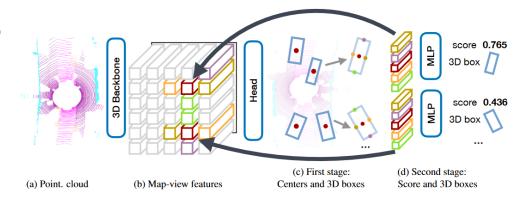
"Attention" and "Transformer" Architectures

James Hays

Recap – Lidar processing

- Popular CNN backbones aren't a direct fit for 3D point processing tasks.
- It's not clear how best to use deep learning on 3D data
 - Use a truly permutation invariant representation (PointNet)
 - Use a voxel representation (VoxelNet)
 - Use a bird's a view representation (PointPillars)
 - Create a range image (LaserNet)
- Multi-modal approaches (adding images, radar) help surprisingly little compared to lidar-only approaches.
- These alternate representations might be applicable more broadly, e.g. reasoning about depth estimates might be easier in bird's eye view (PseudoLidar)



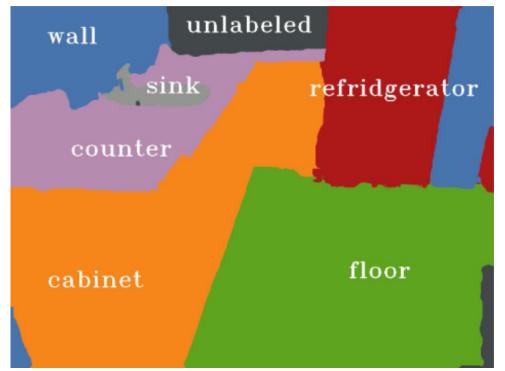
CenterPoint, which is near state of the art for 3D object detection when using VoxelNet backbone.

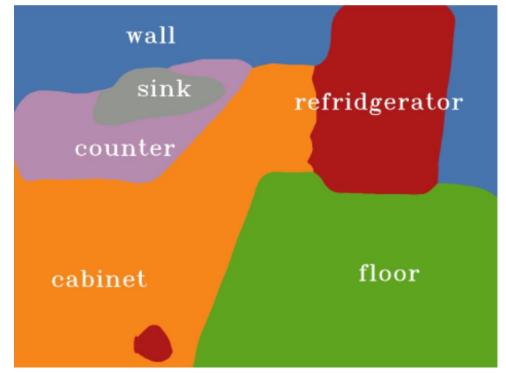
Center-based 3D Object Detection and Tracking. Tianwei Yin, Xingyi Zhou, Philipp Krähenbühl. CVPR 2021

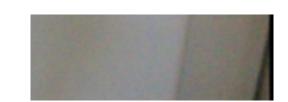
https://paperswithcode.com/sota/3d-object-detection-on-nuscenes

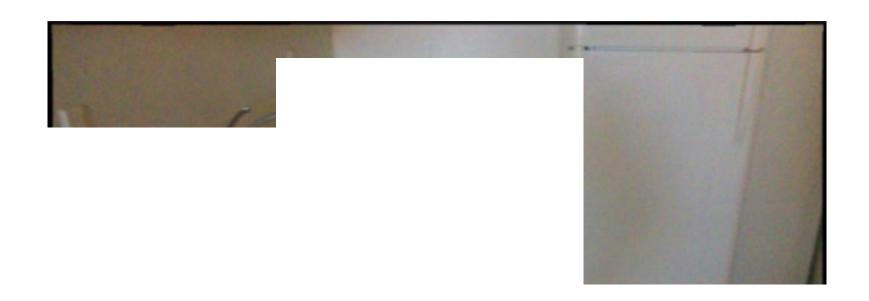
Outline

- Context and Receptive Field
- Going Beyond Convolutions in...
 - Text
 - Point Clouds
 - Images









Language understanding

... serve ...

Language understanding

... great serve from Djokovic ...

Language understanding

... be right back after I serve these salads ...

The latest generation of adversarial image attacks is, uh, somewhat simpler to carry out openai.com/blog/multimoda...

Attacks in the wild

We refer to these attacks as *typographic attacks*. We believe attacks such as those described above are far from simply an academic concern. By exploiting the model's ability to read text robustly, we find that even *photographs of hand-written text* can often fool the model. Like the Adversarial Patch, ²² this attack works in the wild; but unlike such attacks, it requires no more technology than pen and paper.

Attack text label iPod v

Granny Smith	85.6%		
iPod	0.4%		
library	0.0%		
pizza	0.0%		
toaster	0.0%		
dough	0.1%		

	i Pod
*	

Granny Smith	0.1%
iPod	99.7%
library	0.0%
pizza	0.0%
toaster	0.0%
dough	0.0%

When we put a label saying "iPod" on this Granny Smith apple, the model erroneously classifies it as an iPod in the zero-shot setting.

Replying to @mark_riedl

In case of Al uprising...

