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https://docs.google.com/file/d/1ua6GlNI8RHQdgoq5-O_CQdkFdYy1LpOF/preview

Motivation:
Why build and validate maps?

Why mapping? Current Limitations GTSFM Contributions



Why Maps?
Building and validating maps is the key to spatial Al and our

autonomous future

New deep learning methods can improve the accuracy, completeness,
and runtime with respect to existing methods.
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1. Davison. FutureMapping: The Computational Structure of Spatial Al Systems. Arxiv, ‘18.
2. Sarlin et al., Pixel-Perfect Structure-from-Motion, ICCV ‘21.
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Figure source: https://matterport.com/gallery/ngorongoro-oldeani-mountain-lodge
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Figure source: https://www.youtube.com/watch?v=2eYSzmjT6HI
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What is a map?

e Not just a geometric model.
e Any object or information that is localized in 2D or
3D that can prove useful.
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3D Geometric Maps

Current Limitations (3D Geometry)

GTSFM Contributions
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Match all
image pairs

) 4

Two view
Match all estimation between

Find initial pair
+ triangulate \\ / image pairs every image pair
Rotation Averaging
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via PnP and ] ]
( Triangulate \ Translation Averaging
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sundie Filterin A 4
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Prior approaches to StM

Incremental SfM

Hand-Crafted Feature
Matching

Slow Runtime: Pollefeys 1JCV
‘04, Snavely IJCV ‘08, Zach CVPR
10, Wu 3DV ‘13, Schonberger
CVPR 16, OpenSfM, Schonberger
CVPR 17

Deep Feature Matching

Schonberger CVPR 18, Sarlin ICCV 21

Global SfM

Limited Accuracy: Govindu
CVPR '00, Govindu CVPR 04,
Govindu ACCV '06, Sim CVPR ‘06,
Martinec CVPR ‘07, Sinha ECCVW
10, Crandall CVPR 11, Enqvist
ICCVW 11, Moulon ICCV 13,
Chatterjee ICCV 13, Wilson ECCV
14, Sweeney ACM ICM ‘15,
Moulon IWRRPR 16, Knapitsch
ACM ToG 17

Our Work

Why mapping?

COLMAP (Incremental)
53.5

21.1

OpenMVG-G + OpenMVS (Global)

4.9 16
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The Deep Front-End

Match all
image pairs

Two view estimation
between every
image pair

4

Rotation Averaging

¥
4
4

Triangulation

Single Bundle Adjustment

Why mapping?
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Image or I | o Keypoints/ Keypoint
Patch Detection Features Description
Descriptor Putative Verification
Matching Correspondences
Image or I | atectio Keypoints/ Keypoint
Patch 2 n Features Description

Geometrically Verified
Correspondences

}

GTSFM Contributions

Current Limitations (3D Geometry)
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Correspondence: paper vs. practice

Pt =l BN
A YN f\
Feature Matching Module e S i l s )
VisualSftM | SIFT AEE A
(2013) \A\ N Y e / ;/
N2 T A
OpenMVG SIFT + A-Contrario RANSAC Image gradients
(2013)
OpenSfM Hessian Affine + SIFT
(2014) Descriptor + RANSAC
COLMAP* | SIFT + LORANSAC
(2016)

*State of the Art (per Knapitsch et al., 2017)

Why mapping?

*| ¥
| K-

Keypoint descriptor

Figure sources: Lowe, Distinctive Image Features from Scale-Invariant Keypoints, 1JCV 2004.

