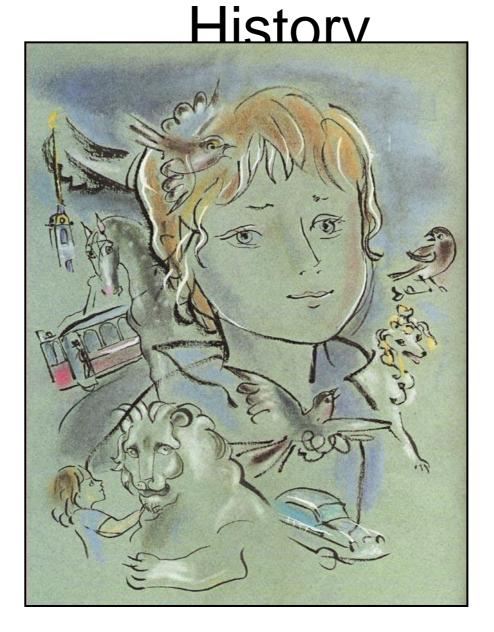
Classical and Modern Recognition Techniques

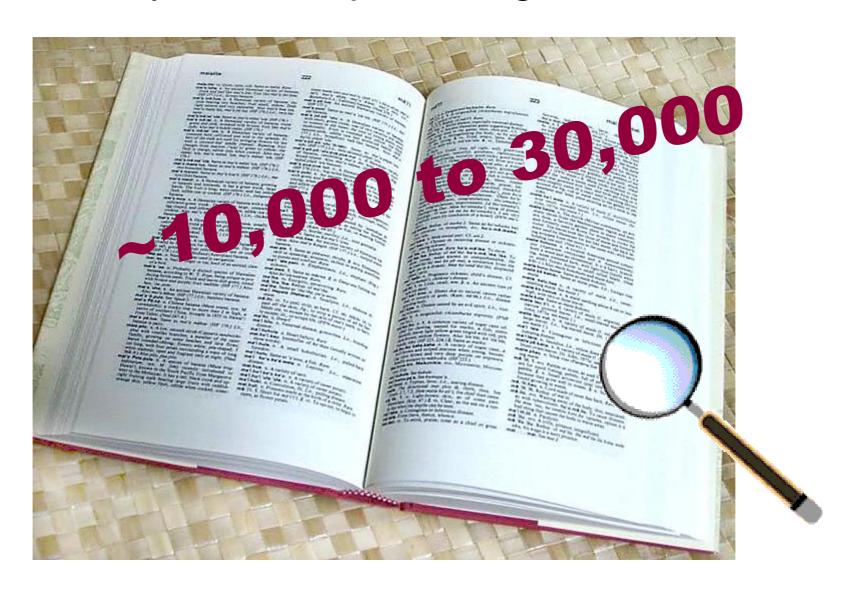
Today's outline

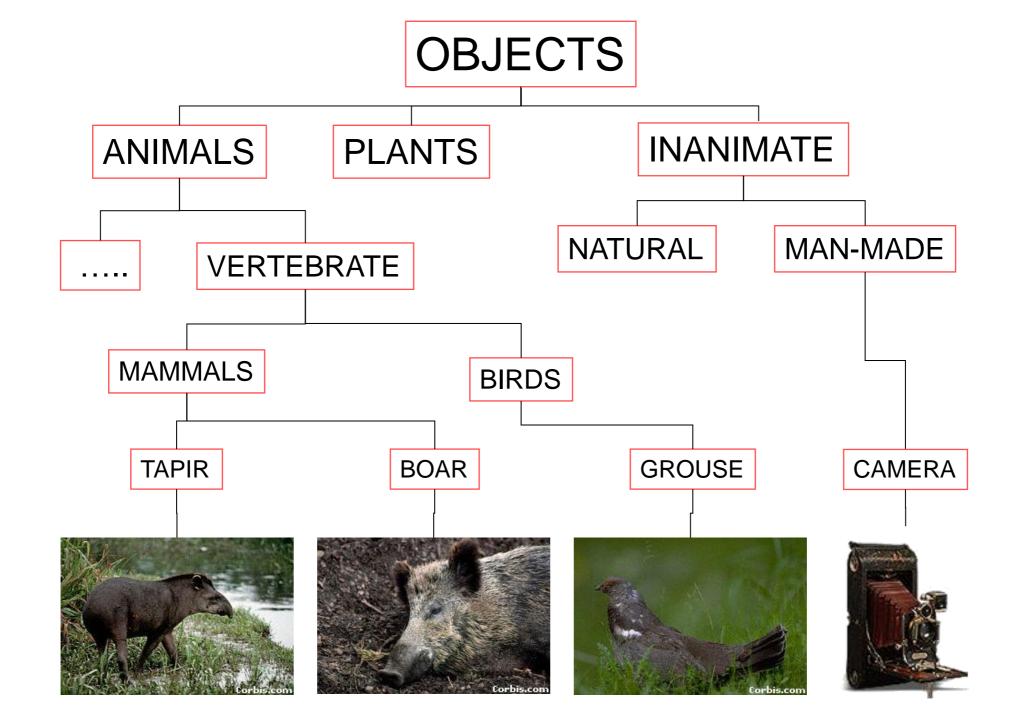
- We've covered Deep Convolutional Networks. But what did recognition techniques look like before AlexNet?
 - Bag of words models
 - Sliding window models
- What do more recent deep learning architectures look like?

Recognition: Overview and



How many visual object categories are there?





Specific recognition tasks

Scene categorization or classification

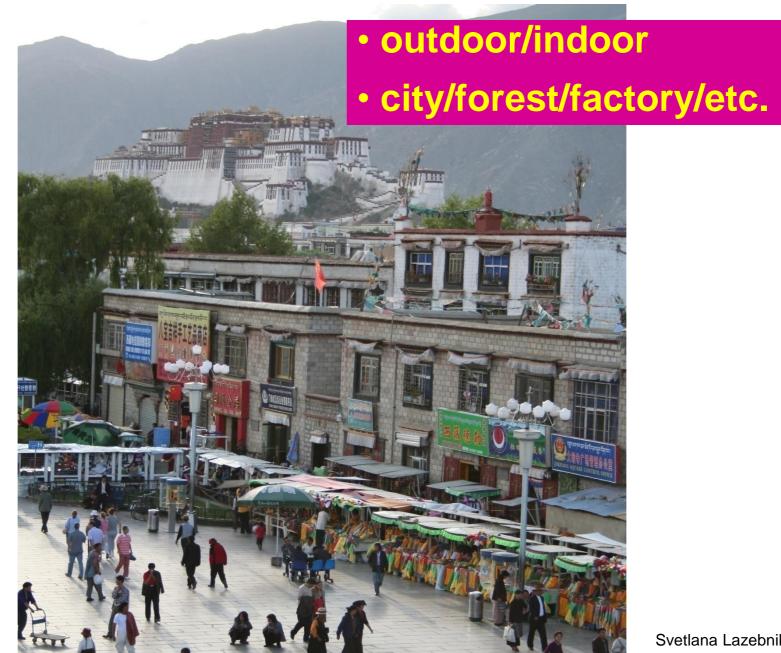
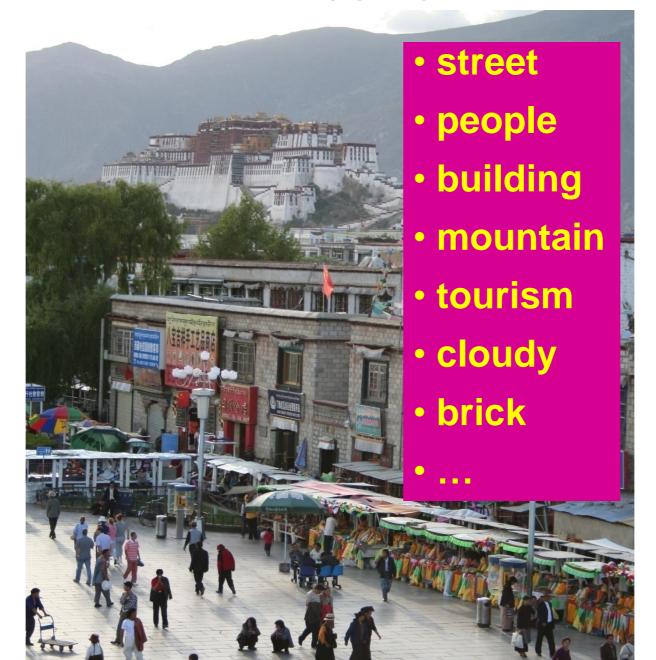


