

Fitting and Alignment

Szeliski 2.1 and 8.1
Computer Vision

James Hays

Project 2 - due Friday

The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and 7 were incorrect (highlighted in red).

Project 2: Local Feature Matching

Fitting and Alignment: Methods

- Global optimization / Search for parameters
- Least squares fit
- Robust least squares
-Other parameter search methods
- Hypothesize and test
- Hough transform
- RANSAC
- Iterative Closest Points (ICP)

Review: Hough Transform

1. Create a grid of parameter values
2. Each point (or correspondence) votes for a set of parameters, incrementing those values in grid
3. Find maximum or local maxima in grid

Review: Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best

$$
y=m x+b
$$

Review: Hough transform

Hough Transform

- How would we find circles?
- Of fixed radius
- Of unknown radius
- Of unknown radius but with known edge orientation

Hough transform for circles

- Conceptually equivalent procedure: for each ($\mathrm{x}, \mathrm{y}, \mathrm{r}$), draw the corresponding circle in the image and compute its "support"

Is this more or less efficient than voting with features?

Hough transform for circles

- Circle: center (a,b) and radius r

$$
\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2}=r^{2}
$$

- For a fixed radius r

Equation of circle?

Equation of set of circles that all pass through a point?

Hough transform for circles

- Circle: center (a, b) and radius r

$$
\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2}=r^{2}
$$

- For a fixed radius r

Hough transform for circles

- Circle: center (a, b) and radius r

$$
\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2}=r^{2}
$$

- For an unknown radius r

Hough transform for circles

- Circle: center (a, b) and radius r

$$
\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2}=r^{2}
$$

- For an unknown radius r

Hough transform for circles

- Circle: center (a, b) and radius r

$$
\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2}=r^{2}
$$

- For an unknown radius r, known gradient direction

Hough space

Hough transform for circles

For every edge pixel (x, y) :
For each possible radius value r :
For each possible gradient direction θ :
// or use estimated gradient at (x, y)

$$
a=x-r \cos (\theta) / / \text { column }
$$

$$
b=y+r \sin (\theta) / / \text { row }
$$

$$
\mathrm{H}[a, b, r]+=1
$$

end
end

Example: detecting circles with Hough

Original

Edges

Votes: Penny

Note: a different Hough transform (with separate accumulators) was used for each circle radius (quarters vs. penny).

Example: detecting circles with Hough

Example: iris detection

Fitting and Alignment: Methods

- Global optimization / Search for parameters
- Least squares fit
- Robust least squares
-Other parameter search methods
- Hypothesize and test
- Hough transform
- RANSAC
- Iterative Closest Points (ICP)

RANSAC

(RANdom SAmple Consensus) :
Fischler \& Bolles in '81.

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat $1-3$ until the best model is found with high confidence

RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat $1-3$ until the best model is found with high confidence

RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat $1-3$ until the best model is found with high confidence

RANSAC

Line fitting example

$$
N_{I}=6
$$

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Algorithm:

$$
N_{I}=14
$$

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

How to choose parameters?

- Number of samples N
- Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)
- Number of sampled points s
- Minimum number needed to fit the model
- Distance threshold δ
- Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold
- Zero-mean Gaussian noise with std. dev. σ : $\mathrm{t}^{2}=3.84 \sigma^{2}$

$$
\mathrm{N}=\log (1-\mathrm{p}) / \log \left(1-(1-\mathrm{e})^{\mathrm{s}}\right)
$$

proportion of outliers e								
s	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

$$
\text { For } p=0.99
$$

RANSAC conclusions

Good

- Robust to outliers
- Applicable for larger number of model parameters than Hough transform
- Optimization parameters are easier to choose than Hough transform

Bad

- Computational time grows quickly with fraction of outliers and number of parameters
- Not good for getting multiple fits

Common applications

- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)

How do we fit the best alignment?

Alignment

- Alignment: find parameters of model that maps one set of points to another
- Typically want to solve for a global transformation that accounts for *most* true correspondences
- Difficulties
- Noise (typically 1-3 pixels)
- Outliers (often 50\%)
- Many-to-one matches or multiple objects

Parametric (global) warping

Transformation T is a coordinate-changing machine:

$$
\mathrm{p}^{\prime}=T(\mathrm{p})
$$

What does it mean that T is global?

- Is the same for any point p
- can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix

$$
\begin{array}{r}
\mathrm{p}^{\prime}=\mathbf{T p} \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{array}
$$

Common transformations

Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:

Scaling

- Non-uniform scaling: different scalars per component:

Scaling

- Scaling operation: $\quad x^{\prime}=a x$

$$
y^{\prime}=b y
$$

- Or, in matrix form:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]}_{\text {scaling matrix } S}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2-D Rotation

2-D Rotation

This is easy to capture in matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]}_{\mathbf{R}}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Even though $\sin (\theta)$ and $\cos (\theta)$ are nonlinear functions of θ,

- For a particular θ, x^{\prime} is a linear combination of x and y
- For a particular θ, y^{\prime} is a linear combination of x and y

What is the inverse transformation?

- Rotation by $-\theta$
- For rotation matrices $\quad \mathbf{R}^{-1}=\mathbf{R}^{T}$

Basic 2D transformations

$$
\begin{array}{cc}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underset{\text { Scale }}{\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]}} & {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underset{\text { Shear }}{\left[\begin{array}{cc}
1 & \alpha_{x} \\
\alpha_{y} & 1
\end{array}\right]}\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
& \left.\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underset{\text { Rotate }}{\left[\begin{array}{cc}
\cos \Theta & -\sin \Theta \\
\sin \Theta & \cos \Theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{array}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underset{\text { Affine }}{\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Affine is any combination of translation, scale, rotation, shear

2D Affine Transformations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Affine transformations are combinations of ...