Replying to @mark_riedl

Upon further reflection, neural language models aren't always so good with negations. I recommend this instead

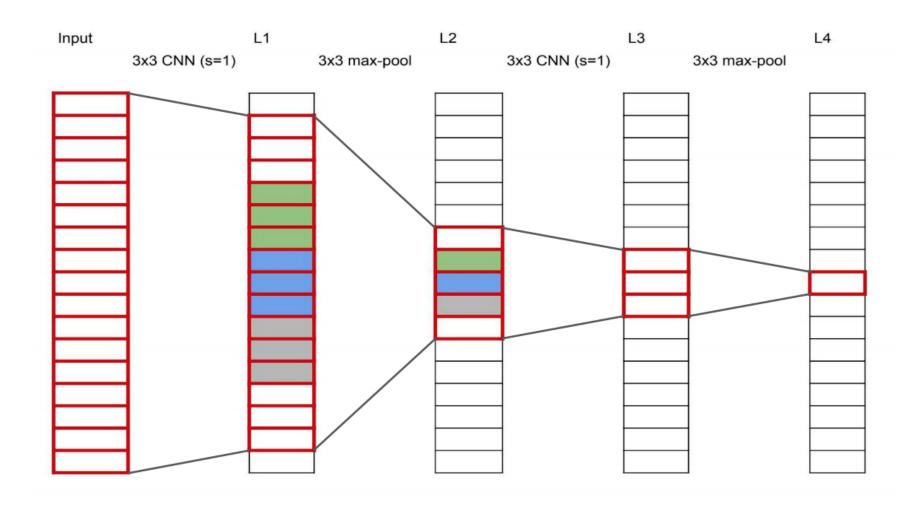
9:28 PM · Mar 4, 2021 · Twitter for iPad

So how do we fix these problems?

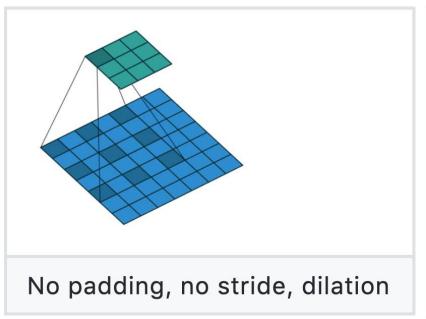


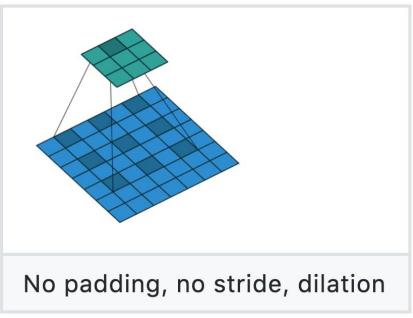


Receptive field



Dilated Convolution





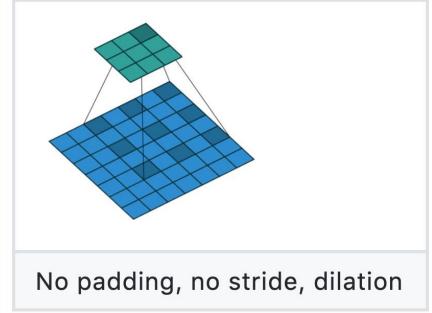
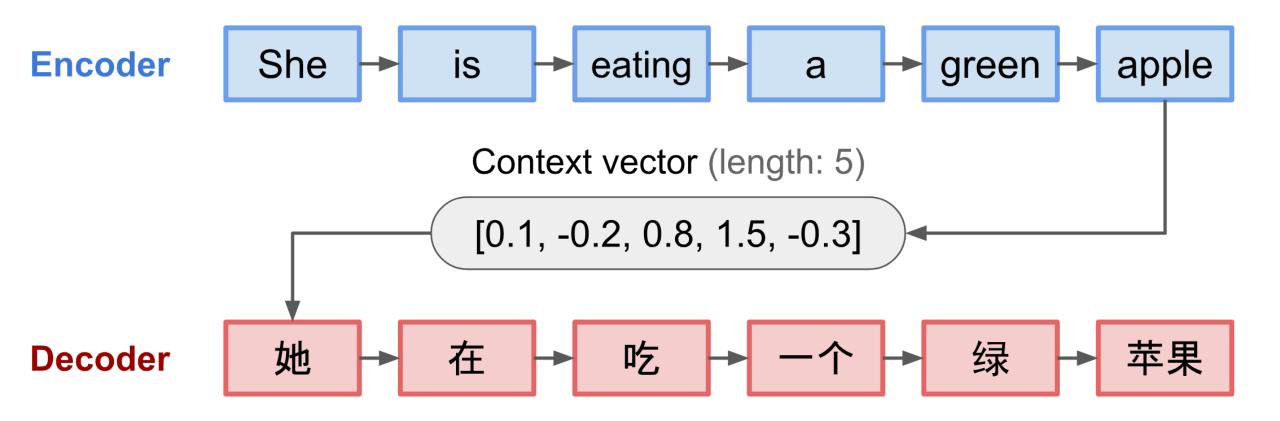


