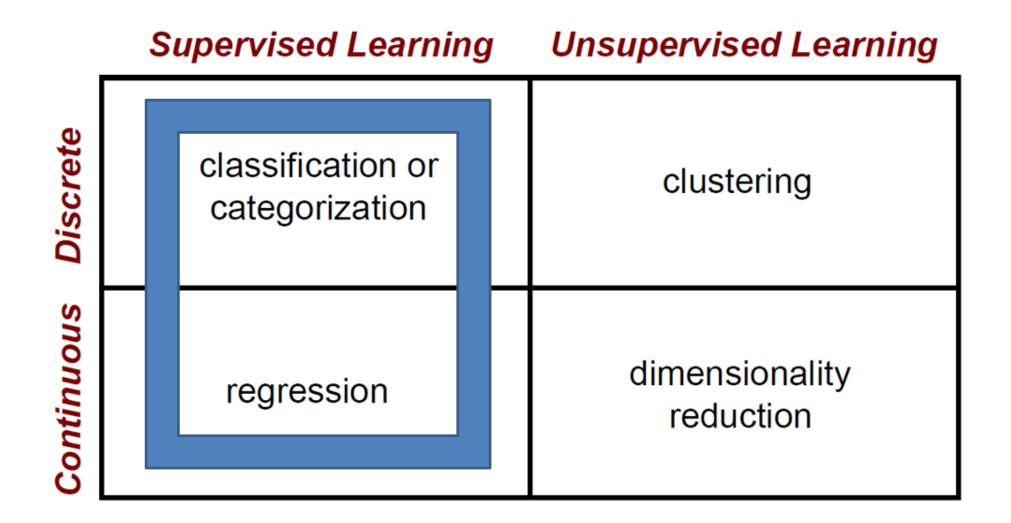
Machine Learning Crash Course

Computer Vision James Hays

Slides: Isabelle Guyon, Erik Sudderth, Mark Johnson, Derek Hoiem

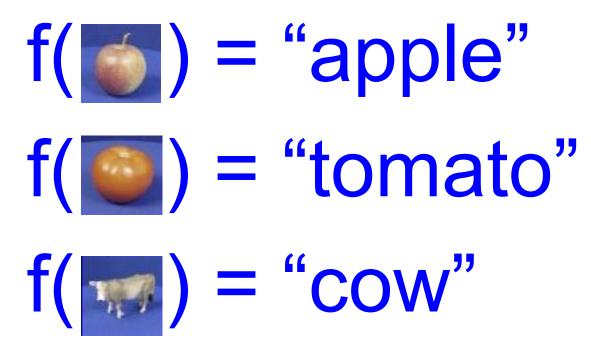
Photo: CMU Machine Learning Department protests G20

Machine Learning Problems



The machine learning framework

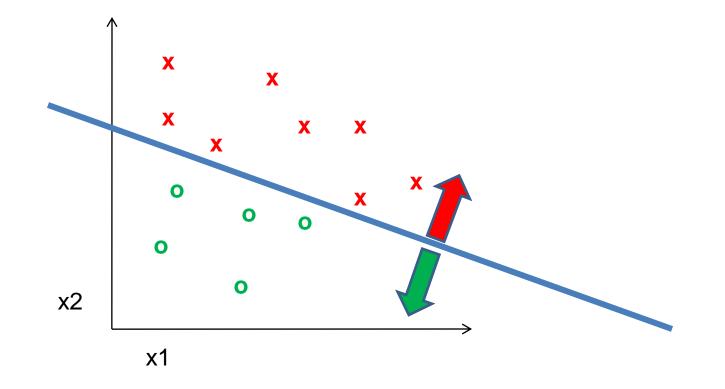
• Apply a prediction function to a feature representation of the image to get the desired output:



Slide credit: L. Lazebnik

Learning a classifier

Given some set of features with corresponding labels, learn a function to predict the labels from the features



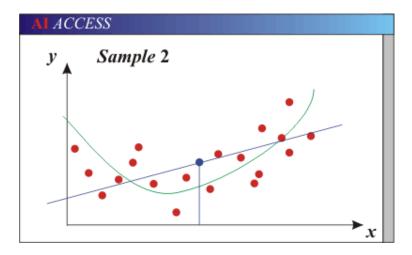
Generalization

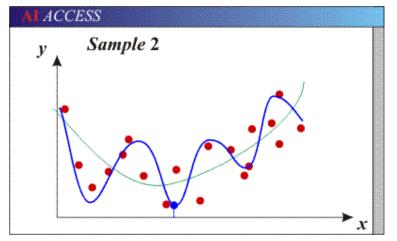
Training set (labels known)

Test set (labels unknown)

• How well does a learned model generalize from the data it was trained on to a new test set?

Bias-Variance Trade-off





- Models with too few parameters are inaccurate because of a large bias (not enough flexibility).
- Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample).

- How to reduce variance?
 - Choose a simpler classifier
 - Regularize the parameters
 - Get more training data
- How to reduce bias?
 - Choose a more complex, more expressive classifier
 - Remove regularization
 - (These might not be safe to do unless you get more training data)

Very brief tour of some classifiers

- K-nearest neighbor
- SVM
- Neural networks (separate lecture)
- Boosted Decision Trees
- Naïve Bayes
- Bayesian network
- Logistic regression
- Randomized Forests
- RBMs
- Etc.