- Linear transformations, and
- Translations

Parallel lines remain parallel

Projective Transformations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]
$$

Projective transformations:

- Affine transformations, and
- Projective warps

Parallel lines do not necessarily remain parallel

$$
\square \Rightarrow \square
$$

2D image transformations (reference table)

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

Example: solving for translation

Given matched points in $\{A\}$ and $\{B\}$, estimate the translation of the object

$$
\left[\begin{array}{c}
x_{i}^{B} \\
y_{i}^{B}
\end{array}\right]=\left[\begin{array}{c}
x_{i}^{A} \\
y_{i}^{A}
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]
$$

Example: solving for translation

Least squares solution

1. Write down objective function
2. Derived solution
a) Compute derivative
b) Compute solution
3. Computational solution
a) Write in form $A x=b$
b) Solve using pseudo-inverse or eigenvalue decomposition

$\left[\begin{array}{c}x_{i}^{B} \\ y_{i}^{B}\end{array}\right]=\left[\begin{array}{c}x_{i}^{A} \\ y_{i}^{A}\end{array}\right]+\left[\begin{array}{l}t_{x} \\ t_{y}\end{array}\right]$
$\left[\begin{array}{cc}1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{c}t_{x} \\ t_{y}\end{array}\right]=\left[\begin{array}{c}x_{1}^{B}-x_{1}^{A} \\ y_{1}^{B}-y_{1}^{A} \\ \vdots \\ x_{n}^{B}-x_{n}^{A} \\ y_{n}^{B}-y_{n}^{A}\end{array}\right]$

Example: solving for translation

Problem: outliers

RANSAC solution

1. Sample a set of matching points (1 pair)
2. Solve for transformation parameters
3. Score parameters with number of inliers
4. Repeat steps $1-3 \mathrm{~N}$ times

Example: solving for translation

Problem: outliers, multiple objects, and/or many-to-one matches

Hough transform solution

1. Initialize a grid of parameter values
2. Each matched pair casts a vote for

$$
\left[\begin{array}{c}
x_{i}^{B} \\
y_{i}^{B}
\end{array}\right]=\left[\begin{array}{c}
x_{i}^{A} \\
y_{i}^{A}
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]
$$ consistent values

3. Find the parameters with the most votes
4. Solve using least squares with inliers

Example: solving for translation

Problem: no initial guesses for correspondence

$$
\left[\begin{array}{c}
x_{i}^{B} \\
y_{i}^{B}
\end{array}\right]=\left[\begin{array}{c}
x_{i}^{A} \\
y_{i}^{A}
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]
$$

Fitting and Alignment: Methods

- Global optimization / Search for parameters
- Least squares fit
- Robust least squares
-Other parameter search methods
- Hypothesize and test
- Hough transform
- RANSAE
- Iterative Closest Points (ICP)

What if you want to align but have no prior matched pairs?

- Hough transform and RANSAC not applicable
- Important applications

Medical imaging: match brain scans or contours

Robotics: match point clouds

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets of points

1. Initialize transformation (e.g., compute difference in means and scale)
2. Assign each point in $\{$ Set 1$\}$ to its nearest neighbor in $\{$ Set 2$\}$
3. Estimate transformation parameters

- e.g., least squares or robust least squares

4. Transform the points in $\{$ Set 1$\}$ using estimated parameters
5. Repeat steps $2-4$ until change is very small

Example: aligning boundaries

1. Extract edge pixels $p_{1} . . p_{n}$ and $q_{1} . . q_{m}$
2. Compute initial transformation (e.g., compute translation and scaling by center of mass, variance within each image)
3. Get nearest neighbors: for each point p_{i} find corresponding $\operatorname{match}(\mathrm{i})=\operatorname{argmin} \operatorname{dist}(p i, q j)$
j
4. Compute transformation \boldsymbol{T} based on matches
5. Warp points \boldsymbol{p} according to \boldsymbol{T}
6. Repeat 3-5 until convergence

Example: solving for translation

Problem: no initial guesses for correspondence

ICP solution

1. Find nearest neighbors for each point
2. Compute transform using matches

$$
\left[\begin{array}{c}
x_{i}^{B} \\
y_{i}^{B}
\end{array}\right]=\left[\begin{array}{c}
x_{i}^{A} \\
y_{i}^{A}
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]
$$

3. Move points using transform
4. Repeat steps 1-3 until convergence

Sparse ICP

Sofien Bouaziz Andrea Tagliasacchi Mark Pauly

Algorithm Summaries

- Least Squares Fit
- closed form solution
- robust to noise
- not robust to outliers
- Robust Least Squares
- improves robustness to outliers
- requires iterative optimization
- Hough transform
- robust to noise and outliers
- can fit multiple models
- only works for a few parameters (1-4 typically)
- RANSAC
- robust to noise and outliers
- works with a moderate number of parameters (e.g, 1-8)
- Iterative Closest Point (ICP)
- For local alignment only: does not require initial correspondences

Rough count of mentions in recent literature

- Hough: 901 mentions
- RANSAC: 1,690 mentions
- ICP: 895 mentions
- "Least Squares" 2,290 mentions
- "Robust Least Squares" 4 mentions
- Keypoint 2,180 mentions
- SIFT 3,530 mentions
- Affine 2,970
- ResNet: 8,510 mentions