Figure source: https://github.com/vdumoulin/conv_arithmetic

Sequence 2 Sequence models in language



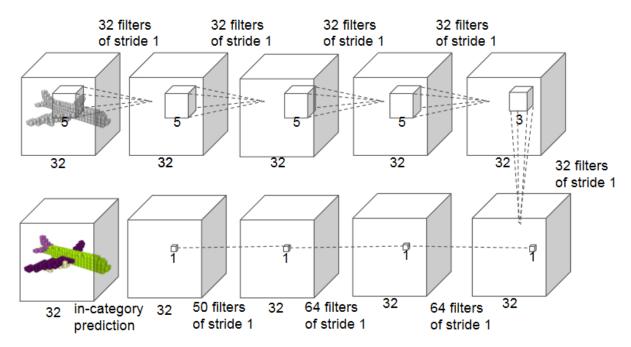


Figure 10. **Baseline 3D CNN segmentation** network is fully convolutional and predicts provided to the property of the segment of the segment

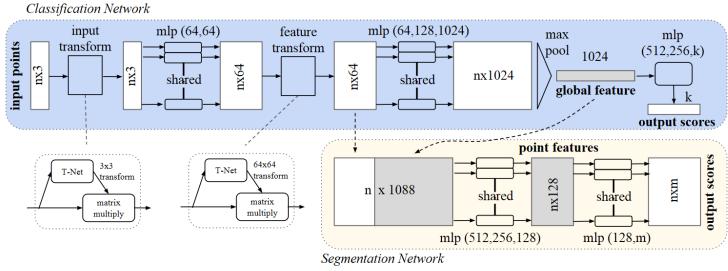


Figure 2. **PointNet Architecture.** The classification network takes n points as input, applies input and feature transformations, and then aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the classification net. It concatenates global and local features and outputs per point scores. "mlp" stands for multi-layer perceptron, numbers in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

Outline

- Context and Receptive Field
- Going Beyond Convolutions in...
 - Text
 - Point Clouds
 - Images

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

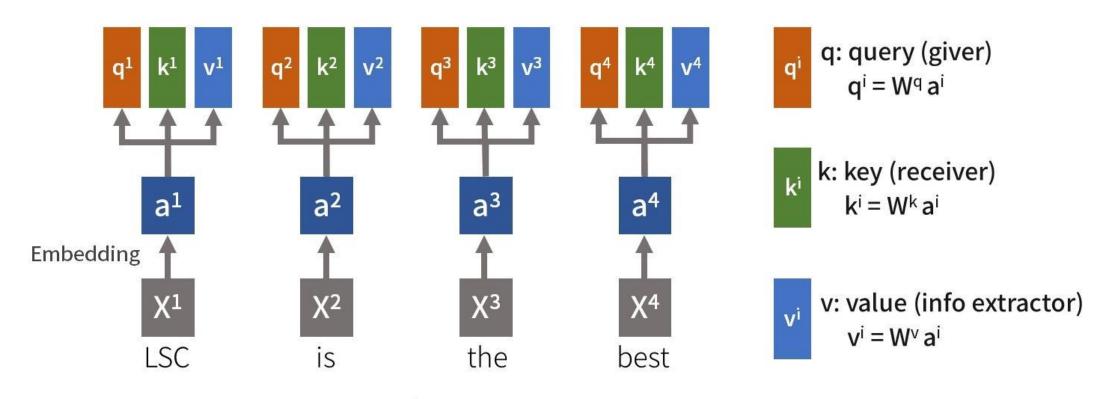
Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

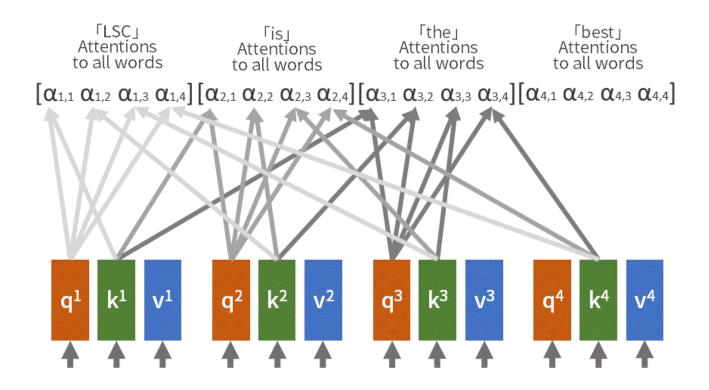
Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer,

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$



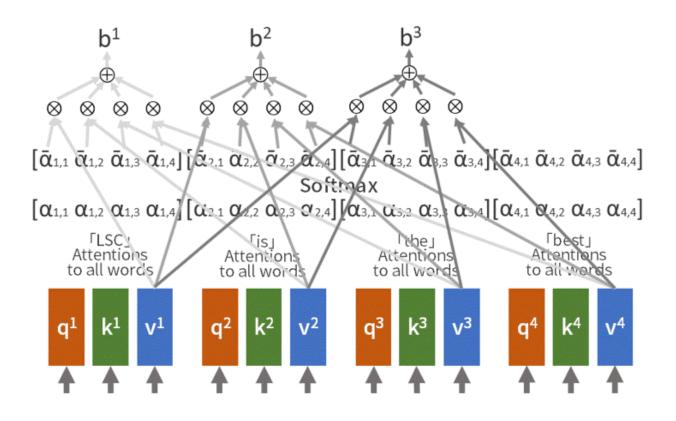
Input: LSC is the best!