Generative vs. Discriminative Classifiers

Generative Models

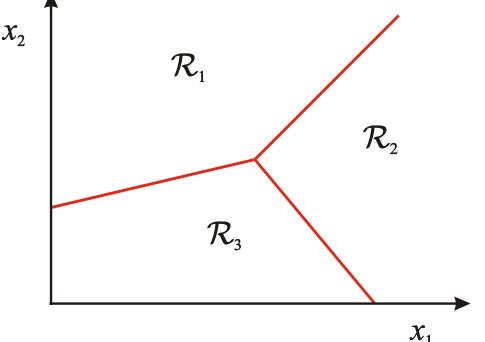
- Represent both the data and the labels
- Often, makes use of conditional independence and priors
- Examples
 - Naïve Bayes classifier
 - Bayesian network
- Models of data may apply to future prediction problems

Discriminative Models

- Learn to directly predict the labels from the data
- Often, assume a simple boundary (e.g., linear)
- Examples
 - Logistic regression
 - SVM
 - Boosted decision trees
- Often easier to predict a label from the data than to model the data

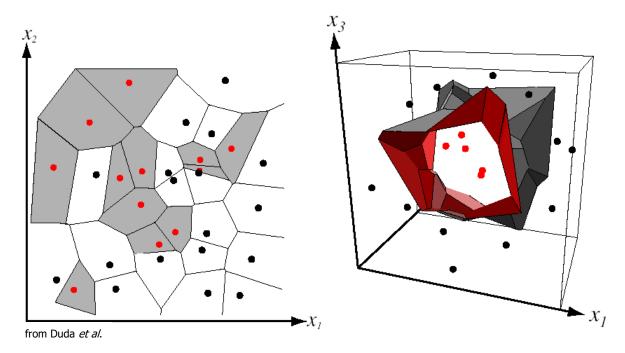
Classification

- Assign input vector to one of two or more classes
- Any decision rule divides input space into decision regions separated by decision boundaries



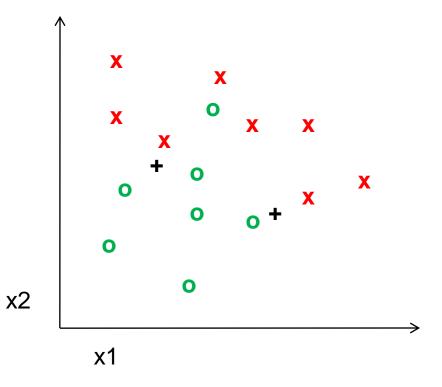
Nearest Neighbor Classifier

• Assign label of nearest training data point to each test data point

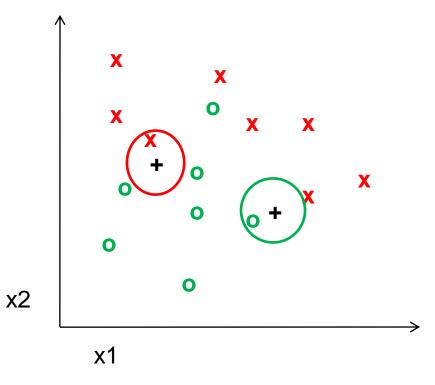


Voronoi partitioning of feature space for two-category 2D and 3D data

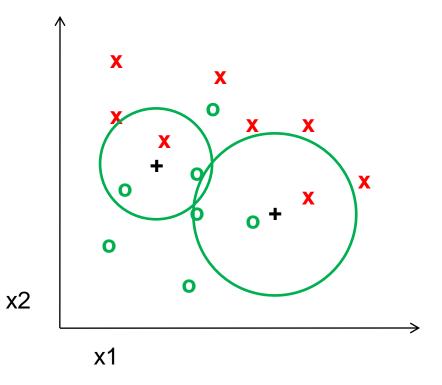
K-nearest neighbor



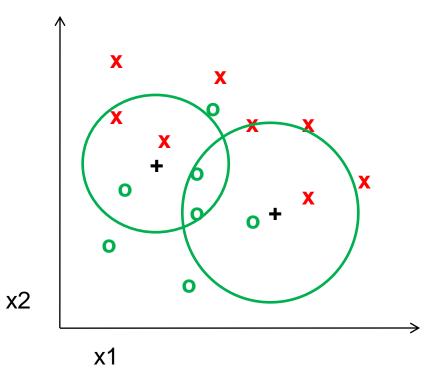
1-nearest neighbor



3-nearest neighbor



5-nearest neighbor

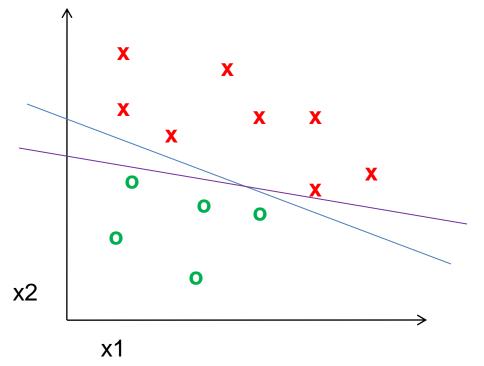


Using K-NN

• Simple, a good one to try first

• With infinite examples, 1-NN provably has error that is at most twice Bayes optimal error

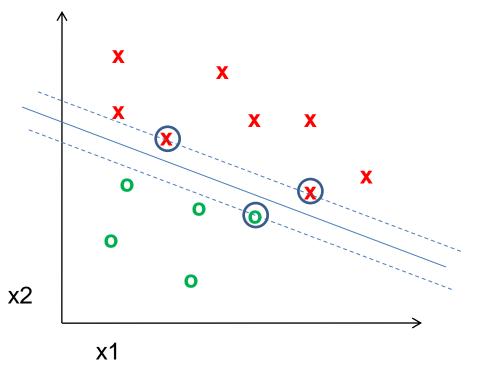
Classifiers: Linear SVM



• Find a *linear function* to separate the classes:

 $f(\mathbf{x}) = sgn(\mathbf{w} \cdot \mathbf{x} + b)$

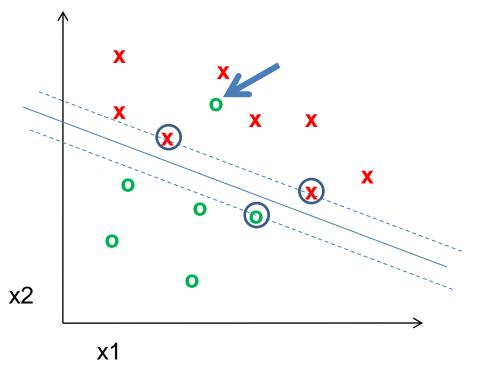
Classifiers: Linear SVM



• Find a *linear function* to separate the classes:

 $f(\mathbf{x}) = sgn(\mathbf{w} \cdot \mathbf{x} + b)$

Classifiers: Linear SVM



• Find a *linear function* to separate the classes:

 $f(\mathbf{x}) = sgn(\mathbf{w} \cdot \mathbf{x} + b)$

What about multi-class SVMs?