Current Limitations (3D Geometry)

GTSFM Contributions
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Correspondence: paper vs. practice

x T - \\
AR R
Feature Matching Module =N L
VisualSftM | SIFT NEEARRE
(2013) \A N Y 7
\‘, N Ly/
OpenMVG SIFT + A-Contrario RANSAC Image gradients
(2013)
OpenSfM Hessian Afﬂne + S| FT Attentional Graph Neural Network Optimal Matching Layer
(20‘] 4) Descriptor + RANSAC feftfjar'es | | Attentional Aggregation pacting —~ Sinkhom Algorithm ot
d ?_vwsualdescrlptor Cross i flA_l score matrix ] o assignment
COLMAP* | SIFT + LoORANSAC Pi—mmm eyport L] S, =
PP ncoder ;
(2016) d? ~ ff‘J fmn
= -
*State Of the Art (per Knapl‘tSCh e‘t al' 201 7) Figure sources:sl.:xi/:’, g:'s;g:_(éll\;eelrga%eRF;g;éres from Scale-Invariant Keypoints, IJCV 2004.
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What's the point?

Keypoints/
Features

Keypoint
Description

Putative
Correspondences

Descriptor
Matching

Verification

Geometrically Verified
Correspondences

Image or
Patch

Keypoints/
Features

Keypoint
Description

Image or
Patch

Feature Detectors Feature Descriptors = Feature Matchers Correspondence
WEIIEIRS
FAST, TILDE, QuadNet, PCA-SIFT, Winder 07, SuperGlue Deep F-Matrix,
DDet/CovDet, Key.Net, ConvOpt, MatchNet, LearnedCorr, Eig-Free,
GLAMPaints, ... DeepDesc, L2Net, TFeat, N3-Net, NM-Net, OA-Net,
UCN, HardNet, SOSNet, NGRANSAC, ...
BeyondCartesian, ...

ContextDesc, D2-Net, LF-Net, R2D2, IMIPS, LIFT,
SuperPoint, ReinforcedSuperPoint, ...

*CNN- or GNN-based.

_ Current Limitations (3D Geometry) GTSFM Contributions




Why mapping?

Building 3d Geometric Maps
Using Deep Learning

Current Limitations Contributions (3D Geometry)
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Global STM Revisited

Feature Two View Relative (Rt) Outlier
Extractor Estimator measurements Rejection

Translation Outlier Global Rotation
Averaging Rejection Rotations Averaging

Approximate Data Association Bundle Multi-View
Camera Poses + Triangulation Adjustment Stereo

_ Current Limitations Contributions (3D Geometry)
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Feature Matching




Rotation Averaging

given a collection of rotation matrices
Ri{,....R, € R3X3

find the average rotation R.



How can we average rotations?

3D rotation matrices do not form a vector space. An easy way to see this is to try to add the following
two rotation matrices, I and R, where R is a 180° rotation about the z-axis,
gtsam.Rot3.RzRyRx(x=0, y=0, z=np.deg2rad(180)).matrix() :

1 0 O 0
I=010,R[ 0
0 0 1 1
0 0 O
I+R=|0 0 O
0 0 2

which is not a rotation (it squashes flat the x— and y— components)



Single Rotation Averaging

Weiszfeld's algorithm

°
) 0
* Pick an initial guess X € R? —
o X;
e Do % —400 A
o Mw «x;—X . / -600
n
o (2)u « % 3 u . u
i=1 ° 1 ~1000 -
o ()X « X+ 17u 1200 ]
e While ||u]| > ¢ .
° 0O 200 400 600 800 1000 1200 1400



Single Rotation Averaging

log
R € R™" - | 0ER
- u e R”
exp
rotation matrix .
angle & axis

_ Tangent space at p;
e Pick an initial guess R € R¥?

* Do
o (1) w; < log(Ril_{_l)

n
°c QW « 1+ Y o,

=

o (3)R « exp(t @)R
e While [|w|| > €

Figure Source: Matias Mattamala



Multiple Rotation Averaging

Same principle, but now we’ll solve a least squares problem in the “tangent” space.