$$\alpha_{i,j} = \frac{q^i \cdot k^j}{\sqrt{d}}$$

d: dimension of q, k

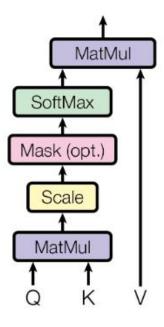
A =
$$\begin{array}{c} A = \\ Attention Matrix \end{array}$$
 Attention Matrix
$$\begin{array}{c} \alpha_{1,1} \ \alpha_{1,2} \ \alpha_{1,3} \ \alpha_{1,4} \\ \alpha_{2,1} \ \alpha_{2,2} \ \alpha_{2,3} \ \alpha_{2,4} \\ \alpha_{3,1} \ \alpha_{3,2} \ \alpha_{3,3} \ \alpha_{3,4} \\ \alpha_{4,1} \ \alpha_{4,2} \ \alpha_{4,3} \ \alpha_{4,4} \end{array}$$



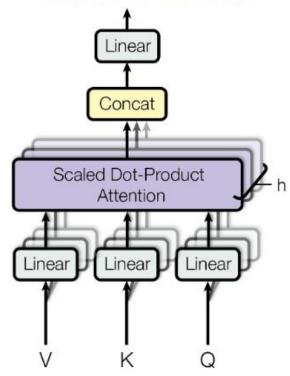
$$b^i = \sum\nolimits_j \bar{\alpha}_{i,j} v^j$$

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$

Scaled Dot-Product Attention



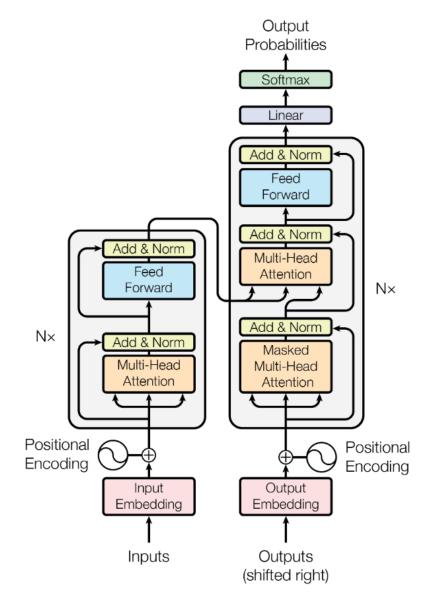
Multi-Head Attention



Transformer Architecture

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BL	EU	Training C	Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [18]	23.75					
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$		
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$		
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$		
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$		
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$		
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot10^{19}$	$1.2 \cdot 10^{21}$		
Transformer (base model)	27.3	38.1	3.3 ·	10^{18}		
Transformer (big)	28.4	41.8	2.3 ·	10^{19}		



Outline

- Context and Receptive Field
- Going Beyond Convolutions in...
 - Text
 - Point Clouds
 - Images