Image annotation / tagging / attributes



Object detection

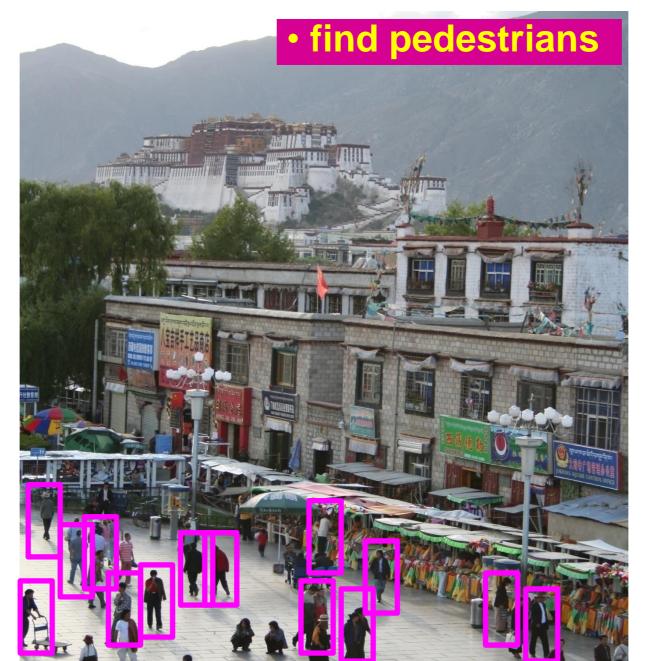
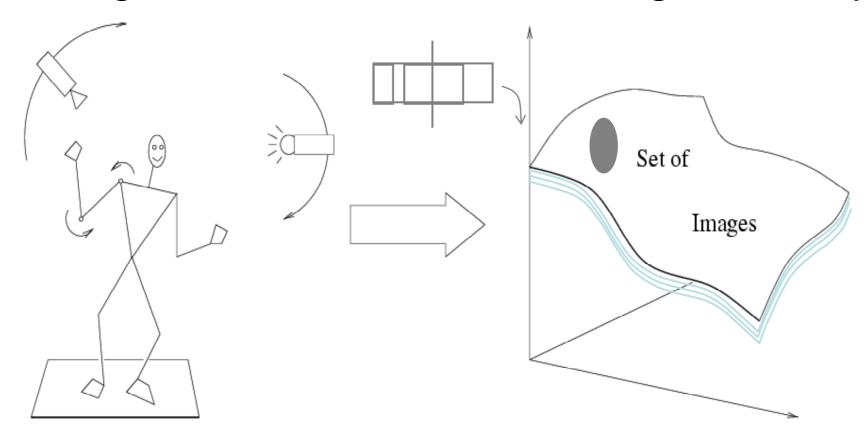


Image parsing / semantic segmentation

Scene understanding?

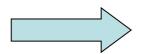
Recognition is all about modeling variability



Variability: Camera position

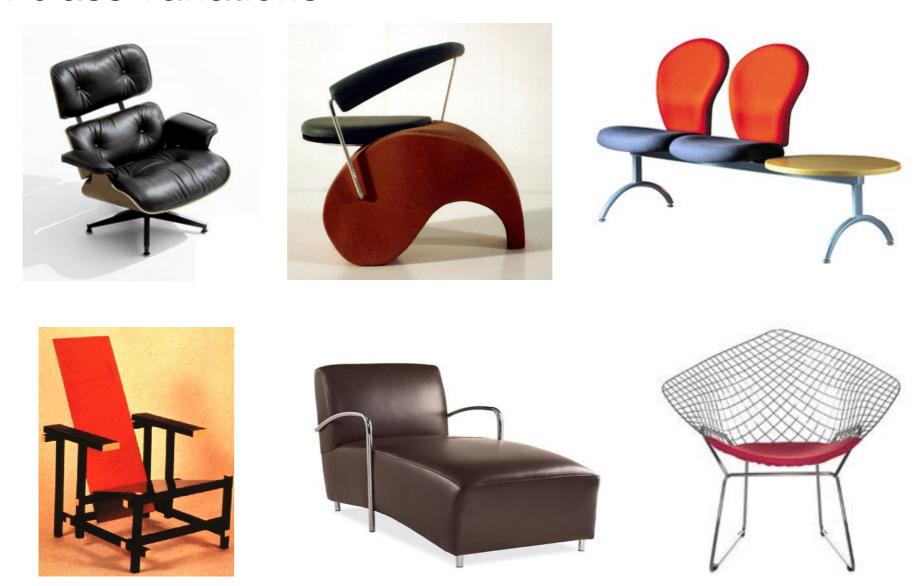
Illumination

Shape parameters



Within-class variations?

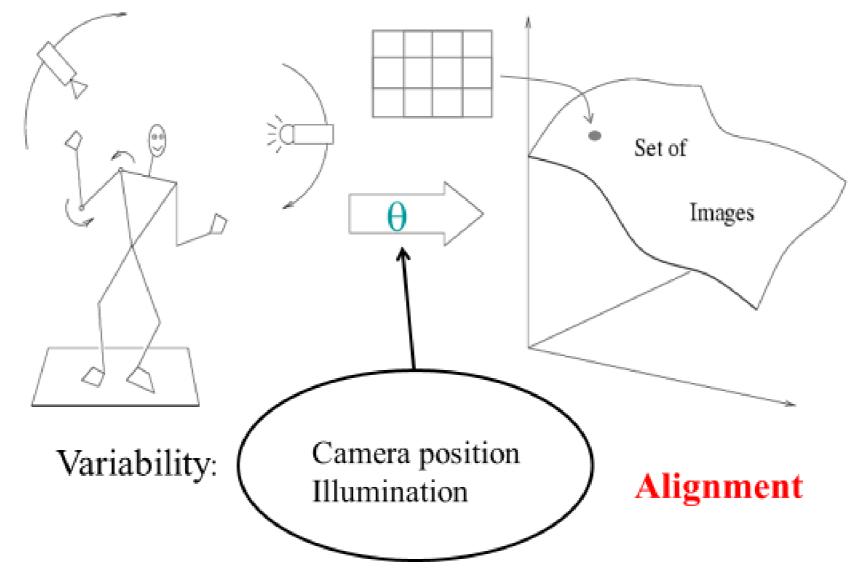
Within-class variations



Svetlana Lazebnik

History of ideas in recognition

• 1960s – early 1990s: the geometric era

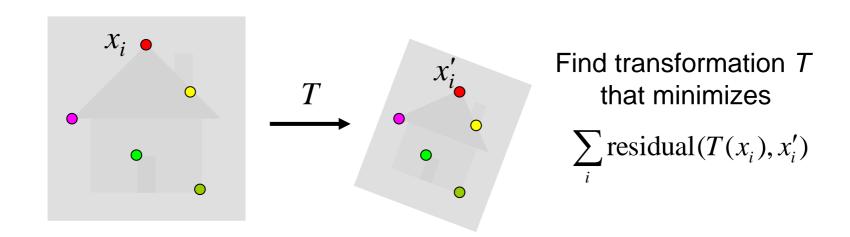


Shape: assumed known

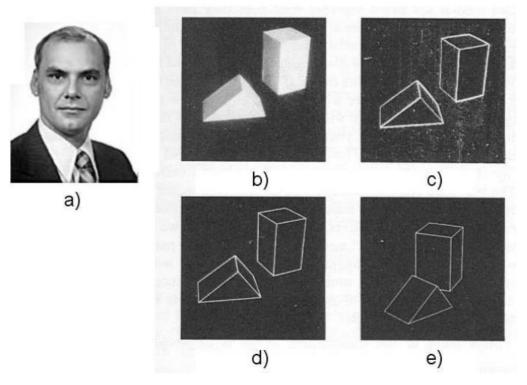
Roberts (1965); Lowe (1987); Faugeras & Hebert (1986); Grimson & Lozano-Perez (1986); Huttenlocher & Ullman (1987)