- Unfortunately, there is no "definitive" multi-class SVM formulation
- In practice, we have to obtain a multi-class SVM by combining multiple two-class SVMs
- One vs. others
 - Traning: learn an SVM for each class vs. the others
 - Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value
- One vs. one
 - Training: learn an SVM for each pair of classes
 - Testing: each learned SVM "votes" for a class to assign to the test example

SVMs: Pros and cons

- Pros
 - Many publicly available SVM packages: <u>http://www.kernel-machines.org/software</u>
 - Kernel-based framework is very powerful, flexible
 - SVMs work very well in practice, even with very small training sample sizes
- Cons
 - No "direct" multi-class SVM, must combine two-class SVMs
 - Computation, memory
 - During training time, must compute matrix of kernel values for every pair of examples (for nonlinear SVMs)
 - Learning can take a very long time for large-scale problems

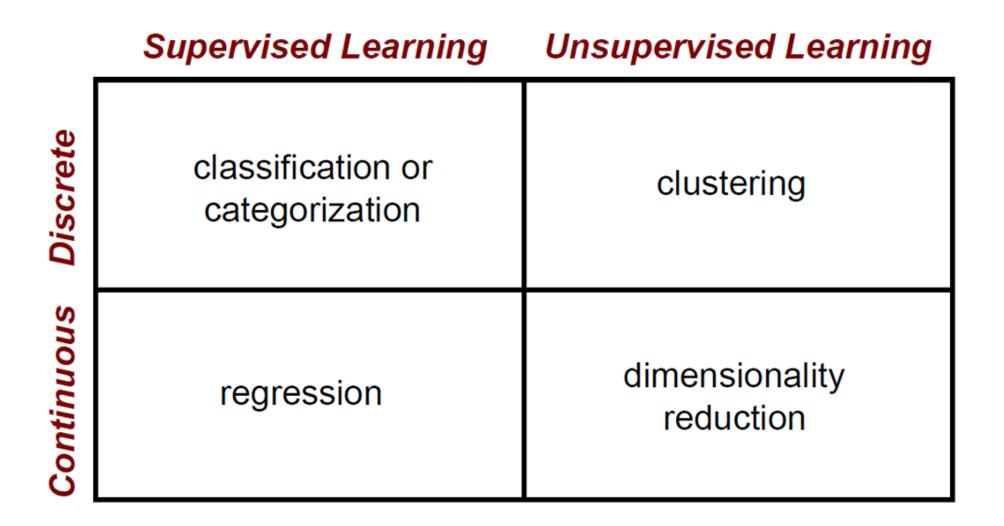
What to remember about classifiers

- No free lunch: machine learning algorithms are tools, not dogmas
- Try simple classifiers first
- Better to have smart features and simple classifiers than simple features and smart classifiers
- Use increasingly powerful classifiers with more training data (biasvariance tradeoff)

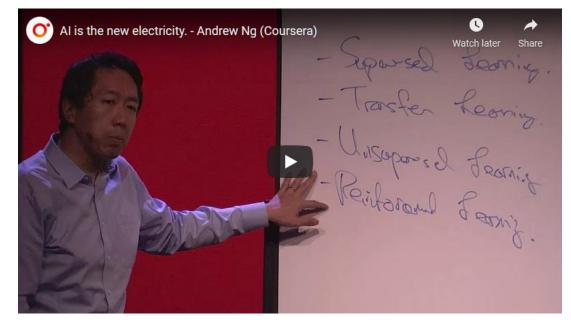
Machine Learning Considerations

- 3 important design decisions:
 1) What data do I use?
 - 2) How do I represent my data (what feature)?3) What classifier / regressor / machine learning tool do I use?
- These are in decreasing order of importance
- Deep learning addresses 2 and 3 simultaneously (and blurs the boundary between them).
- You can take the representation from deep learning and use it with any classifier.

Machine Learning Problems



- Andrew Ng's ranking of machine learning impact
 - 1. Supervised Learning
 - 2. Transfer Learning
 - Unsupervised Learning* (better described as "self-supervised" learning)
 - 4. Reinforcement Learning



James thinks 2 and 3 might have switched ranks.

Deep Learning Neural Net Basics

Computer Vision

James Hays

Many slides by Marc'Aurelio Ranzato

Outline

- Neural Networks
- Convolutional Neural Networks
- Variants
 - Detection
 - Segmentation
 - Siamese Networks
- Visualization of Deep Networks

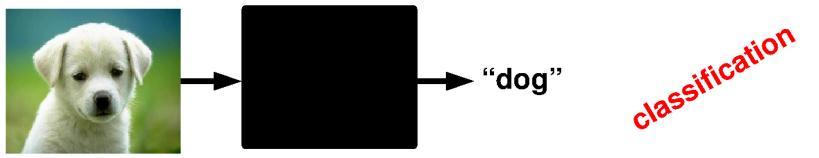
Supervised Learning

- $|(\mathbf{x}^{i}, \mathbf{y}^{i}), i=1...P|$ training dataset
- x^{i} i-th input training example
- y^i i-th target label
- *P* number of training examples

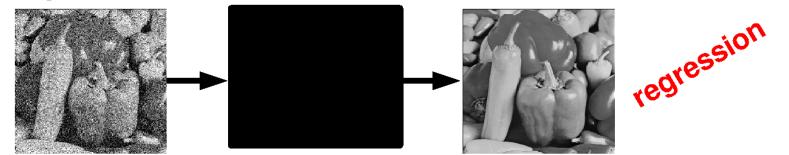
Goal: predict the target label of unseen inputs.