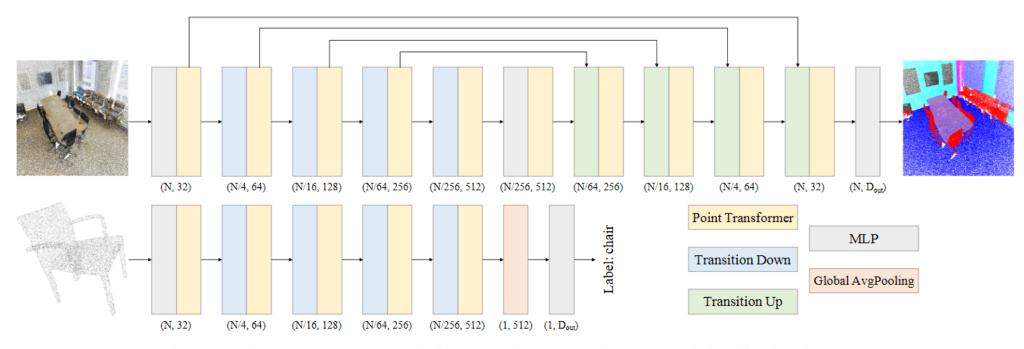
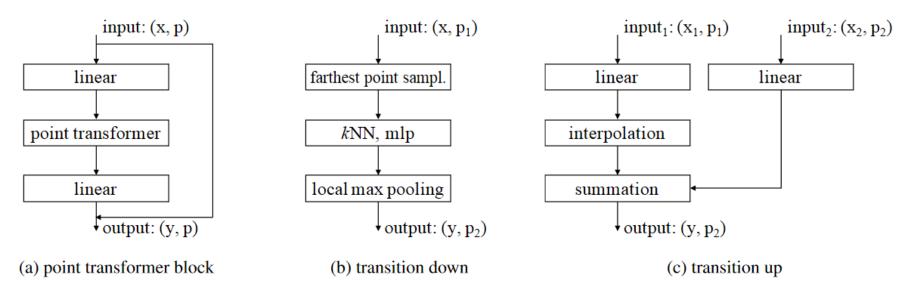
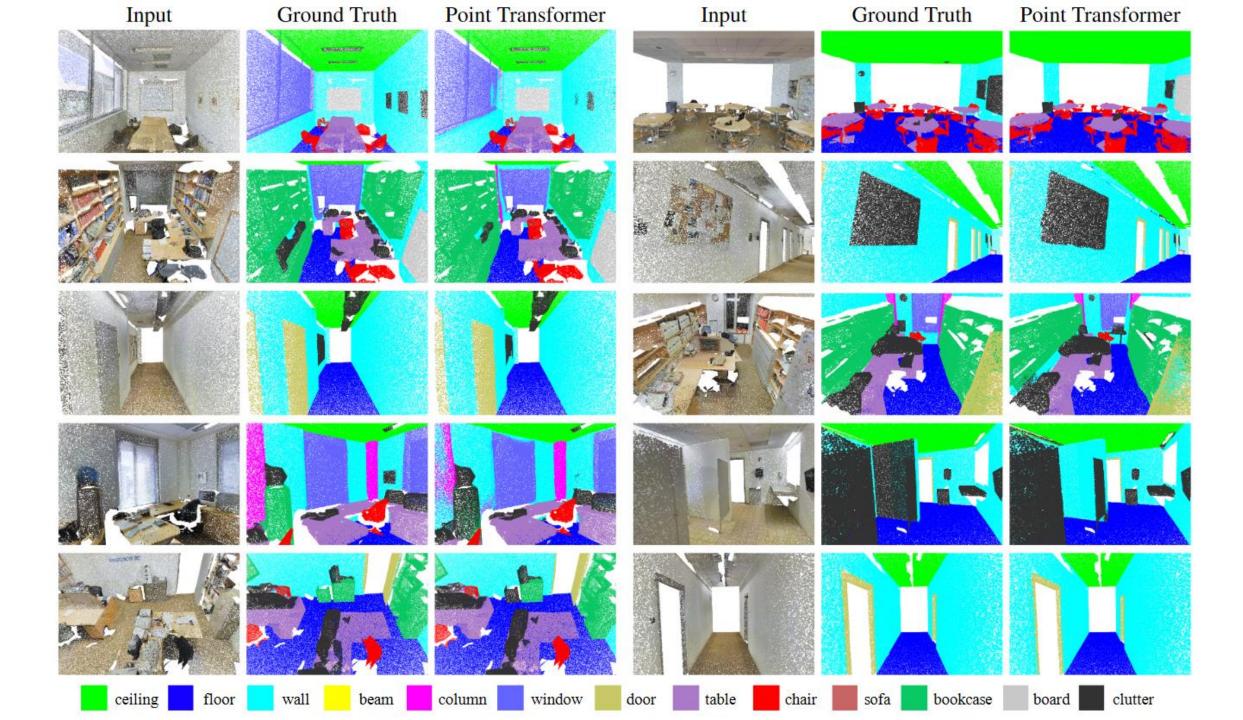


Figure 3. Point transformer networks for semantic segmentation (top) and classification (bottom).



Point Transformer. Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, Vladlen Koltun



Method	OA	mAcc	mIoU	ceiling	floor	wall	beam	column	window	door	table	chair	sofa	bookcase	board	clutter
PointNet [22]	_	49.0	41.1	88.8	97.3	69.8	0.1	3.9	46.3	10.8	59.0	52.6	5.9	40.3	26.4	33.2
SegCloud [32]	-	57.4	48.9	90.1	96.1	69.9	0.0	18.4	38.4	23.1	70.4	75.9	40.9	58.4	13.0	41.6
TangentConv [31]	_	62.2	52.6	90.5	97.7	74.0	0.0	20.7	39.0	31.3	77.5	69.4	57.3	38.5	48.8	39.8
PointCNN [18]	85.9	63.9	57.3	92.3	98.2	79.4	0.0	17.6	22.8	62.1	74.4	80.6	31.7	66.7	62.1	56.7
SPGraph [14]	86.4	66.5	58.0	89.4	96.9	78.1	0.0	42.8	48.9	61.6	84.7	75.4	69.8	52.6	2.1	52.2
PCCN [38]	_	67.0	58.3	92.3	96.2	75.9	0.3	6.0	69.5	63.5	66.9	65.6	47.3	68.9	59.1	46.2
PointWeb [50]	87.0	66.6	60.3	92.0	98.5	79.4	0.0	21.1	59.7	34.8	76.3	88.3	46.9	69.3	64.9	52.5
HPEIN [12]	87.2	68.3	61.9	91.5	98.2	81.4	0.0	23.3	65.3	40.0	75.5	87.7	58.5	67.8	65.6	49.4
MinkowskiNet [33]	_	71.7	65.4	91.8	98.7	86.2	0.0	34.1	48.9	62.4	81.6	89.8	47.2	74.9	74.4	58.6
KPConv [33]	_	72.8	67.1	92.8	97.3	82.4	0.0	23.9	58.0	69.0	81.5	91.0	75.4	75.3	66.7	58.9
PointTransformer	90.8	76.5	70.4	94.0	98.5	86.3	0.0	38.0	63.4	74.3	89.1	82.4	74.3	80.2	76.0	59.3

Table 1. Semantic segmentation results on the S3DIS dataset, evaluated on Area 5.

