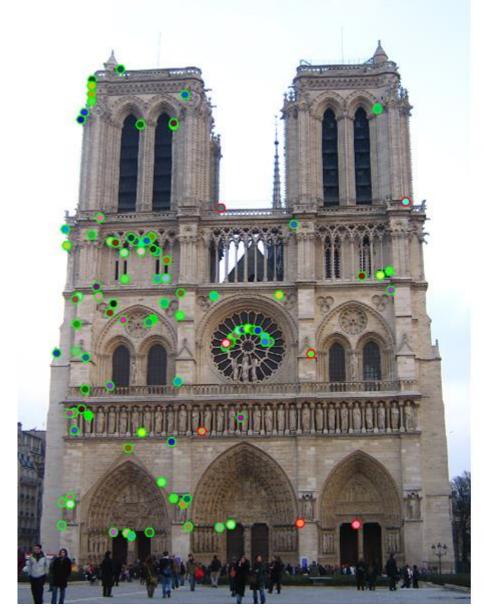
Review: Local Descriptors

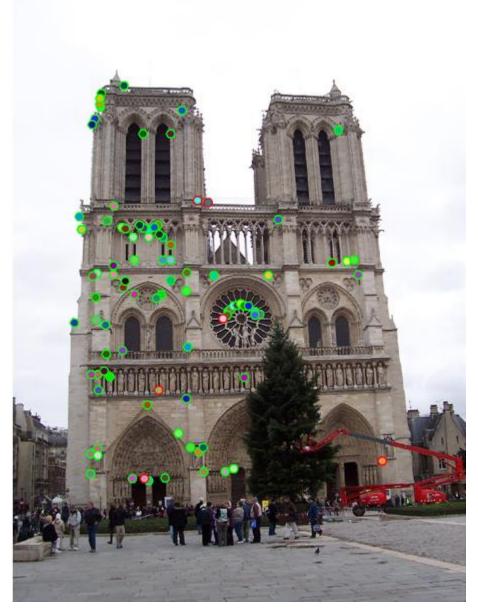
- Most features can be thought of as templates, histograms (counts), or combinations
- The ideal descriptor should be
 - Robust and Distinctive
 - Compact and Efficient



- Most available descriptors focus on edge/gradient information
 - Capture texture information
 - Color rarely used

Can we refine this further?





Fitting: find the parameters of a model that best fit the data

Alignment: find the parameters of the transformation that best align matched points

Fitting and Alignment

- Design challenges
 - Design a suitable goodness of fit measure
 - Similarity should reflect application goals
 - Encode robustness to outliers and noise
 - Design an optimization method
 - Avoid local optima
 - Find best parameters quickly

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods

- Hypothesize and test
 - Generalized Hough transform
 - RANSAC

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods

- Hypothesize and test
 - Generalized Hough transform
 - RANSAC

Simple example: Fitting a line

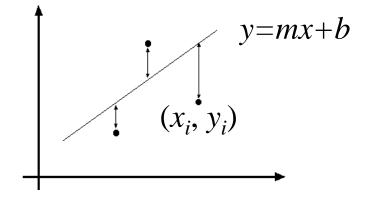
Least squares line fitting

•Data: $(x_1, y_1), ..., (x_n, y_n)$

•Line equation: $y_i = mx_i + b$

•Find (*m*, *b*) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$



$$E = \sum_{i=1}^{n} \left[\begin{bmatrix} x_i & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - y_i \right]^2 = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}^2 = \|\mathbf{A}\mathbf{p} - \mathbf{y}\|^2$$

$$= \mathbf{y}^T \mathbf{y} - 2(\mathbf{A}\mathbf{p})^T \mathbf{y} + (\mathbf{A}\mathbf{p})^T (\mathbf{A}\mathbf{p})$$