Supervised Learning: Examples

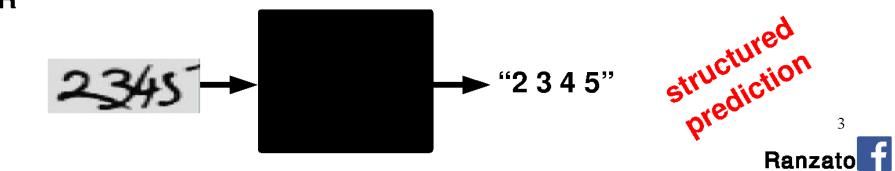
Classification



Denoising

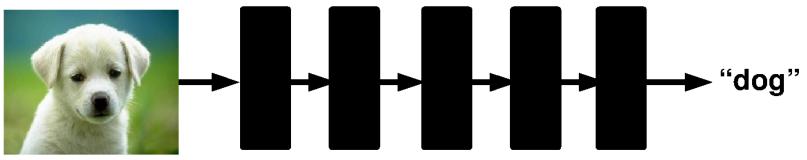


OCR

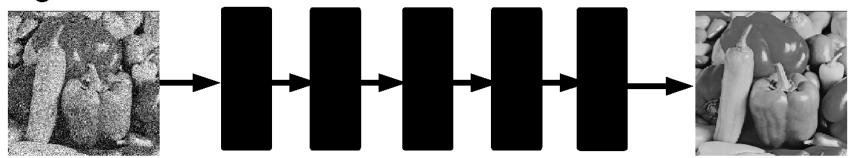


Supervised Deep Learning

Classification



Denoising



OCR $2345 \rightarrow 4$ 345'' 4Ranzato

Neural Networks

Assumptions (for the next few slides):

- The input image is vectorized (disregard the spatial layout of pixels)
- The target label is discrete (classification)

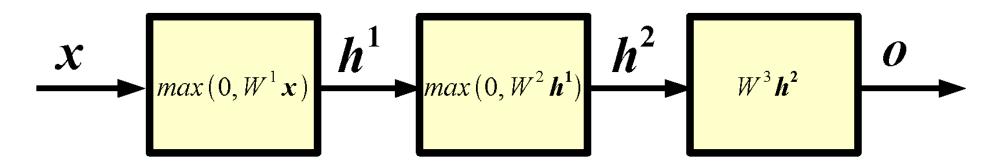
Question: what class of functions shall we consider to map the input into the output?

Answer: composition of simpler functions.

Follow-up questions: Why not a linear combination? What are the "simpler" functions? What is the interpretation?

Answer: later...

Neural Networks: example



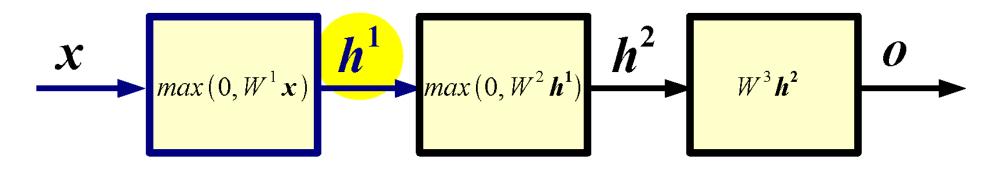
- *x* input
- h^1 1-st layer hidden units
- h^2 2-nd layer hidden units
- *o* output

Example of a 2 hidden layer neural network (or 4 layer network, counting also input and output).

Forward Propagation

Def.: Forward propagation is the process of computing the output of the network given its input.

Forward Propagation



$$\boldsymbol{x} \in R^{D} \quad W^{1} \in R^{N_{1} \times D} \quad \boldsymbol{b}^{1} \in R^{N_{1}} \quad \boldsymbol{h}^{1} \in R^{N_{1}}$$

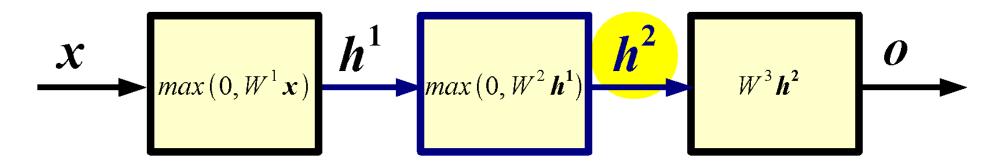
$$h^1 = max(0, W^1x + b^1)$$

 W^1 1-st layer weight matrix or weights **b**¹ 1-st layer biases

The non-linearity u = max(0, v) is called **ReLU** in the DL literature. Each output hidden unit takes as input all the units at the previous layer: each such layer is called "**fully connected**".

9

Forward Propagation

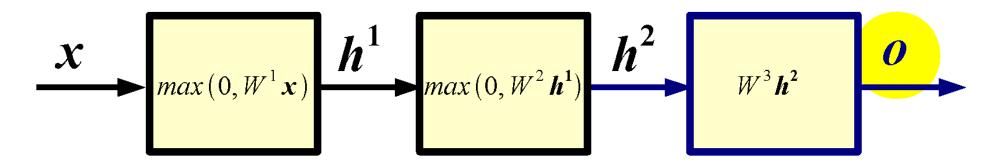


$$\boldsymbol{h}^{1} \in R^{N_{1}} \quad W^{2} \in R^{N_{2} \times N_{1}} \quad \boldsymbol{b}^{2} \in R^{N_{2}} \quad \boldsymbol{h}^{2} \in R^{N_{2}}$$

$$\boldsymbol{h}^2 = max\left(0, W^2 \boldsymbol{h}^1 + \boldsymbol{b}^2\right)$$