Recall: Alignment

 Alignment: fitting a model to a transformation between pairs of features (matches) in two images



Recognition as an alignment problem: Block world

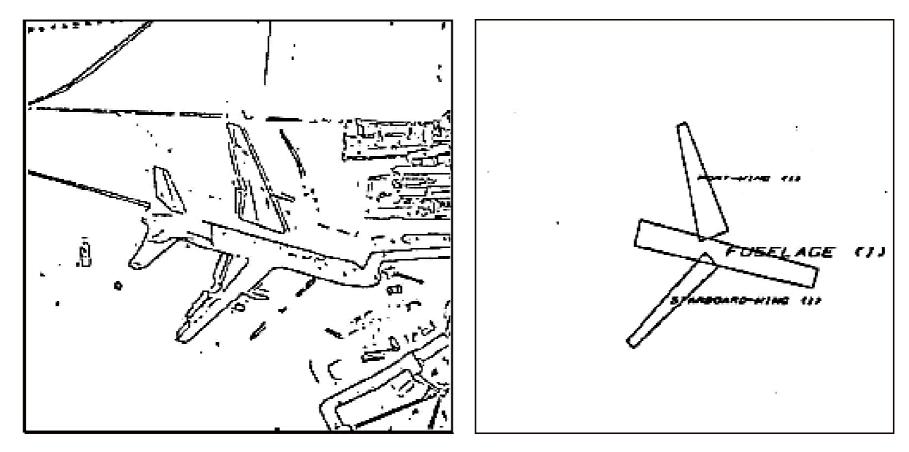


L. G. Roberts, <u>Machine</u>
<u>Perception of Three</u>
<u>Dimensional Solids</u>, Ph.D.
thesis, MIT Department
of Electrical Engineering,
1963.

Fig. 1. A system for recognizing 3-d polyhedral scenes. a) L.G. Roberts. b)A blocks world scene. c)Detected edges using a 2x2 gradient operator. d) A 3-d polyhedral description of the scene, formed automatically from the single image. e) The 3-d scene displayed with a viewpoint different from the original image to demonstrate its accuracy and completeness. (b) - e) are taken from [64] with permission MIT Press.)

J. Mundy, Object Recognition in the Geometric Era: a Retrospective, 2006

Representing and recognizing object categories is harder...

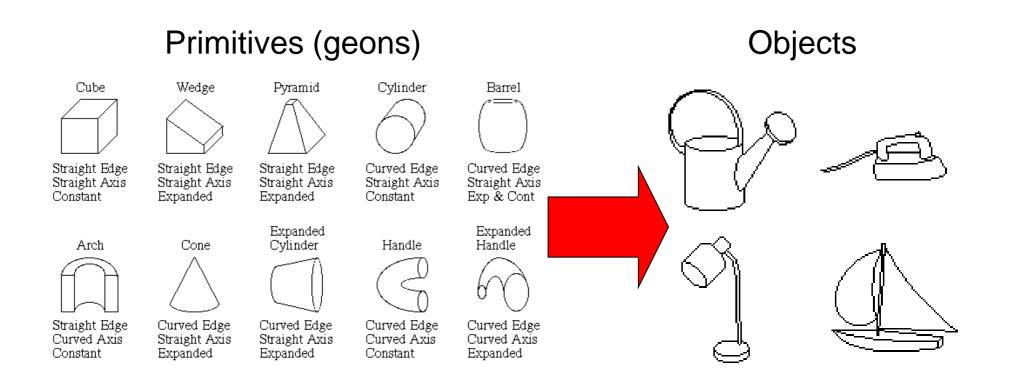


ACRONYM (Brooks and Binford, 1981)

Binford (1971), Nevatia & Binford (1972), Marr & Nishihara (1978)

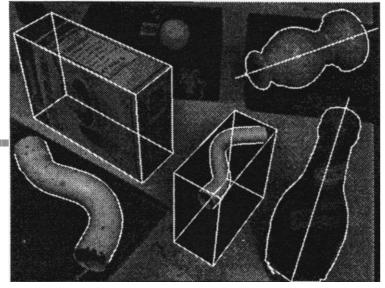
Recognition by components

Biederman (1987)



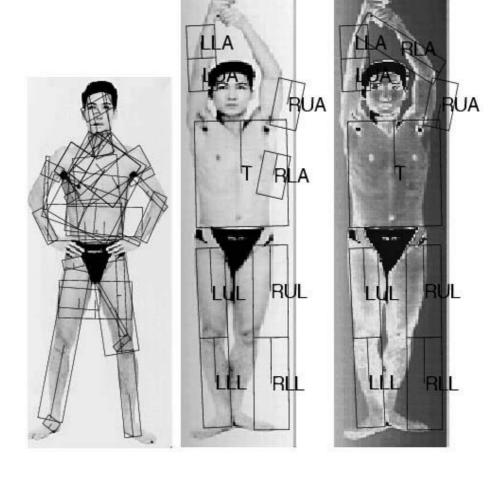
http://en.wikipedia.org/wiki/Recognition_by_Components_Theory

Generalized cylinders Ponce et al. (1989)



Zisserman et al. (1995)

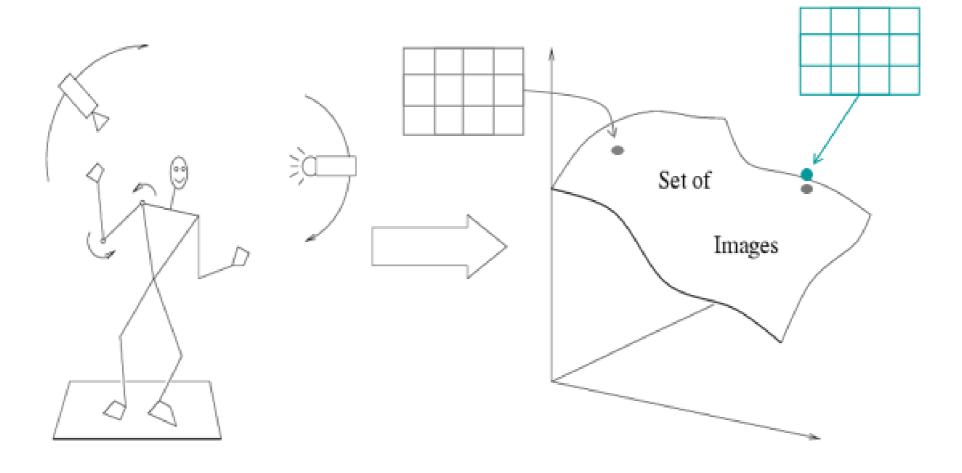
General shape primitives?