Matlab:
$$p = A \setminus y$$
;

$$\frac{dE}{dp} = 2\mathbf{A}^T \mathbf{A} \mathbf{p} - 2\mathbf{A}^T \mathbf{y} = 0$$
 Python: p =

numpy.linalg.lstsq(A, y)

$$\mathbf{A}^T \mathbf{A} \mathbf{p} = \mathbf{A}^T \mathbf{y} \Longrightarrow \mathbf{p} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$$

Least squares (global) optimization

Good

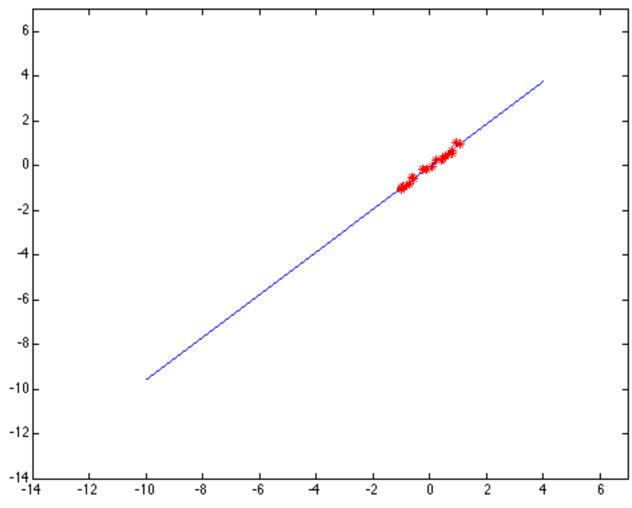
- Clearly specified objective
- Optimization is easy

Bad

- May not be what you want to optimize
- Sensitive to outliers
 - Bad matches, extra points
- Doesn't allow you to get multiple good fits
 - Detecting multiple objects, lines, etc.

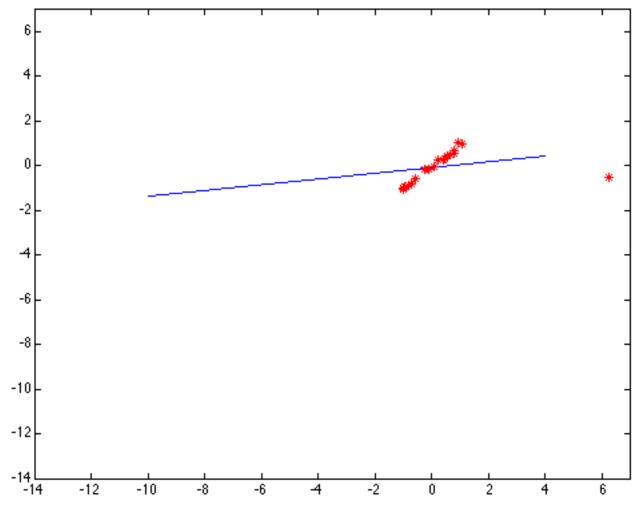
Least squares: Robustness to noise

• Least squares fit to the red points:



Least squares: Robustness to noise

• Least squares fit with an outlier:



Problem: squared error heavily penalizes outliers

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods

- Hypothesize and test
 - Generalized Hough transform
 - RANSAC

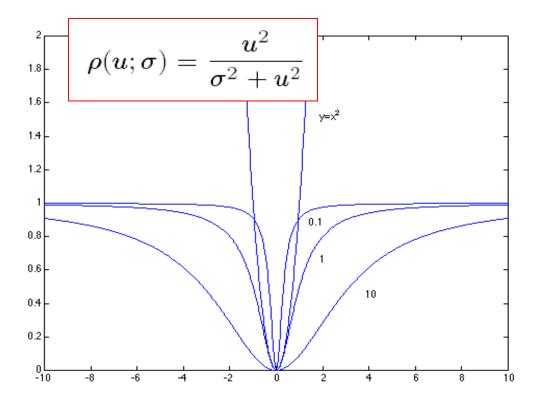
Robust least squares (to deal with outliers)