 W^2 2-nd layer weight matrix or weights **b**² 2-nd layer biases

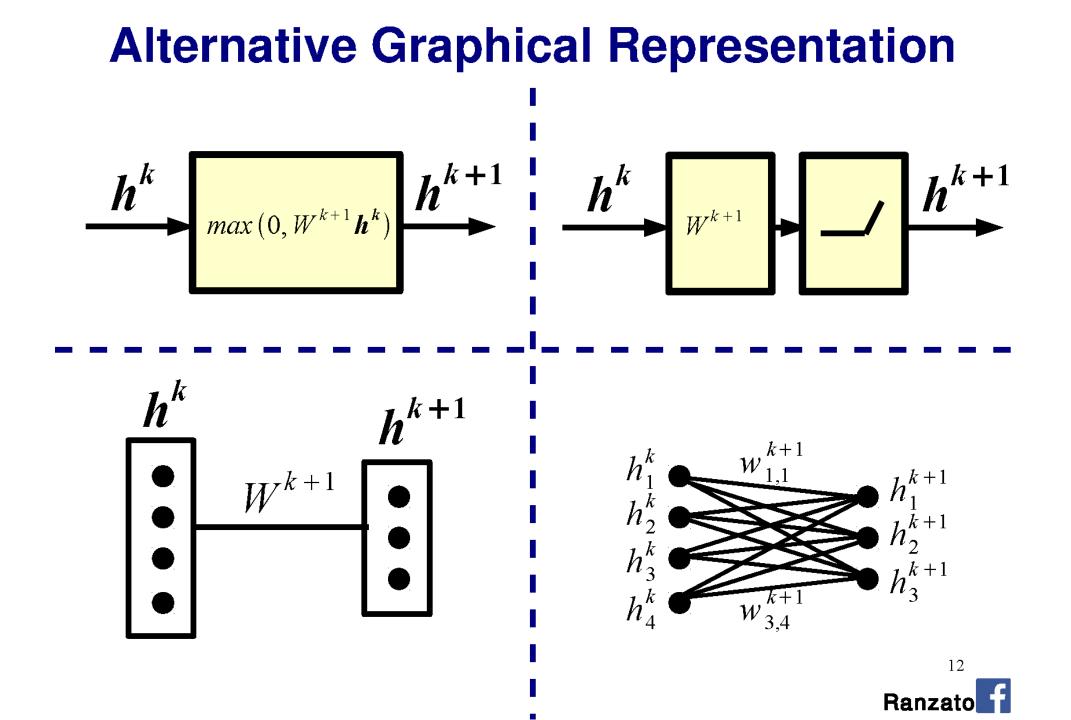
Forward Propagation



$$\boldsymbol{h}^2 \in R^{N_2} \quad W^3 \in R^{N_3 \times N_2} \quad \boldsymbol{b}^3 \in R^{N_3} \quad \boldsymbol{o} \in R^{N_3}$$

$$\boldsymbol{o} = max\left(0, W^{3}\boldsymbol{h}^{2} + \boldsymbol{b}^{3}\right)$$

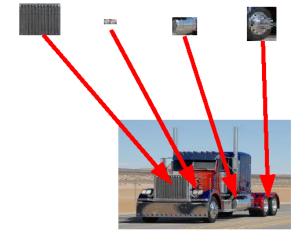
 W^3 3-rd layer weight matrix or weights **b**³ 3-rd layer biases



Question: Why do we need many layers?

Answer: When input has hierarchical structure, the use of a hierarchical architecture is potentially more efficient because intermediate computations can be re-used. DL architectures are efficient also because they use **distributed representations** which are shared across classes.

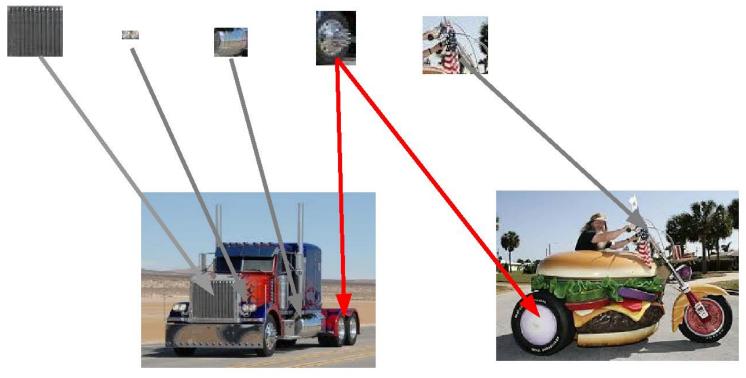
[0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 ...] truck feature

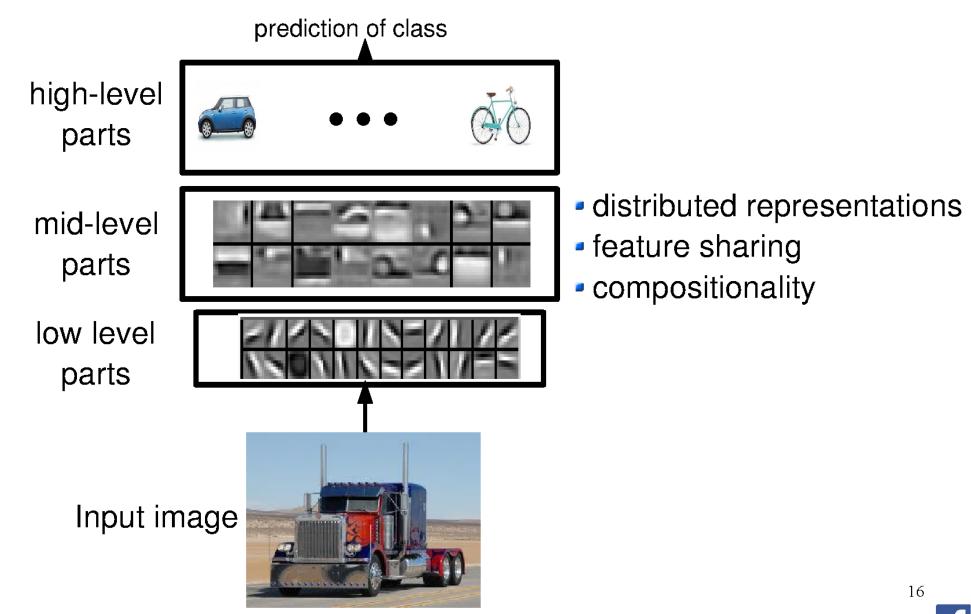


Exponentially more efficient than a 1-of-N representation (a la k-means)

[1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1...] motorbike

[0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 ...] truck





Ranzato

Lee et al. "Convolutional DBN's ..." ICML 2009

Question: What does a hidden unit do?

Answer: It can be thought of as a classifier or feature detector.

Question: How many layers? How many hidden units?