Forsyth (2000)

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models

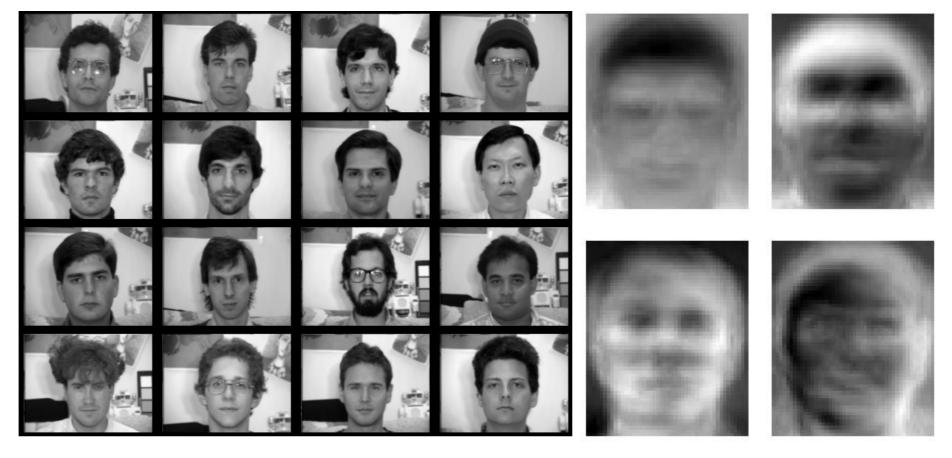


Empirical models of image variability

Appearance-based techniques

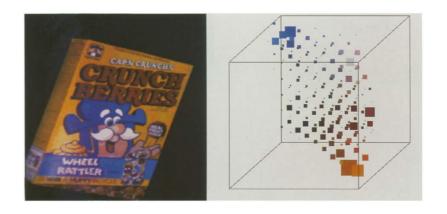
Turk & Pentland (1991); Murase & Nayar (1995); etc.

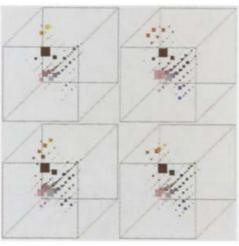
Eigenfaces (Turk & Pentland, 1991)



Experimental	Correct/Unknown Recognition Percentage		
Condition	Lighting	Orientation	Scale
Forced classification	96/0	85/0	64/0
Forced 100% accuracy	100/19	100/39	100/60
Forced 20% unknown rate	100/20	94/20	74/20

Color Histograms





Swain and Ballard, Color Indexing, IJCV 1991. Svetlana Lazebnik

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- 1990s present: sliding window approaches

Sliding window approaches

Sliding window approaches

- Turk and Pentland, 1991
- Belhumeur, Hespanha, & Kriegman, 1997
- Schneiderman & Kanade 2004
- Viola and Jones, 2000

- Schneiderman & Kanade, 2004
- Argawal and Roth, 2002
- Poggio et al. 1993

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features

Local features for object instance recognition

Large-scale image search

Combining local features, indexing, and spatial constraints

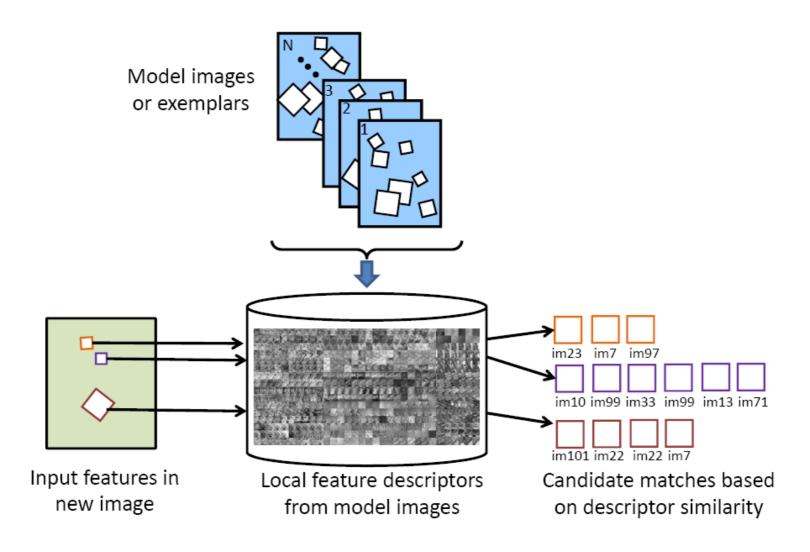


Image credit: K. Grauman and B. Leibe

Large-scale image search

Combining local features, indexing, and spatial constraints

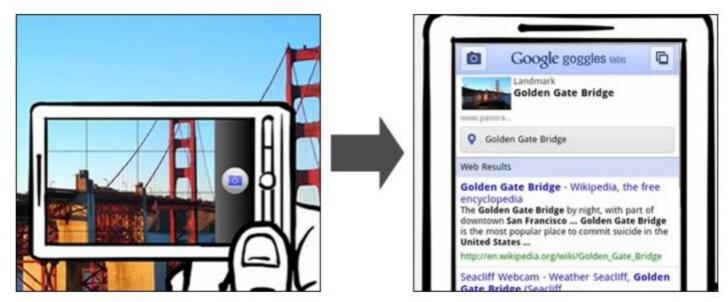
Philbin et al. '07

Large-scale image search

Combining local features, indexing, and spatial constraints

Google Goggles in Action

Click the icons below to see the different ways Google Goggles can be used.



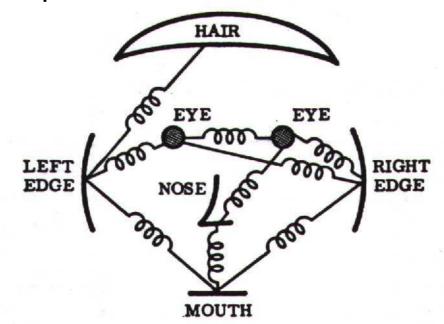
Available on phones that run Android 1.6+ (i.e. Donut or Eclair)

History of ideas in recognition

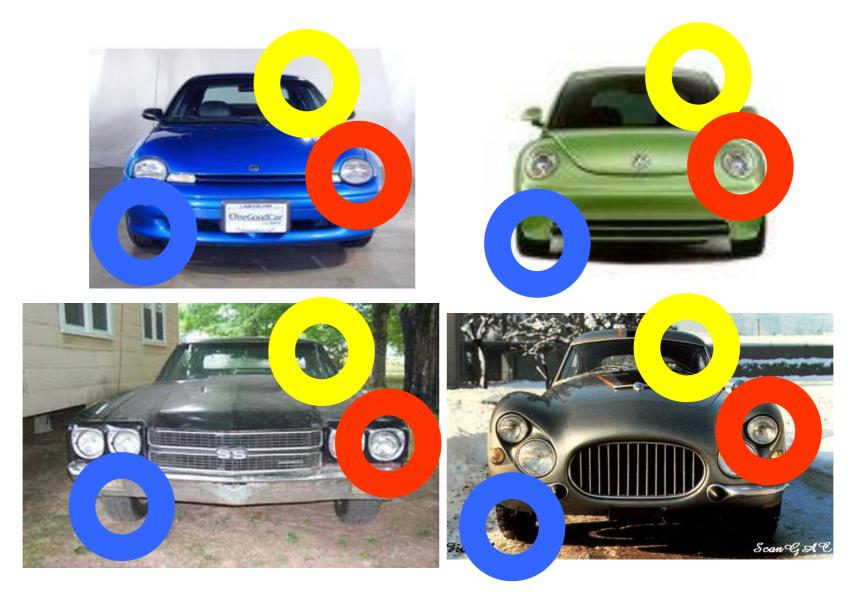
- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models

Parts-and-shape models

- Model:
 - Object as a set of parts
 - Relative locations between parts
 - Appearance of part



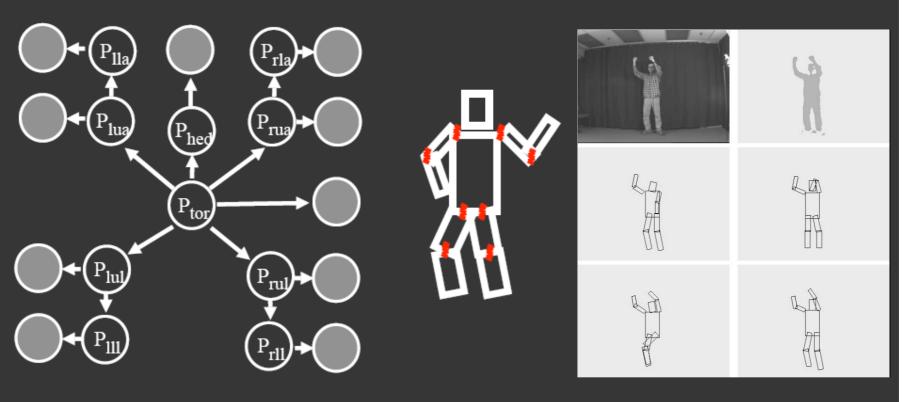
Constellation models



Weber, Welling & Perona (2000), Fergus, Perona & Zisserman (2003)