General approach:

minimize

$$\sum_{i} \rho(\mathbf{u}_{i}(\mathbf{x}_{i},\boldsymbol{\theta});\boldsymbol{\sigma}) \qquad u^{2} = \sum_{i=1}^{n} (y_{i} - mx_{i} - b)^{2}$$

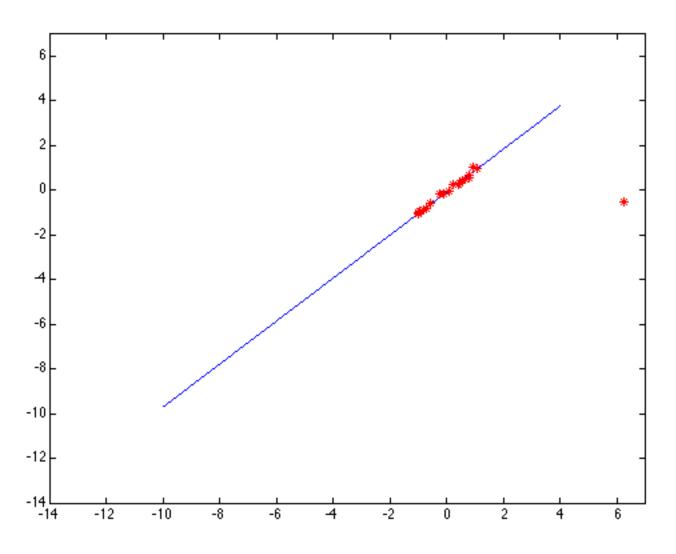
 $u_i(x_i, \theta)$ – residual of ith point w.r.t. model parameters ϑ ρ – robust function with scale parameter σ



The robust function ρ

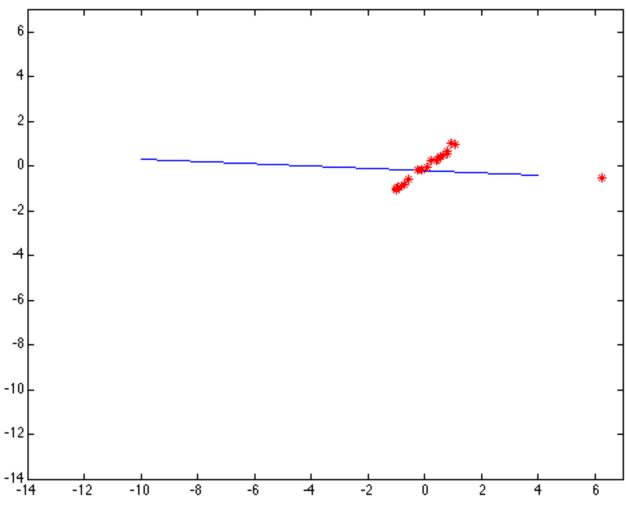
- Favors a configuration with small residuals
- Constant penalty for large residuals

Choosing the scale: Just right



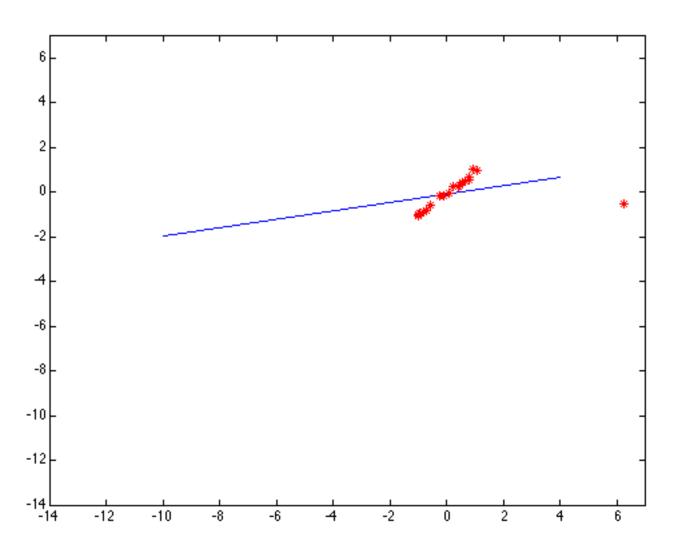
The effect of the outlier is minimized

Choosing the scale: Too small



The error value is almost the same for every point and the fit is very poor

Choosing the scale: Too large



Behaves much the same as least squares

Robust estimation: Details

- Robust fitting is a nonlinear optimization problem that must be solved iteratively
- Least squares solution can be used for initialization
- Scale of robust function should be chosen adaptively based on median residual