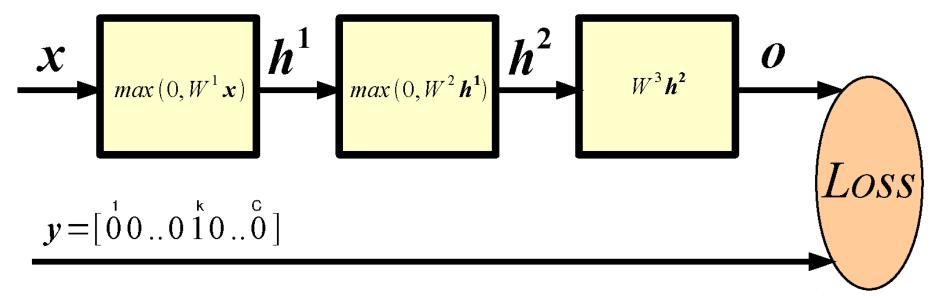
Answer: Cross-validation or hyper-parameter search methods are the answer. In general, the wider and the deeper the network the more complicated the mapping.

Question: How do I set the weight matrices?

Answer: Weight matrices and biases are learned. First, we need to define a measure of quality of the current mapping. Then, we need to define a procedure to adjust the parameters.

Ranzato

How Good is a Network?



Probability of class k given input (softmax):

$$p(c_k=1|\mathbf{x}) = \frac{e^{o_k}}{\sum_{j=1}^{C} e^{o_j}}$$

(Per-sample) **Loss**; e.g., negative log-likelihood (good for classification of small number of classes):

$$L(\mathbf{x}, y; \boldsymbol{\theta}) = -\sum_{j} y_{j} \log p(c_{j} | \mathbf{x})$$
Ranzato

Training

Learning consists of minimizing the loss (plus some regularization term) w.r.t. parameters over the whole training set.

$$\boldsymbol{\theta}^* = \operatorname{arg\,min}_{\boldsymbol{\theta}} \sum_{n=1}^{P} L(\boldsymbol{x}^n, y^n; \boldsymbol{\theta})$$

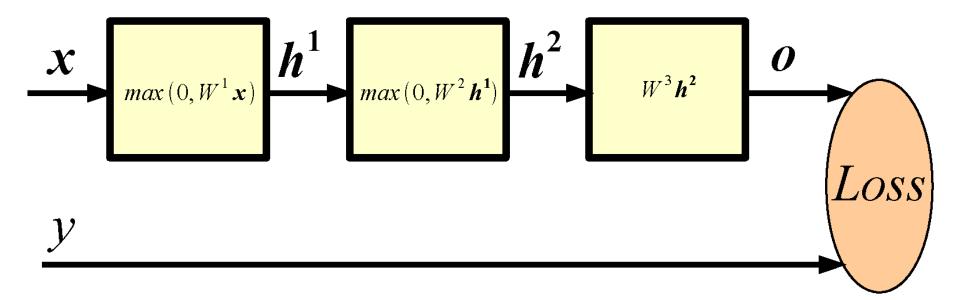
Question: How to minimize a complicated function of the parameters?

Answer: Chain rule, a.k.a. **Backpropagation**! That is the procedure to compute gradients of the loss w.r.t. parameters in a multi-layer neural network.

Rumelhart et al. "Learning internal representations by back-propagating.." Nature 1986

19

Key Idea: Wiggle To Decrease Loss



Let's say we want to decrease the loss by adjusting $W_{i,j}^1$. We could consider a very small $\epsilon = 1e-6$ and compute:

$$L(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta})$$
$$L(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta} \setminus W_{i,j}^{1}, W_{i,j}^{1} + \boldsymbol{\epsilon})$$

Then, update:

$$W_{i,j}^{1} \leftarrow W_{i,j}^{1} + \epsilon \, sgn(L(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta}) - L(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta} \setminus W_{i,j}^{1}, W_{i,j}^{1} + \epsilon)) ^{20}$$
Ranzato f

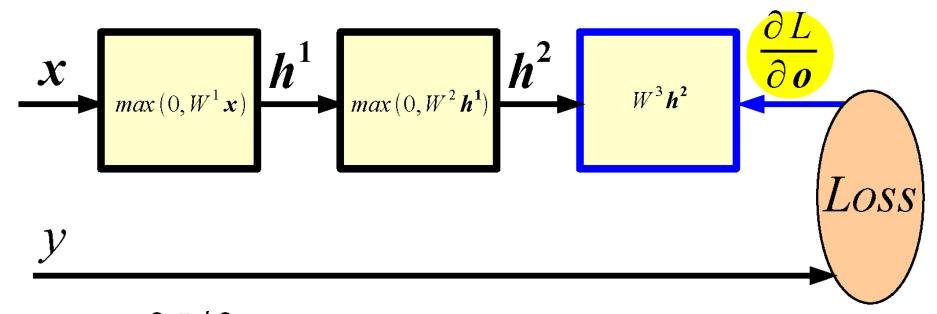
Derivative w.r.t. Input of Softmax

$$p(c_k=1|\mathbf{x}) = \frac{e^{o_k}}{\sum_j e^{o_j}}$$

$$L(\mathbf{x}, y; \boldsymbol{\theta}) = -\sum_{j} y_{j} \log p(c_{j} | \mathbf{x}) \qquad \mathbf{y} = [\overset{1}{0} 0 .. 0 \overset{k}{1} 0 .. \overset{c}{0}]$$