Pictorial structure model

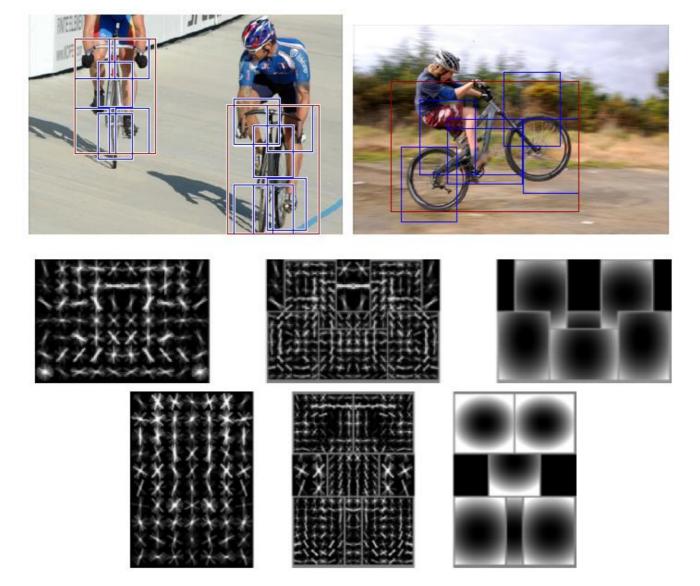
Fischler and Elschlager(73), Felzenszwalb and Huttenlocher(00)



$$\Pr(P_{\text{tor}}, P_{\text{arm}}, \dots | \text{Im}) \stackrel{\alpha}{=} \prod_{i,j} \Pr(P_i \mid P_j) \prod_i \Pr(\text{Im}(P_i))$$

$$\text{part geometry} \qquad \text{part appearance}$$

Discriminatively trained part-based models



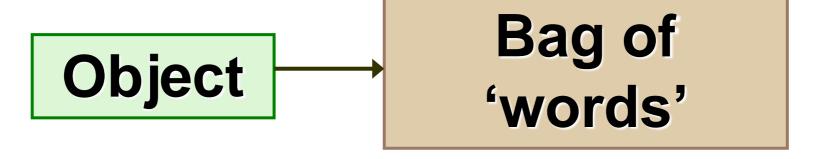
P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, "Object Detection with Discriminatively Trained Part-Based Models," PAMI 2009

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models
- Mid-2000s: bags of features

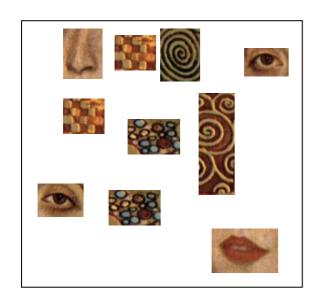
Bag-of-features models

Bag-of-features models



Objects as texture

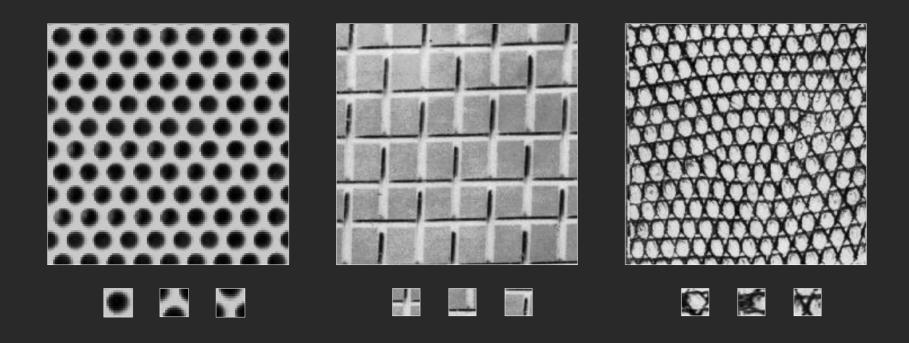
All of these are treated as being the same



 No distinction between foreground and background: scene recognition?

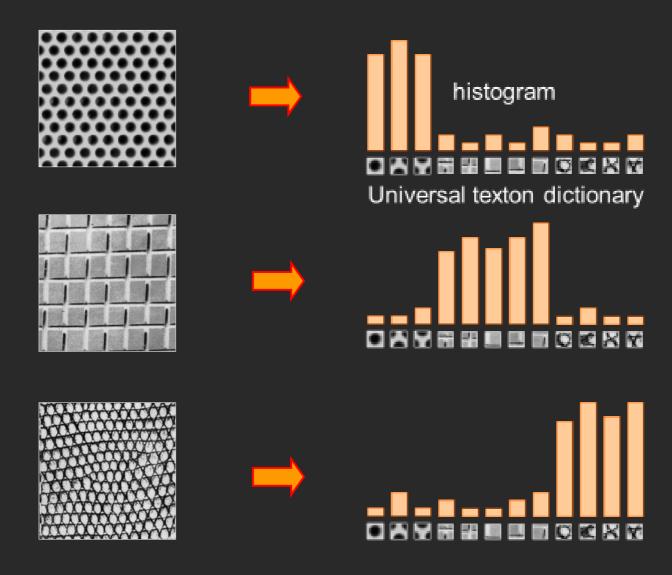
Origin 1: Texture recognition

- Texture is characterized by the repetition of basic elements or textons
- For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters



Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Origin 1: Texture recognition



Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

• Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

 Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

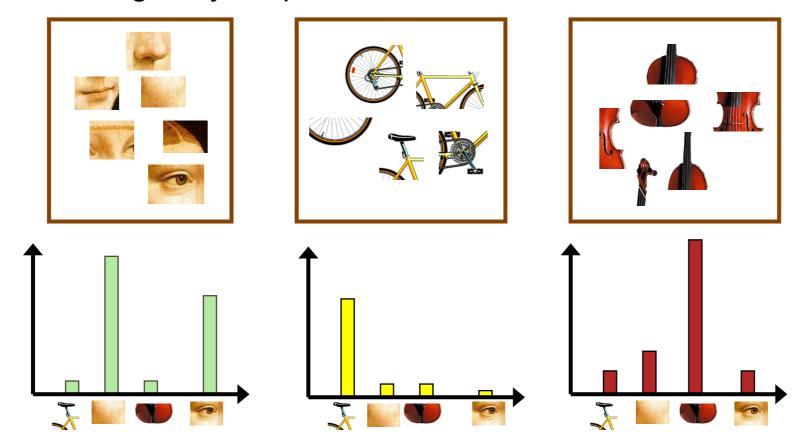
abandon accountable affordable afghanistan africa aided ally anbar armed army baghdad bless challenges chamber chaos choices civilians coalition commanders commitment confident confront congressman constitution corps debates deduction deficit deliver democratic deploy dikembe diplomacy disruptions earmarks economy einstein elections eliminates expand extremists failing faithful families freedom fuel funding god haven ideology immigration impose insurgents iran iraq islam julie lebanon love madam marine math medicare moderation neighborhoods nuclear offensive palestinian payroll province pursuing qaeda radical regimes resolve retreat rieman sacrifices science sectarian senate september shia stays strength students succeed sunni tax territories territories threats uphold victory violence violent War washington weapons wesley

 Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

 Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

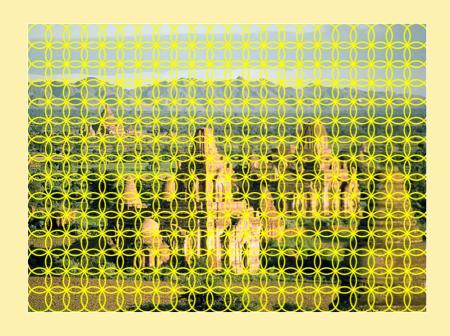
Bag-of-features steps

- 1. Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary
- 4. Represent images by frequencies of "visual words"

