Computer Vision
James Hays



Continuous Discrete

Machine Learning Problems

Supervised Learning  Unsupervised Learning

classification or

- clustering
categorization

dimensionality
reduction

regression




The machine learning framework

« Apply a prediction function to a feature representation of
the image to get the desired output:

f(EJ) = "apple’
f(Rd) = “tomato”
f() — “COW!!



Learning a classifier

Given some set of features with corresponding labels, learn a
function to predict the labels from the features




Generalization

Training set (labels known) Test set (labels
unknown)

 How well does a learned model generalize from
the data it was trained on to a new test set?



Bias-Variance Trade-off

Y. Sample 2

e Models with too few

| parameters are
. . /o inaccurate because of a
RN large bias (not enough
— flexibility).

 Models with too many
parameters are
inaccurate because of a
large variance (too much
sensitivity to the sample).




e How to reduce variance?
— Choose a simpler classifier
— Regularize the parameters
— Get more training data

* How to reduce bias?
— Choose a more complex, more expressive classifier

— Remove regularization
— (These might not be safe to do unless you get more training data)



Very brief tour of some classifiers

* K-nearest neighbor

« SVM

* Neural networks (separate lecture)
* Boosted Decision Trees

* Naive Bayes

* Bayesian network

* Logistic regression

* Randomized Forests

* RBMs

* Etc.



Generative vs. Discriminative Classifiers

Generative Models Discriminative Models
 Represent both the data and ¢ Learn to directly predict the
the labels labels from the data
 Often, makes use of e Often, assume a simple
conditional independence boundary (e.g., linear)
and priors « Examples
 Examples — Logistic regression
— Naive Bayes classifier — SVM
— Bayesian network — Boosted decision trees

future prediction problems label from the data than to
model the data



Classification

« Assign input vector to one of two or more
classes

* Any decision rule divides input space Into

decision regions separated by decision
boundaries ,

Xy




Nearest Neighbor Classifier

« Assign label of nearest training data point to each test data
point

from Duda et al.

Voronoi partitioning of feature space
for two-category 2D and 3D data



K-nearest neighbor

X2

x1



1-nearest neighbor

X2

x1



3-nearest neighbor

X2

x1



5-nearest neighbor

X2

x1



Using K-NN

* Simple, a good one to try first

* With infinite examples, 1-NN provably has error that is at most
twice Bayes optimal error



Classifiers: Linear SVM

X1
* Find a linear function to separate the classes:

f(x) = sgn(w - x + b)
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Classifiers: Linear SVM

X1
* Find a linear function to separate the classes:

f(x) = sgn(w - x + b)



What about multi-class SVMs?

« Unfortunately, there is no “definitive” multi-class SVM
formulation

 |n practice, we have to obtain a multi-class SVM by combining
multiple two-class SVMs

* One vs. others

« Traning: learn an SVM for each class vs. the others
« Testing: apply each SVM to test example and assign to it the class of the SVM that
returns the highest decision value
 One vs. one

« Training: learn an SVM for each pair of classes
« Testing: each learned SVM “votes” for a class to assign to the test example



SVMs: Pros and cons

* Pros

« Many publicly available SVM packages:
http://www.kernel-machines.org/software

« Kernel-based framework is very powerful, flexible

« SVMs work very well in practice, even with very small
training sample sizes

e Cons
 No “direct” multi-class SVM, must combine two-class SVMs

« Computation, memory
— During training time, must compute matrix of kernel values for
every pair of examples (for nonlinear SVMs)

— Learning can take a very long time for large-scale problems


http://www.kernel-machines.org/software

What to remember about classifiers

* No free lunch: machine learning algorithms are tools, not dogmas
* Try simple classifiers first

e Better to have smart features and simple classifiers than simple features
and smart classifiers

e Use increasingly powerful classifiers with more training data (bias-
variance tradeoff)



Machine Learning Considerations

* 3 important design decisions:
1) What data do | use?
2) How do | represent my data (what feature)?