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods

- Hypothesize and test
 - Generalized Hough transform
 - RANSAC

Other ways to search for parameters (for when no closed form solution exists)

Line search

- 1. For each parameter, step through values and choose value that gives best fit
- 2. Repeat (1) until no parameter changes

Grid search

- 1. Propose several sets of parameters, evenly sampled in the joint set
- 2. Choose best (or top few) and sample joint parameters around the current best; repeat

Gradient descent

- 1. Provide initial position (e.g., random)
- 2. Locally search for better parameters by following gradient

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods

- Hypothesize and test
 - Generalized Hough transform
 - RANSAC

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods

- Hypothesize and test
 - Generalized Hough transform
 - RANSAC

Hough Transform: Outline

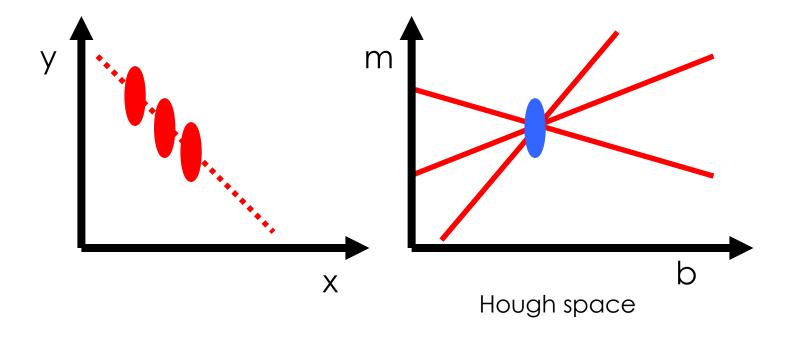
1. Create a grid of parameter values

2. Each point votes for a set of parameters, incrementing those values in grid

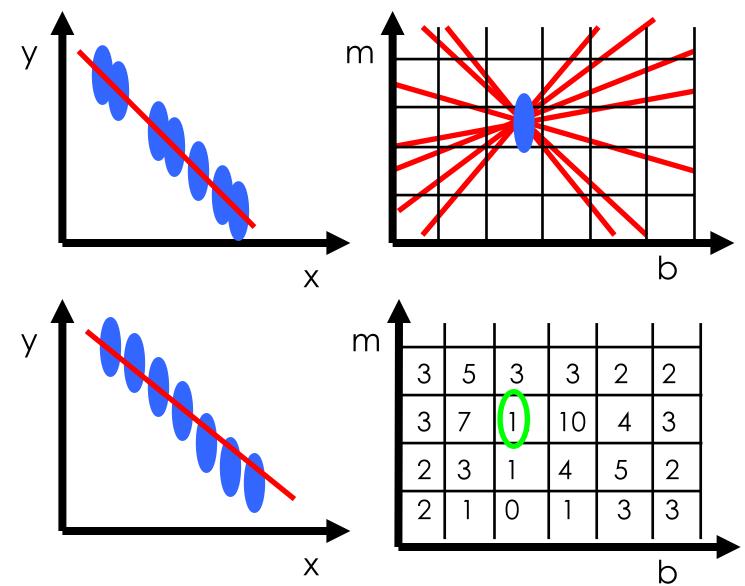
3. Find maximum or local maxima in grid

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best



$$y = m x + b$$



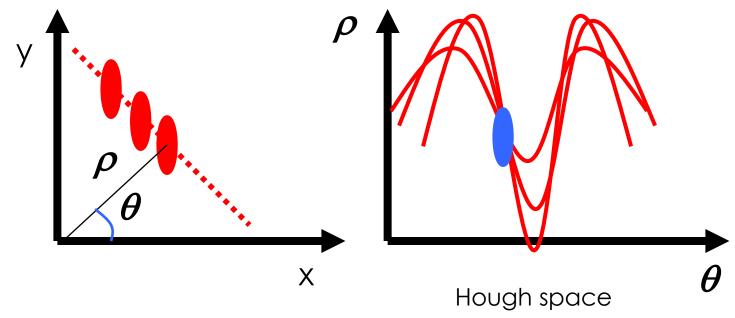
P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Issue: parameter space [m,b] is unbounded...

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

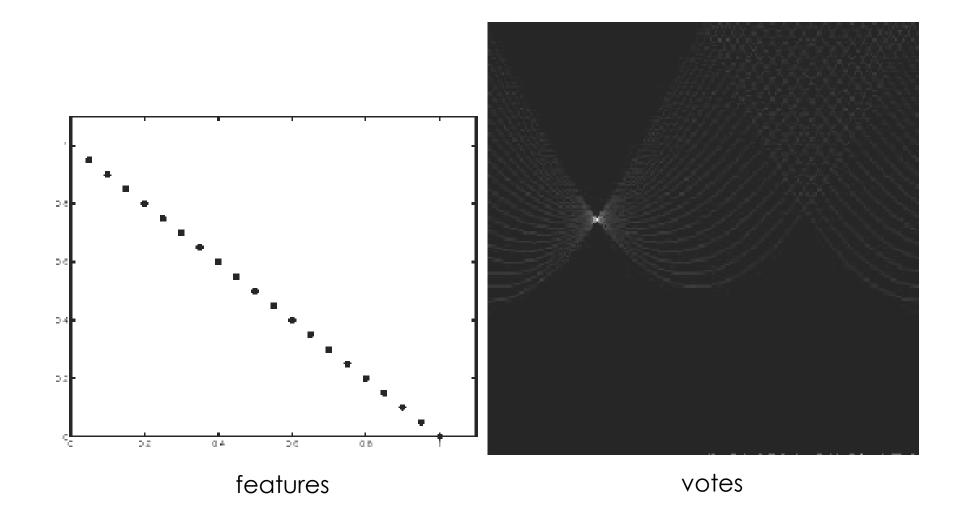
Issue: parameter space [m,b] is unbounded...