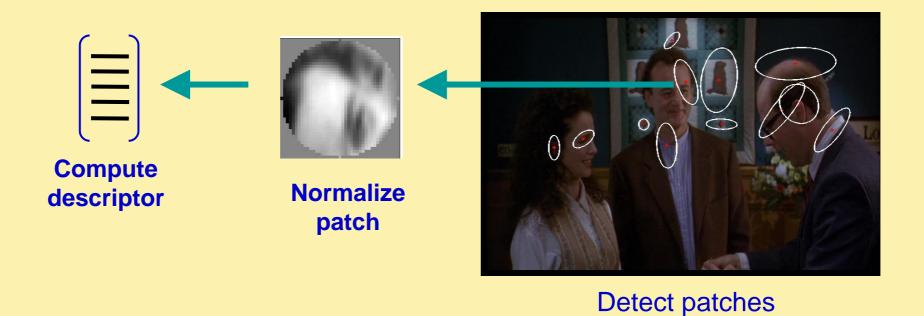


1. Feature extraction

Regular grid or interest regions

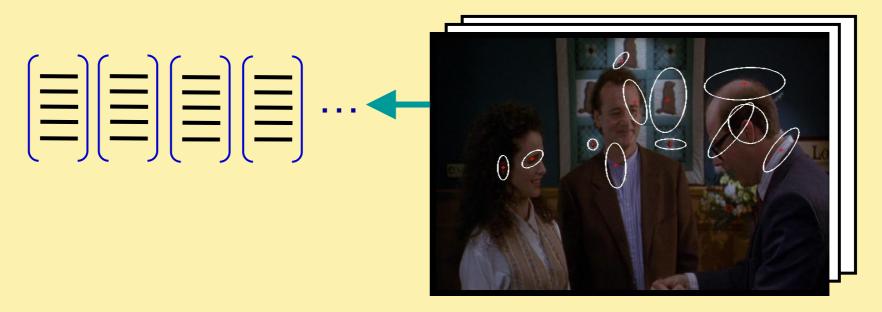


1. Feature extraction

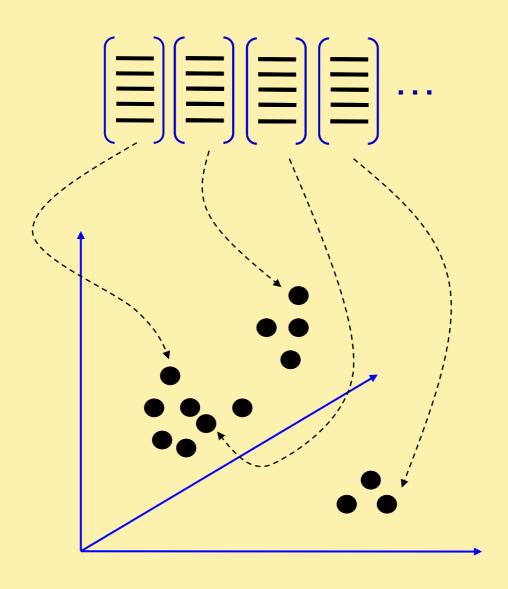


Slide credit: Josef Sivic

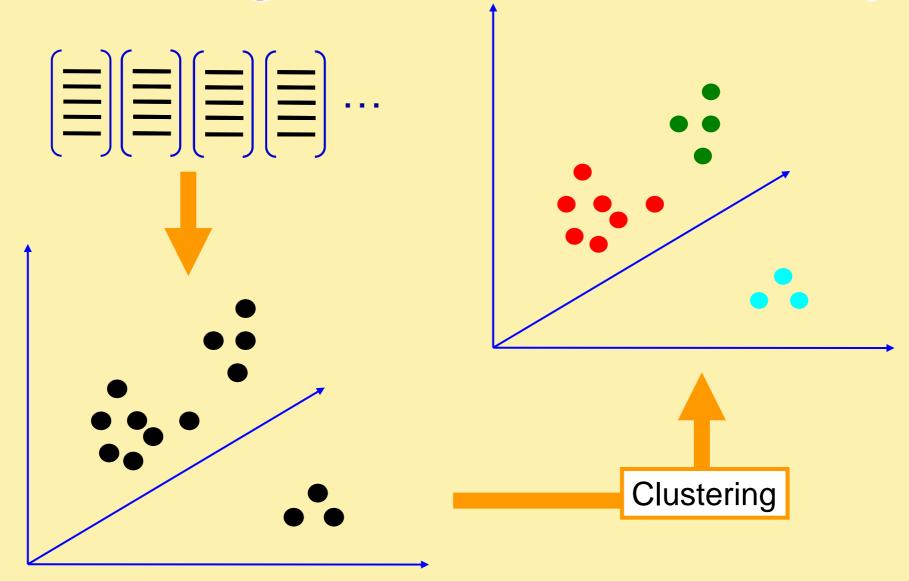
1. Feature extraction



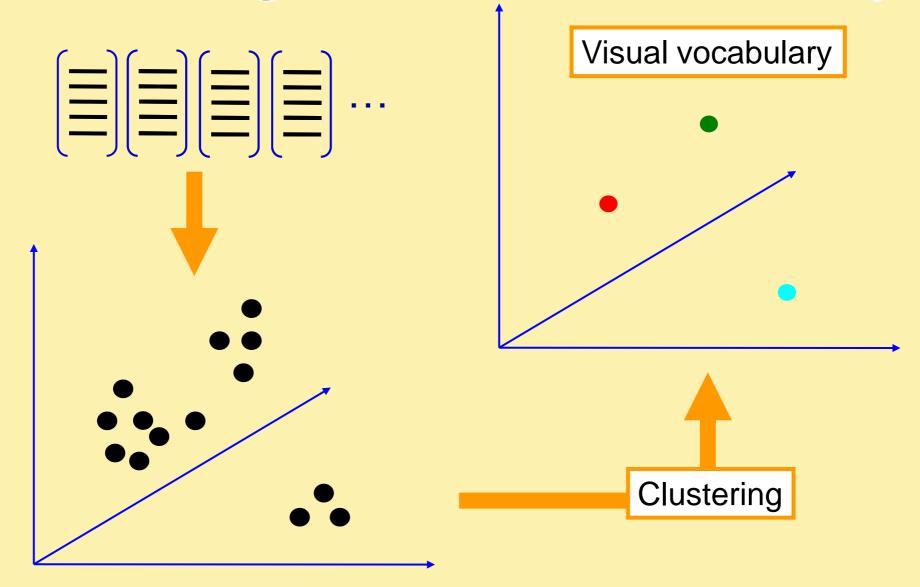
2. Learning the visual vocabulary



2. Learning the visual vocabulary



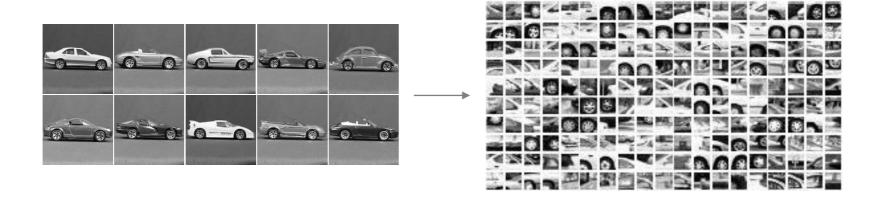
2. Learning the visual vocabulary

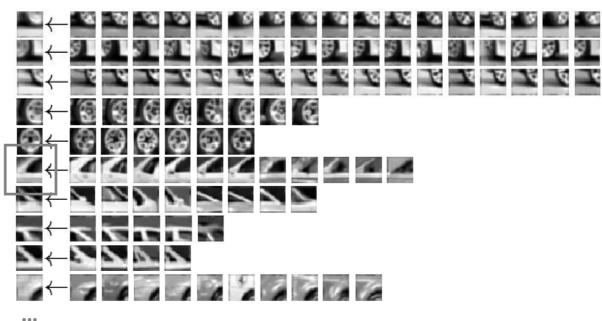


Clustering and vector quantization

- Clustering is a common method for learning a visual vocabulary or codebook
 - Unsupervised learning process
 - Each cluster center produced by k-means becomes a codevector
 - Codebook can be learned on separate training set
 - Provided the training set is sufficiently representative, the codebook will be "universal"
- The codebook is used for quantizing features
 - A vector quantizer takes a feature vector and maps it to the index of the nearest codevector in a codebook
 - Codebook = visual vocabulary
 - Codevector = visual word