3) What classifier / regressor / machine learning tool
do | use?

 These are in decreasing order of importance

* Deep learning addresses 2 and 3
simultaneously (and blurs the boundary
between them).

* You can take the representation from deep
learning and use it with any classifier.



Continuous Discrete

Machine Learning Problems

Supervised Learning  Unsupervised Learning

classification or
categorization

clustering

dimensionality

regression :
reduction




 Andrew Ng’s ranking of machine learning
Impact
1. Supervised Learning
2. Transfer Learning

3. Unsupervised Learning™® (better described as
“self-supervised” learning)

4. Reinforcement Learning

@ Al is the new electricity. - Andrew Ng (Coursera)

James thinks 2 and 3 might
have switched ranks.
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Deep Learning
Neural Net Basics

Computer Vision

James Hays

Many slides by Marc’Aurelio Ranzato



Outline

* Neural Networks
e Convolutional Neural Networks

* Variants
* Detection
* Segmentation
* Siamese Networks

* Visualization of Deep Networks



Supervised Learning

[(xi, y'),i=1.. P] training dataset

i
X

!
Y

P

I-th input training example
I-th target label

number of training examples

X
m———

Goal: predict the target label of unseen inputs.
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Supervised Learning: Examples

Classification

OCR

3
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Supervised Deep Learning

Classification

OCR

“2345”
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Neural Networks

Assumptions (for the next few slides):

= The input image is vectorized (disregard the spatial layout of pixels)
= The target label is discrete (classification)

Question: what class of functions shall we consider to map the input
into the output?

Answer: composition of simpler functions.

Follow-up questions: Why not a linear combination? What are the
“simpler” functions? What is the interpretation?

Answer: |later...
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X

hl

Neural Networks: example

Input
1-st layer hidden units

h* 2-nd layer hidden units
O output

Example of a 2 hidden layer neural network (or 4 layer network,

counting also input and output).
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Forward Propagation

Def.: Forward propagation is the process of computing the
output of the network given its input.

3
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Forward Propagation

xeR’ w'er™” bp'er™  pler”
h'=max(0,W'x+b")

W' 1-st layer weight matrix or weights
bl 1-st layer biases

The non-linearity z=max (0,v) is called ReLU in the DL literature.
Each output hidden unit takes as input all the units at the previous
layer: each such layer is called “fully connected”.
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Forward Propagation

N

ner" w2er"™™ per": pepr™
W =max(0,W*h'+b*)

I/V2 2-nd layer weight matrix or weights
bp* 2-nd layer biases
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Forward Propagation

N N
> PPeR: oeRN3

Wwer" wler"™™™
o=max(0,W° h*+b’)

W3 3-rd layer weight matrix or weights
b3 3-rd layer biases
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Alternative Graphical Representation

k+1
hl

k+1
h2

k+1
h3

A
oW RN o 3

12
Ranzaton




Interpretation

Question: Why do we need many layers?

Answer: When input has hierarchical structure, the use of a
hierarchical architecture is potentially more efficient because
Intermediate computations can be re-used. DL architectures are
efficient also because they use distributed representations which
are shared across classes.

[0010000100110010...]truckfeature

Exponentially more efficient than a
1-of-N representation (a la k-means)
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Interpretation

[1100010100001101] motorbike

001000010011 0010...] tuck

ph
b7

e 15
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Interpretation

prediction of class

high-level
parts

= distributed representations
s feature sharing
= compositionality

mid-level
parts

low level
parts

Input image e c -

== e | 16
Lee et al. “Convolutional DBN's ...” ICML 2009 Ranzaton




Interpretation

Question: What does a hidden unit do?

Answer: It can be thought of as a classifier or feature detector.

Question: How many layers? How many hidden units?

Answer: Cross-validation or hyper-parameter search methods are
the answer. In general, the wider and the deeper the network the
more complicated the mapping.