Method	input	mAcc	OA
3DShapeNets [43]	voxel	77.3	84.7
VoxNet [20]	voxel	83.0	85.9
Subvolume [23]	voxel	86.0	89.2
MVCNN [30]	image	_	90.1
PointNet [22]	point	86.2	89.2
PointNet++ [24]	point	_	91.9
SpecGCN [36]	point	_	92.1
PointCNN [18]	point	88.1	92.2
DGCNN [40]	point	90.2	92.2
PointWeb [50]	point	89.4	92.3
SpiderCNN [44]	point	_	92.4
PointConv [42]	point	_	92.5
KPConv [33]	point	_	92.9
InterpCNN [19]	point	_	93.0
PointTransformer	point	90.6	93.7

https://paperswithcode.com/sota/3d-point-cloud-classification-on-modelnet40

Table 3. Shape classification results on the ModelNet40 dataset.

Outline

- Context and Receptive Field
- Going Beyond Convolutions in...
 - Text
 - Point Clouds
 - Images

AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy*,†, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*, Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*,†

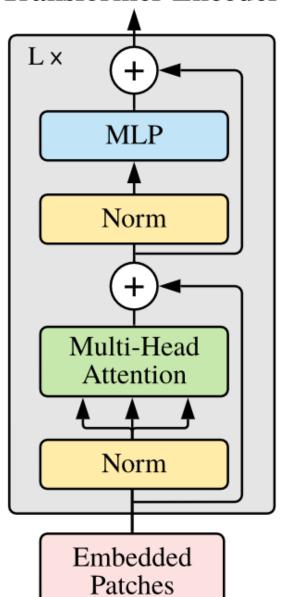
*equal technical contribution, †equal advising
Google Research, Brain Team
{adosovitskiy, neilhoulsby}@google.com

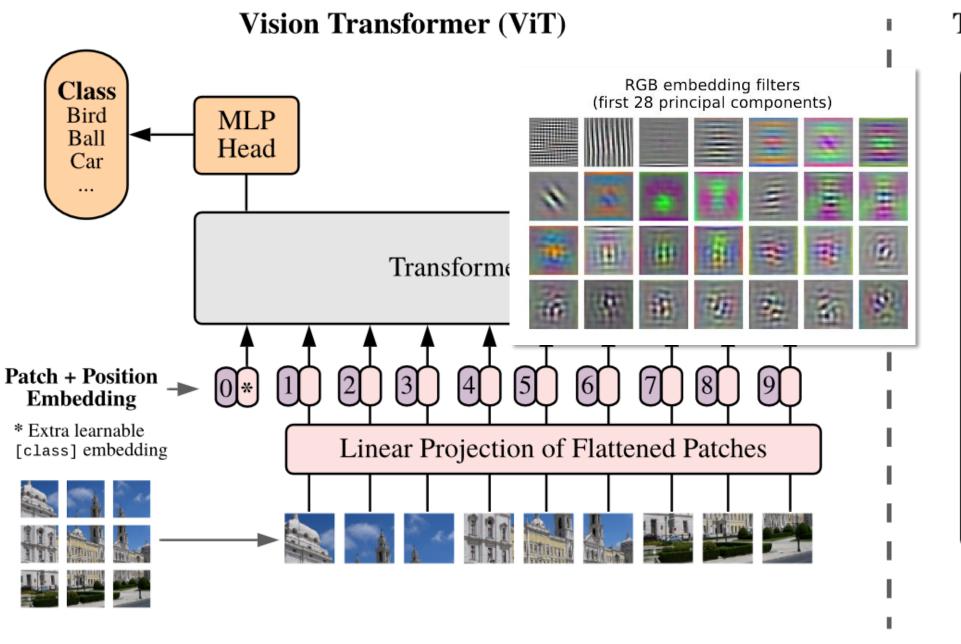
ABSTRACT

While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train.

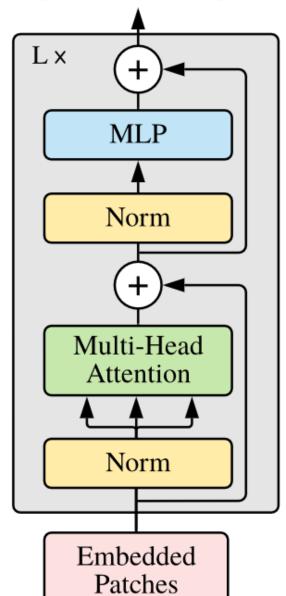
Vision Transformer (ViT) Class Bird MLP Ball Head Car Transformer Encoder Patch + Position **Embedding** * Extra learnable Linear Projection of Flattened Patches [class] embedding