Example codebook

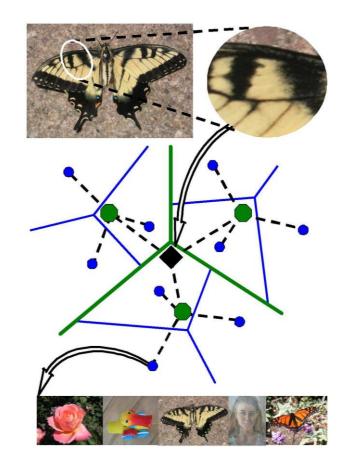




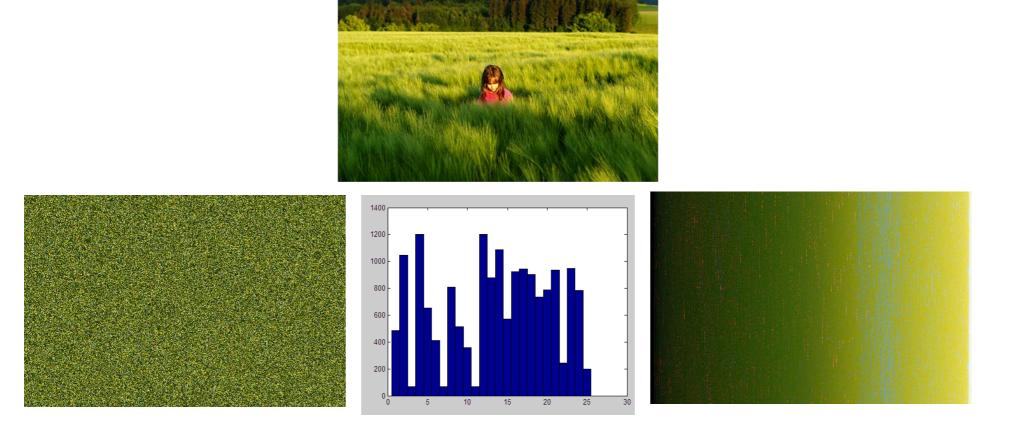
Appearance codebook

Visual vocabularies: Issues

- How to choose vocabulary size?
 - Too small: visual words not representative of all patches
 - Too large: quantization artifacts, overfitting
- Computational efficiency
 - Vocabulary trees (Nister & Stewenius, 2006)

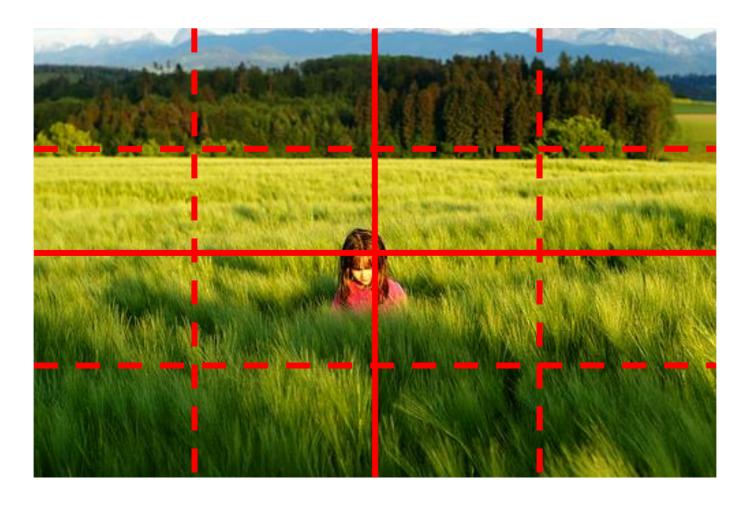


But what about layout?



All of these images have the same color histogram

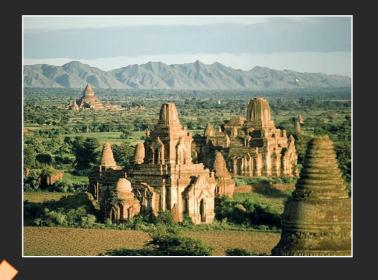
Spatial pyramid

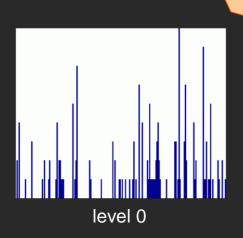


Compute histogram in each spatial bin

Spatial pyramid representation

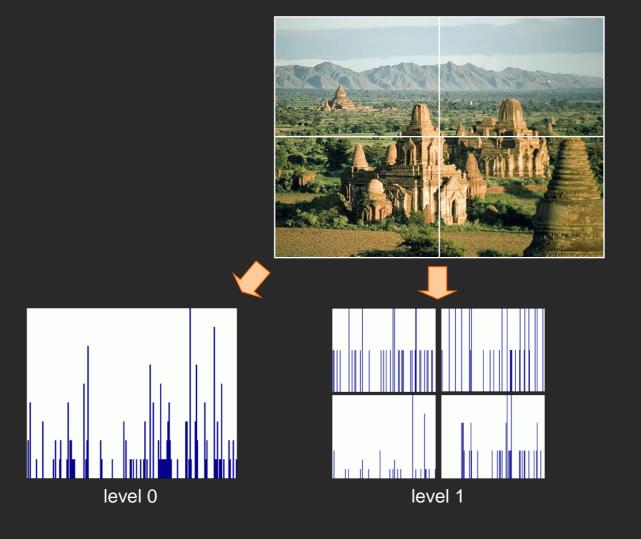
- Extension of a bag of features
- Locally orderless representation at several levels of resolution





Spatial pyramid representation

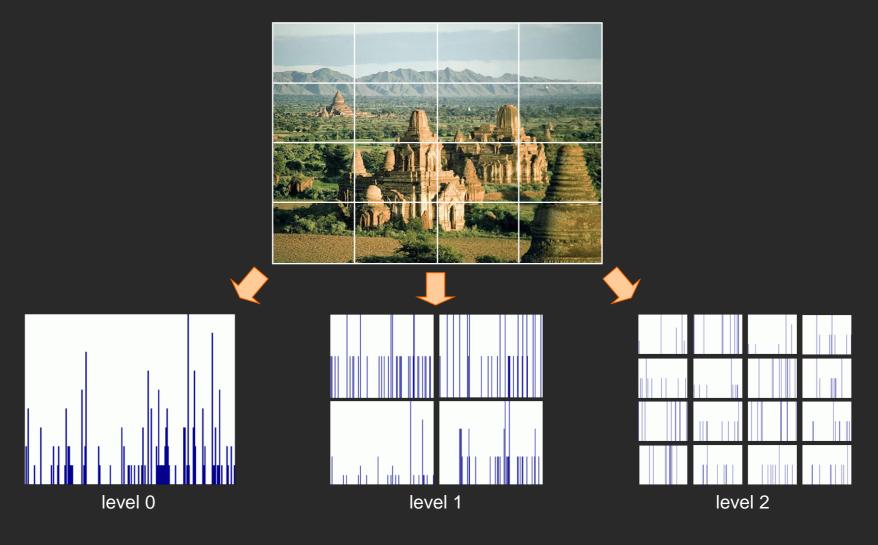
- Extension of a bag of features
- Locally orderless representation at several levels of resolution