Question: How do | set the weight matrices?

Answer: Weight matrices and biases are learned.

First, we need to define a measure of quality of the current mapping.

Then, we need to define a procedure to adjust the parameters. .
Ranzaton




How Good is a Network?

Probability of class k given input (softmax):

o

e
p( Ck — 1 |x ) — C
2., ¢
j=1
(Per-sample) Loss; e.g., negative log-likelihood (good for classification
of small number of classes):

L(xayfe):_zj yflogp(CJ"x) Ranzaltgon

k




Training

Learning consists of minimizing the loss (plus some
regularization term) w.r.t. parameters over the whole training set.

P
0~ =arg min, anl L(x",y";0)

Question: How to minimize a complicated function of the
parameters?

Answer: Chain rule, a.k.a. Backpropagation! That is the procedure
to compute gradients of the loss w.r.t. parameters in a multi-layer
neural network.

19

Rumelhart et al. “Learning internal representations by back-propagating..” Nature 1986



Key Idea: Wiggle To Decrease Loss

Let's say we want to decrease the loss by adjusting Wj,j.
We could consider a very small e=1e-6 and compute:

Lix,y;0)

Lix,y; 0\ W:,J.+e)

i Jj?

Then, update:
W:,J.<—Wf,j+e sgn(L(x,y:0)—L(x,y;0\W'

i, J?

W, +e))

Ranzaton




Derivative w.r.t. Input of Softmax

ple=1lx)= Z =

1 k C
L(x,y;@):—zj_yjlogp(cj|x) y=[00..010..0]|

By substituting the fist formula in the second, and taking the
derivative w.rt. 0 we get:

0L

6_0: p(ch)—y

21
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Backward Propagation

oL

Given 0 L/00 and assuming we can easily compute the
Jacobian of each module, we have:

0L 9L do 0L 8L do

ow® 0o oW’ oh> 00 on

22



Backward Propagation

oL

Given 0 L/00 and assuming we can easily compute the

Jacobian of each module, we have:

0L oL do 0L 0L 0o
ow® 0o oW’ oh> 00 on
oL oL
= (plc|x)—y) b =W (plex)—y)=

oW’ oh’



Backward Propagation

oL
oh’

oL 0L on’ oL oL ol

ow®  on® ow? oh'  ohn’ on'

Given

we can compuie now:

24
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Backward Propagation

oL
oh'

0L OL Oh'
ow' on ow'

Given

we can compuie now:
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Backward Propagation

Question: Does BPROP work with ReLU layers only?
Answer: Nope, any a.e. differentiable transformation works.

Question: What's the computational cost of BPROP?

Answer: About twice FPROP (need to compute gradients w.r.t. input
and parameters at every layer).



Optimization

Stochastic Gradient Descent (on mini-batches):

00-nSs.ne(0.1)

Stochastic Gradient Descent with Momentum:

6—0—nA
o L

Note: there are many other variants... 27
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Toy Example: Synthetic Data

5

# Target

® Before training
4L © After 1 epoch

L

At the end of training

output

1 input & 1 outpu
3 hidden layers, 1000 hiddens

_ Regression of cosine
i i | i

l 31
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output

-0.8

0.8

Toy Example Synthetlc Data

1 |nput&1 output .
100 hldden unlts |n each Iayer

3 l'-l'-]-l-l-l'.*'..i
1.\"_- : i,
i ; :

-20

4 -
dl TP T 3L Bk

5 -5-1-*"'\!
1 :

w1 hidden layer |:
=== 2 hidden layers |
3 hldden lavers

-15

10 15
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output

0.8

=10 hiddens
=== 400 hiddens

-20

-15 -10

1000 hiddens

Toy Example Synthetlc Data

| 1 |nput & 1 output”
3 hidden Iayers




Outline

» Convolutional Neural Networks
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Ranzaton