Use a polar representation for the parameter space

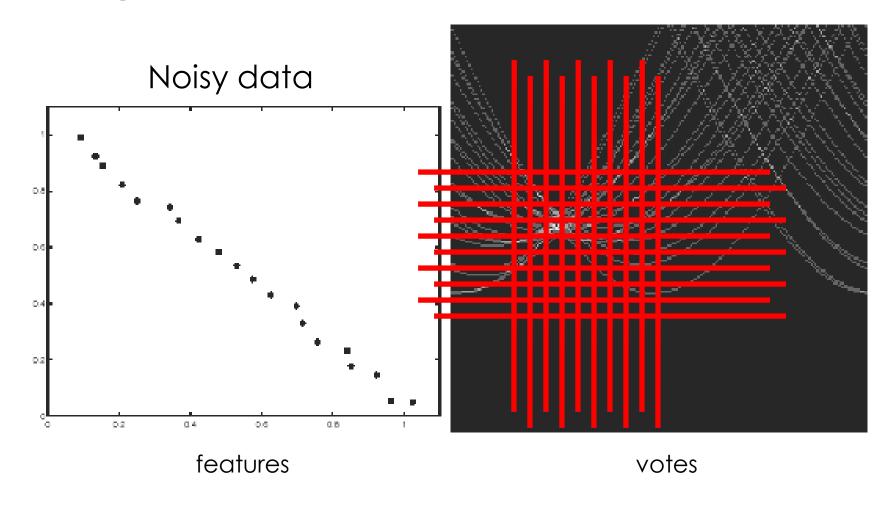


$$x\cos\theta + y\sin\theta = \rho$$

Hough transform - experiments

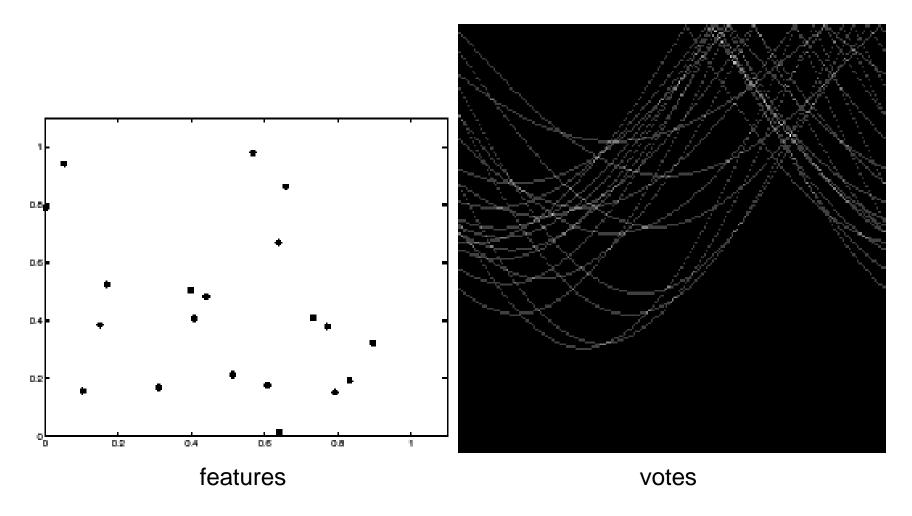


Hough transform - experiments



Need to adjust grid size or smooth

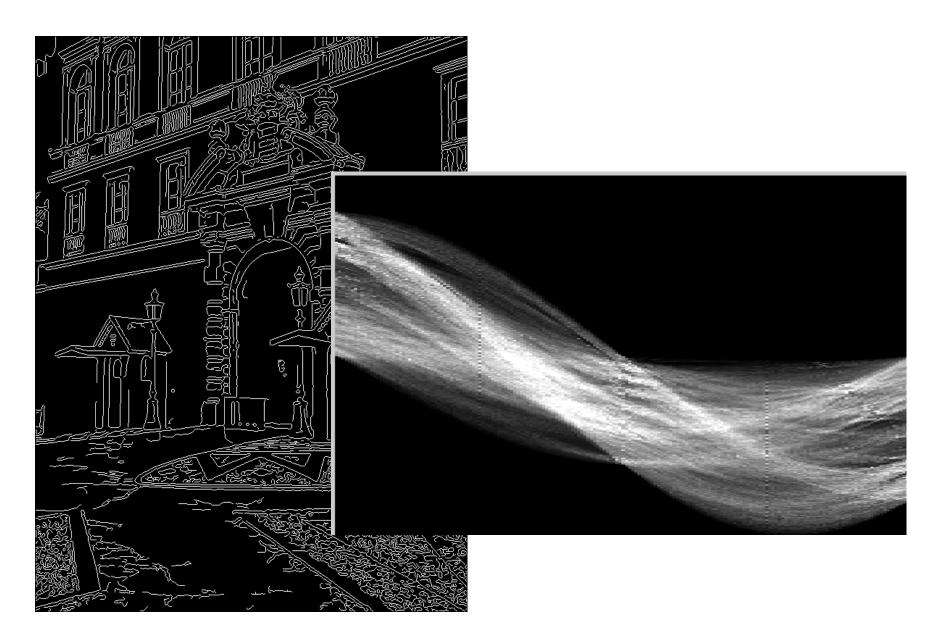
Hough transform - experiments



Issue: spurious peaks due to uniform noise

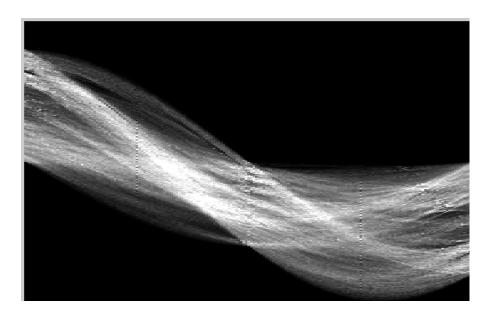
1. Image → Canny

2. Canny → Hough votes

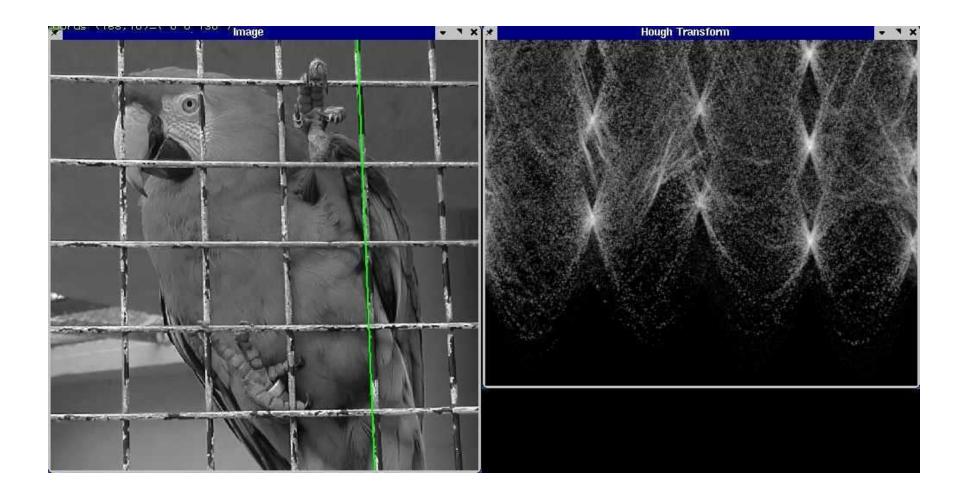


3. Hough votes → Edges

Find peaks and post-process



Hough transform example



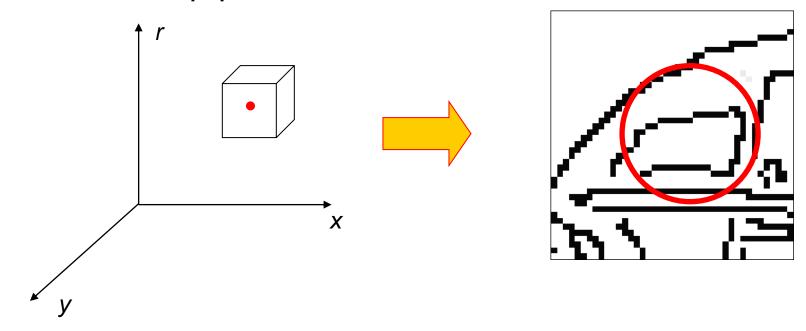
Finding lines using Hough transform

- Using m,b parameterization
- Using r, theta parameterization
 - Using oriented gradients
- Practical considerations
 - Bin size
 - Smoothing
 - Finding multiple lines
 - Finding line segments

- How would we find circles?
 - Of fixed radius
 - Of unknown radius
 - Of unknown radius but with known edge orientation

Hough transform for circles

 Conceptually equivalent procedure: for each (x,y,r), draw the corresponding circle in the image and compute its "support"



Hough transform conclusions

Good

- Robust to outliers: each point votes separately
- Fairly efficient (much faster than trying all sets of parameters)
- Provides multiple good fits

Bad

- Some sensitivity to noise
- Bin size trades off between noise tolerance, precision, and speed/memory
 - Can be hard to find sweet spot
- Not suitable for more than a few parameters
 - grid size grows exponentially

Common applications

- Line fitting (also circles, ellipses, etc.)
- Object instance recognition (parameters are affine transform)
- Object category recognition (parameters are position/scale)