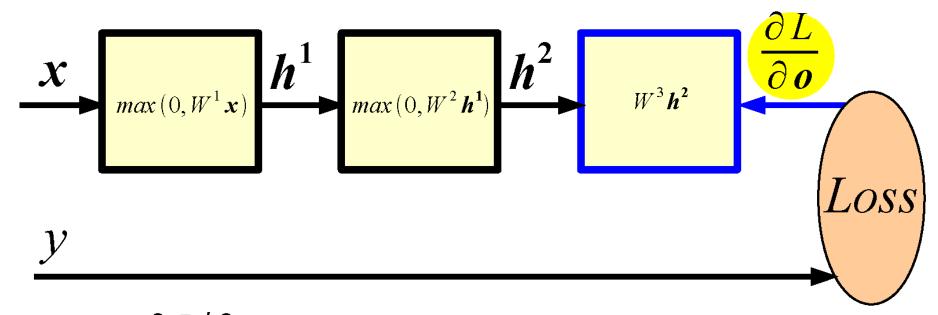
By substituting the fist formula in the second, and taking the derivative w.r.t. o we get:

$$\frac{\partial L}{\partial o} = p(c|\mathbf{x}) - \mathbf{y}$$



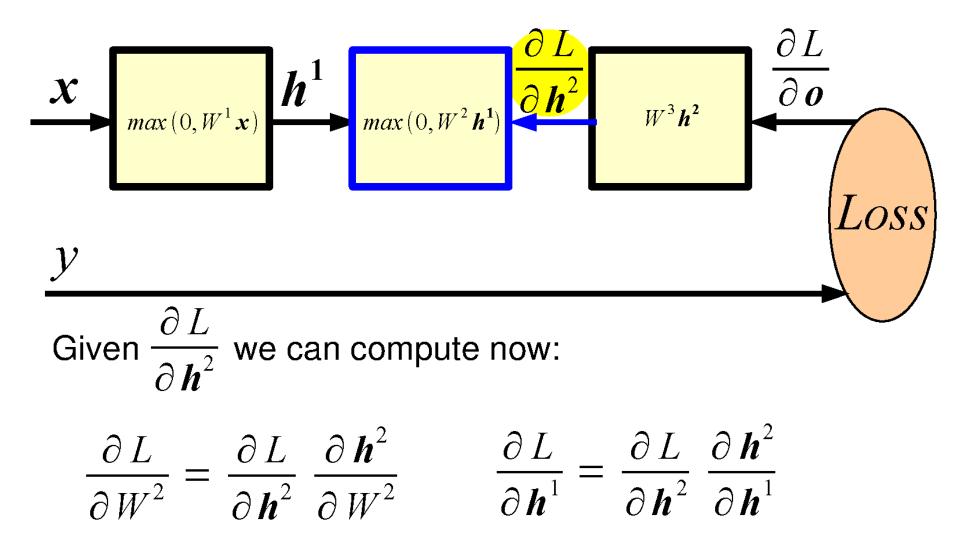
Given $\partial L/\partial o$ and assuming we can easily compute the Jacobian of each module, we have:

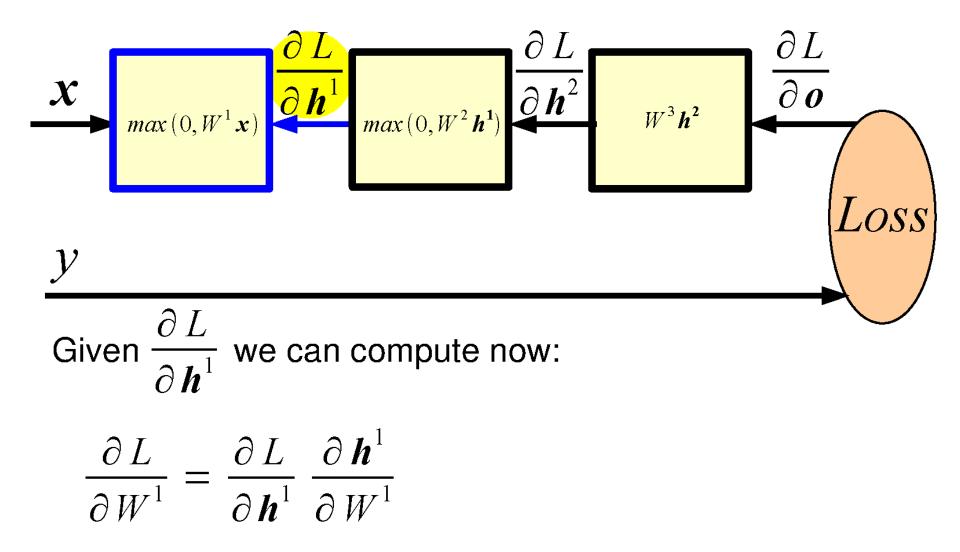
$$\frac{\partial L}{\partial W^3} = \frac{\partial L}{\partial o} \frac{\partial o}{\partial W^3} \qquad \qquad \frac{\partial L}{\partial h^2} = \frac{\partial L}{\partial o} \frac{\partial o}{\partial h^2}$$



Given $\partial L/\partial o$ and assuming we can easily compute the Jacobian of each module, we have:

$$\frac{\partial L}{\partial W^{3}} = \frac{\partial L}{\partial o} \frac{\partial o}{\partial W^{3}} \qquad \frac{\partial L}{\partial h^{2}} = \frac{\partial L}{\partial o} \frac{\partial o}{\partial h^{2}}$$
$$\frac{\partial L}{\partial W^{3}} = (p(c|\mathbf{x}) - \mathbf{y}) \mathbf{h}^{2T} \qquad \frac{\partial L}{\partial h^{2}} = W^{3T} (p(c|\mathbf{x}) - \mathbf{y})_{23}$$





Question: Does BPROP work with ReLU layers only? **Answer:** Nope, any a.e. differentiable transformation works.

Question: What's the computational cost of BPROP?

Answer: About twice FPROP (need to compute gradients w.r.t. input and parameters at every layer).