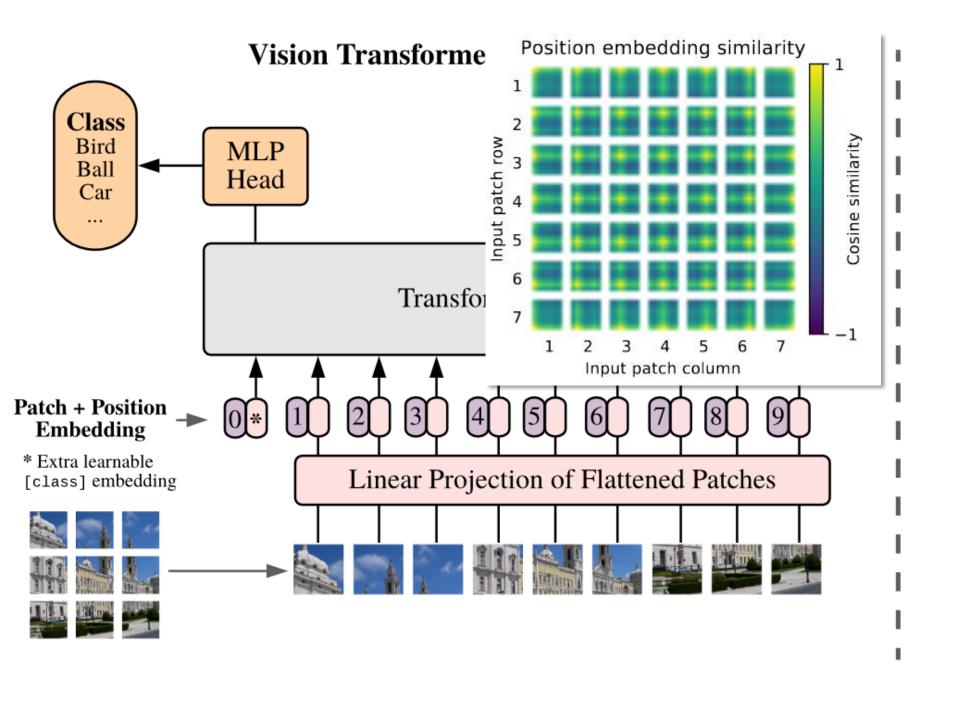
Transformer Encoder



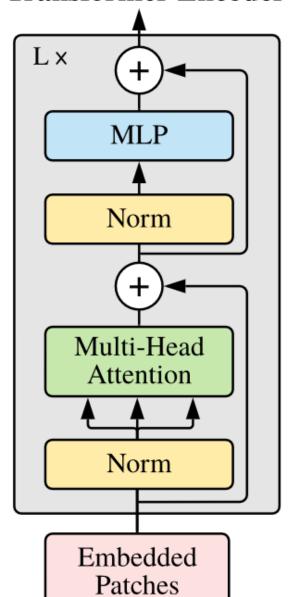


Transformer Encoder





Transformer Encoder



Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Table 1: Details of Vision Transformer model variants.

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21K (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

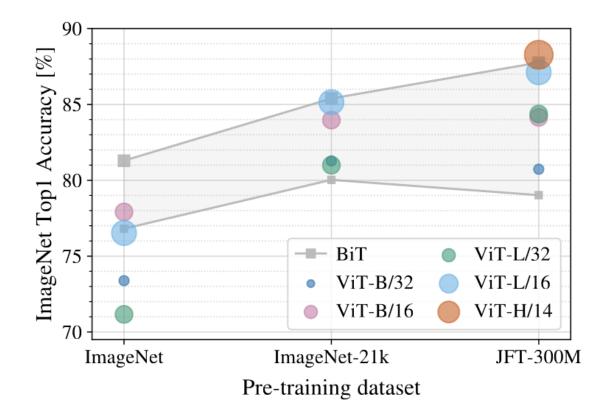
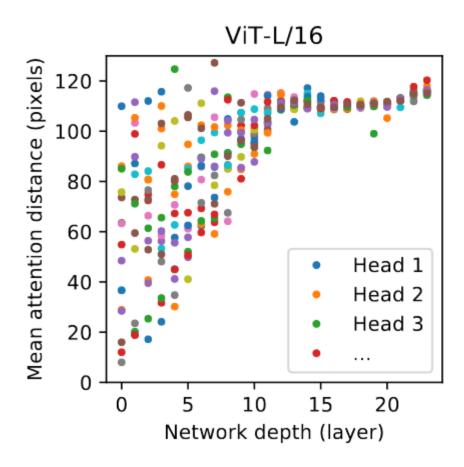