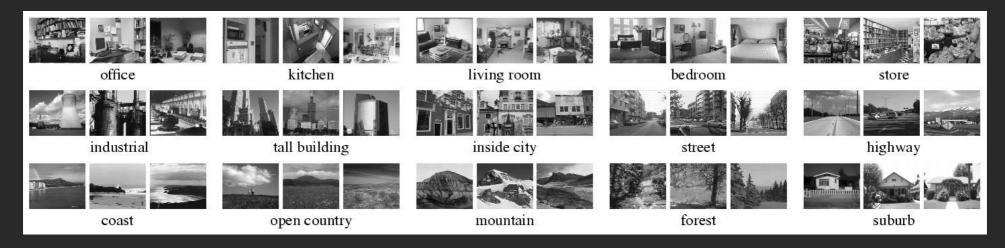
Lazebnik, Schmid & Ponce (CVPR 2006)

Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution



Scene category dataset



Multi-class classification results (100 training images per class)

	Weak fe	eatures	Strong features		
	(vocabulary	size: 16)	(vocabulary size: 200)		
Level	Single-level	Pyramid	Single-level	Pyramid	
$0(1 \times 1)$	45.3 ± 0.5		72.2 ± 0.6		
$1(2\times2)$	53.6 ± 0.3	56.2 ± 0.6	77.9 ± 0.6	79.0 ± 0.5	
$2(4\times4)$	61.7 ± 0.6	64.7 ± 0.7	79.4 ± 0.3	81.1 ± 0.3	
$3(8\times8)$	63.3 ± 0.8	66.8 ± 0.6	77.2 ± 0.4	80.7 ± 0.3	

Caltech101 dataset

http://www.vision.caltech.edu/Image Datasets/Caltech101/Caltech101.html

Multi-class classification results (30 training images per class)

	Weak feat	ures (16)	Strong features (200)		
Level	Single-level	Pyramid	Single-level	Pyramid	
0	15.5 ± 0.9		41.2 ± 1.2		
1	31.4 ± 1.2	32.8 ± 1.3	55.9 ± 0.9	57.0 ± 0.8	
2	47.2 ± 1.1	49.3 ± 1.4	63.6 ± 0.9	64.6 ± 0.8	
3	52.2 ± 0.8	54.0 ± 1.1	60.3 ± 0.9	64.6 ± 0.7	

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models
- Mid-2000s: bags of features
- Present trends: combination of local and global methods, context, deep learning

Beyond AlexNet

VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan & Andrew Zisserman 2015

These are the "VGG" networks.

"Perceptual Loss" in generative deep learning refers to these networks

ConvNet Configuration							
A	A-LRN	В	С	D	Е		
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
	i	nput (224×2)	24 RGB image	e)			
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
			pool	•	,		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
			pool				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
			pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
			pool	,			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
	maxpool						
FC-4096							
			4096				
			1000				
		soft	-max				

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	С	D	E	
Number of parameters	133	133	134	138	144	

Table 4: ConvNet performance at multiple test scales.

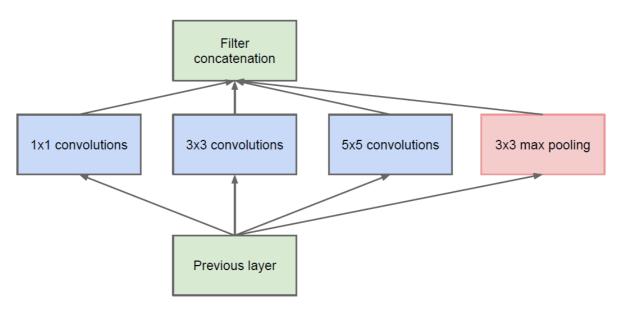
ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
	train(S)	test(Q)		
В	256	224,256,288	28.2	9.6
	256	224,256,288	27.7	9.2
C	384	352,384,416	27.8	9.2
	[256; 512]	256,384,512	26.3	8.2
	256	224,256,288	26.6	8.6
D	384	352,384,416	26.5	8.6
	[256; 512]	256,384,512	24.8	7.5
	256	224,256,288	26.9	8.7
E	384	352,384,416	26.7	8.6
	[256; 512]	256,384,512	24.8	7.5

Going Deeper with Convolutions

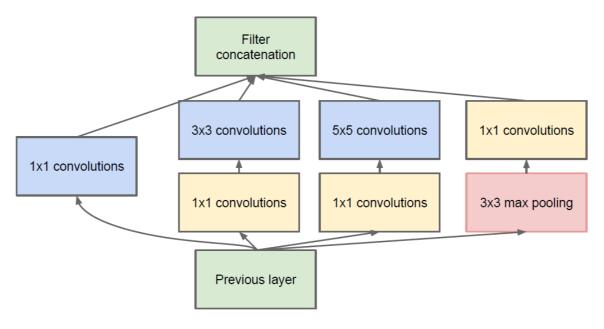
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich 2015

This is the "Inception" architecture or "GoogLeNet"

*The architecture blocks are called "Inception" modules and the collection of them into a particular net is "GoogLeNet"



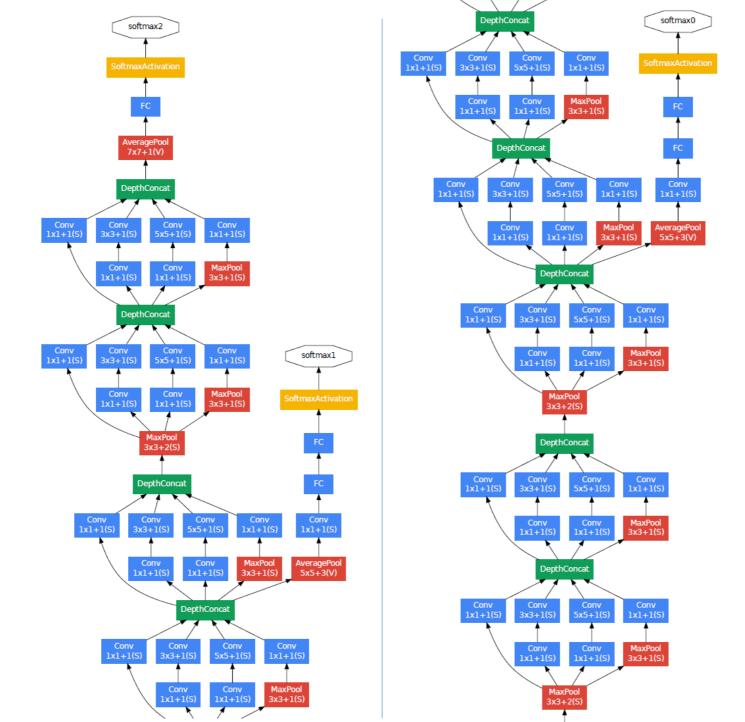
(a) Inception module, naïve version



(b) Inception module with dimensionality reduction

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	$3\times3/2$	56×56×64	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	$3\times3/2$	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	$3\times3/2$	14×14×480	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	$3\times3/2$	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1 \times 1 \times 1024$	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

Only 6.8 million parameters. AlexNet ~60 million, VGG up to 138 million



Team	Year	Place	Error (top-5)	Uses external data
SuperVision	2012	1st	16.4%	no
SuperVision	2012	1st	15.3%	Imagenet 22k
Clarifai	2013	1st	11.7%	no
Clarifai	2013	1st	11.2%	Imagenet 22k
MSRA	2014	3rd	7.35%	no
VGG	2014	2nd	7.32%	no
GoogLeNet	2014	1st	6.67%	no

Table 2: Classification performance.

Number of models	Number of Crops	Cost	Top-5 error	compared to base
1	1	1	10.07%	base
1	10	10	9.15%	-0.92%
1	144	144	7.89%	-2.18%
7	1	7	8.09%	-1.98%
7	10	70	7.62%	-2.45%
7	144	1008	6.67%	-3.45%

Surely it would be ridiculous to go any deeper...

• To be continued with ResNet