Optimization

Stochastic Gradient Descent (on mini-batches):

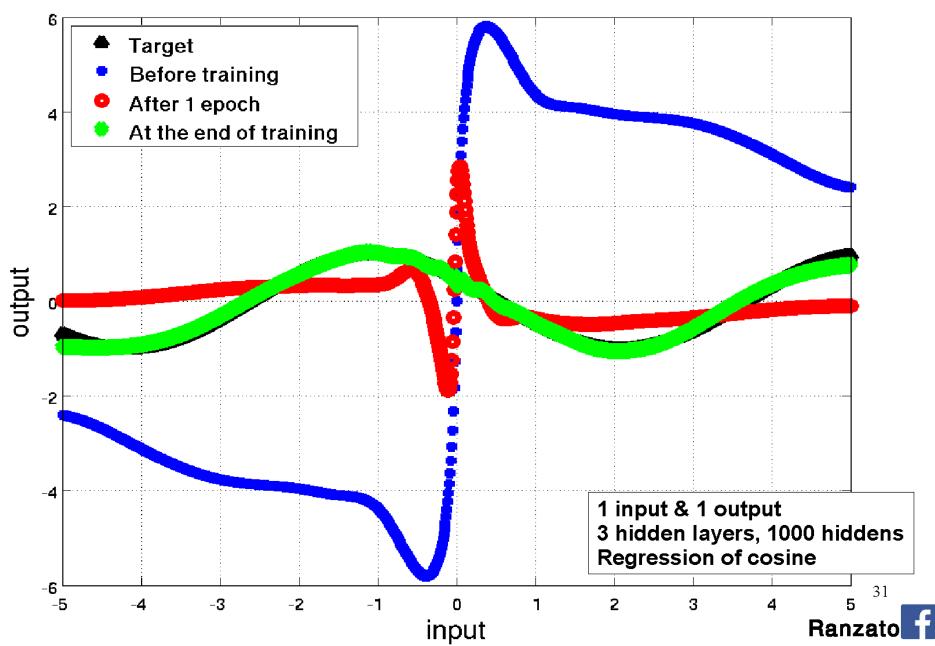
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \frac{\partial L}{\partial \boldsymbol{\theta}}, \eta \in (0, 1)$$

Stochastic Gradient Descent with Momentum:

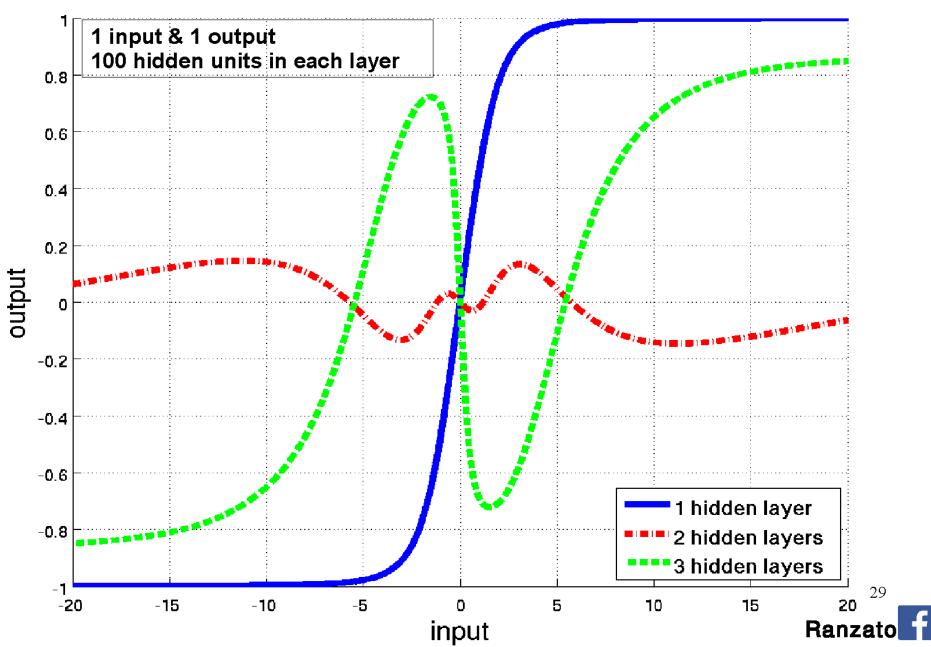
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \boldsymbol{\eta} \, \boldsymbol{\Delta}$$
$$\boldsymbol{\Delta} \leftarrow 0.9 \, \boldsymbol{\Delta} + \frac{\partial L}{\partial \boldsymbol{\theta}}$$

Note: there are many other variants...

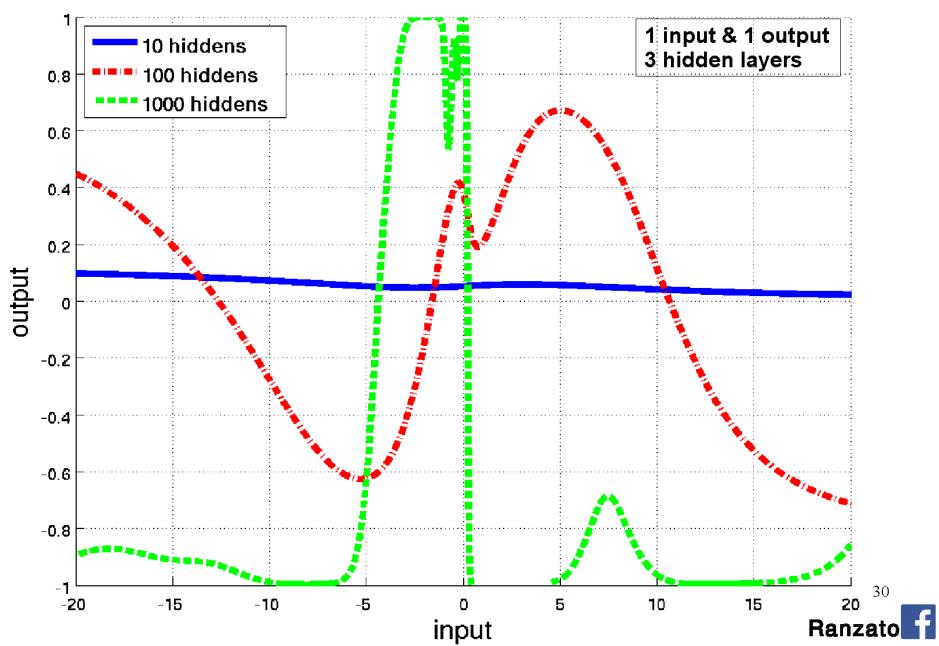
Toy Example: Synthetic Data



Toy Example: Synthetic Data



Toy Example: Synthetic Data



Outline

Supervised Neural Networks

Convolutional Neural Networks

Examples