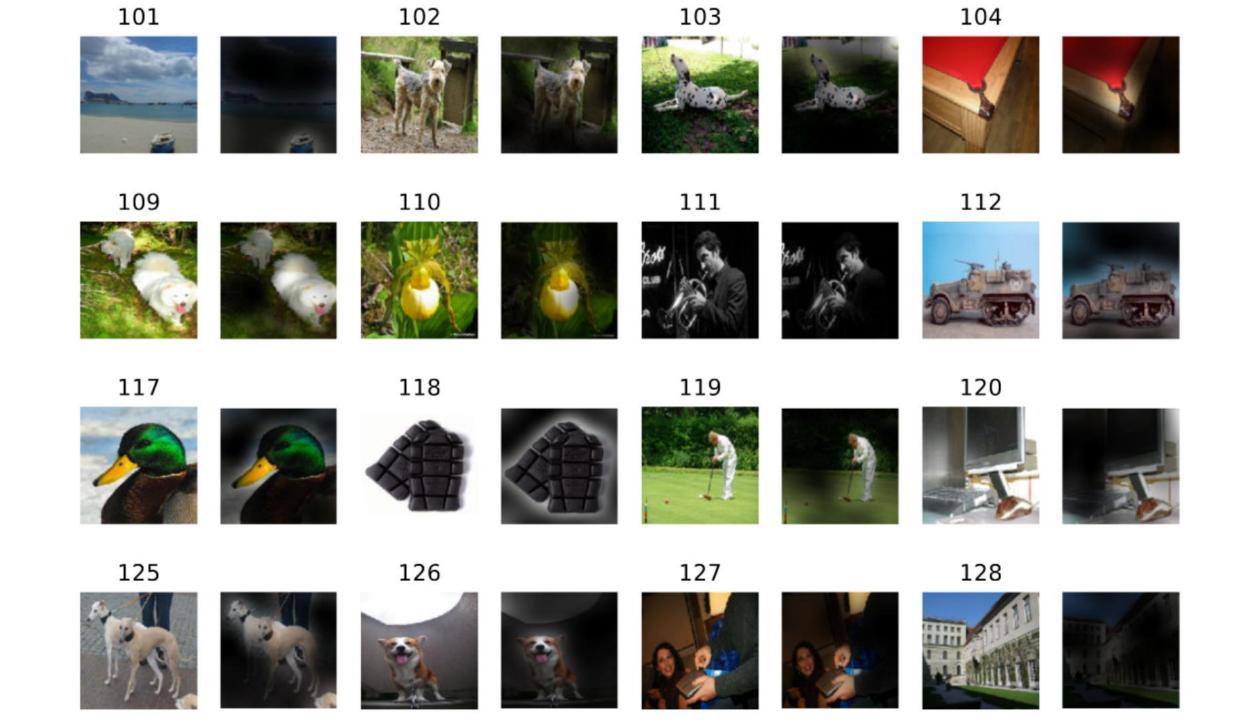
Figure 3: Transfer to ImageNet. While large ViT models perform worse than BiT ResNets (shaded area) when pre-trained on small datasets, they shine when pre-trained on larger datasets. Similarly, larger ViT variants overtake smaller ones as the dataset grows.

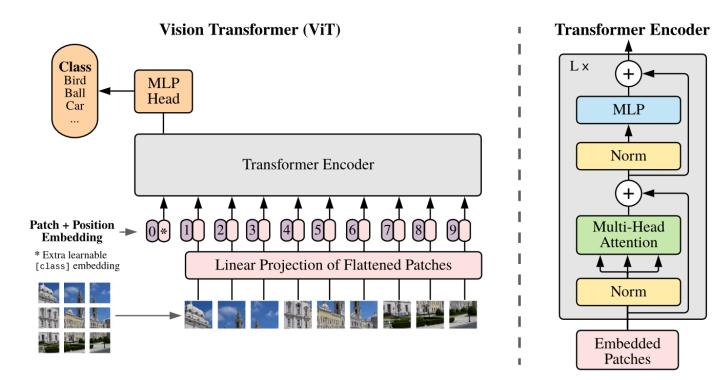
When trained on mid-sized datasets such as ImageNet, such models yield modest accuracies of a few percentage points below ResNets of comparable size. This seemingly discouraging outcome maybe expected: Transformers lack some of the inductive biases inherent to CNNs, such as translation equivariance and locality, and therefore do not generalize well when trained on insufficient amounts of data.

However, the picture changes if the models are trained on larger datasets (14M-300M images). We find that large scale training trumps inductive bias.

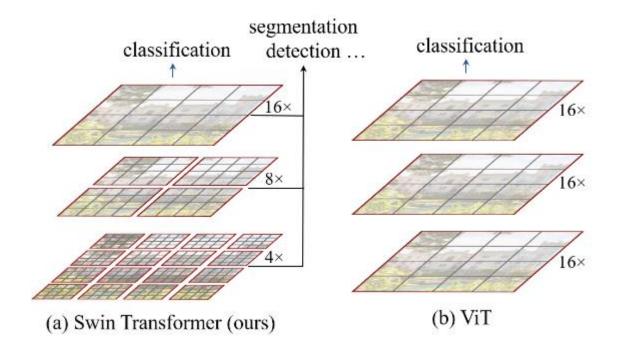
Dosovitskiy et al.







• This can't be ideal, right?



Swin Transformer: Hierarchical Vision Transformer using Shifted Windows Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo

Summary

- "Attention" models outperform recurrent models and convolutional models for sequence processing. They allow long range interactions.
- These models do best with LOTS of training data
- They seem like a good fit for point processing tasks, although maybe there isn't enough data for them to outperform other methods.
- Surprisingly, they seem to outperform convolutional networks for image processing tasks. Again, long range interactions might be more important than we realized.
- Naïve attention mechanisms have quadratic complexity with the number of input tokens, but there are often workarounds for this.