Algorithm 1 Lie-Algebraic Relative Rotation Averaging
Input: {R;;1,---,Rijx} (|€] relative rotations)
Output: Riopa1 = {R1,- -+, Rn} (|V] absolute rotations)
Initialisation: R0 to an initial guess
while ||[Aw,.|| < € do
1. AR;; = R;'R;R;
3. Solve AAwglobal = Awrel
4. Vk € [l,N],Rk — Rkexp(Awk)
end while

See Govindu, CVPR 04, Chatterjee ICCV 2013



http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.6216&rep=rep1&type=pdf

Translation Averaging

Given camera rotations in a
global frame, and pairwise
translation directions, can
we recover the position of
each camera (translation in
a global frame)?

t;—t; \?
) = 35 don (b =4
1

(i,5)€E

den(u, v) = [lu— v,

Figure source: Kyle Wilson and Noah Snavely, Robust Global Translations with 1DSfM. ECCV “14.



Data Association

Find connected components in keypoint match graph -> Union Find Algorithm
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Figure Source: Lindenberger et al., Pixel-Perfect Structure-from-Motion with Featuremetric Refinement, ICCV 21



Data Association: obtain point “tracks”
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Figure Source: Lindenberger et al.,
ICCV 21



Triangulation

T
I'll summarize below. We'll form a homogeneous set of equations. Let X = [X Y Z 1] . Let

T . . N .
X= [x y 1] represent a 2d measured point. We can write a projection equation for each
view/measurement:

x = PX
x =P'X .
Vo pX ™ SIM T\ result
i ()
o L4 [ ] )
We can use a cross product to get 3 equations for each measurement (2d image point): o @ pe o
X X X = x X (PX) D q
0 -1 raw v <
1 0 -x|x=xxPX \2 refined
-y X 0 \ )
oL £ \ p
1 0 —x|ly|=xxPX
-y x 0 1

0=xxPX
0 -1 y ||Pu P Pz Pu
0= 1 0 —X P21 P22 P23 P24 X
-y x 0 [[P3y Px Pz Py Figure Source: Lindenberger ICCV 21



Triangulation

You can see above that a linear of combination of the rows of P is being formed. Following Hartley and
Zisserman, let piT represent the i'th row of P.

0O -1 y|I|l—- p =
0=[1 o0 —=x||- p* -|[X
-y X 0 - p3T s
ypiX) - (pIX) =

pIX —x(piX) =

x(p X) ypiX) =

give three equations for each image point, of which two are linearly independent — Third line is a linear
combination of the first and second lines. (x times the first line plus y times the second line) — See [9].

Since we can multiply both sides of any equation by -1, we will often see the second constraint written
as

X—x(p X)=0

(= l)PlTX—( Dx(p;X) = 0% (=1)
x(p!X) - p’X =0



Triangulation

We end up with a tall but skinny data matrix A for a homogeneous system of equations:

X

Z
1

For 2 views, A could be expressed as:

x(pt) - pf
y(p3) — (p3)
x'(p5) - py

Y @) — (7)) |L 1.

- N~ X

The code is then simple — since one 2D to 3D point correspondence give you 2 equations, a tall A
matrix of shape (2m, 4) is formed for m measurements. In GTSAM, the code follows the math exactly:



Match all
image pairs
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Two view
Match all estimation between
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Triangulation Results:
Refinement is Needed!





https://docs.google.com/file/d/16Wkf1TzTK-MOMHu4n16r85xdLCT2auM6/preview

Bundle Adjustment
XM = argmax l_[¢z'(Xz')-
X 3
1
006 o exp { =5 |10 -1, |,

XMAP argmin Z Hb,-(X,-) —z,-||22_.
X P !
bi(X) = bi(X) + A) = bi(X)) + HiA,

A* = argmin ||AA — bll% :
A

Figure source: Frank Dellaert, Factor Graphs: Exploiting Structure in Robotics



https://www.annualreviews.org/doi/full/10.1146/annurev-control-061520-010504



https://docs.google.com/file/d/1ftLLOd4ydvt8icxeeV6QqMSOnelxtGP4/preview

The structure now looks clean,
but is too sparse



Multi-View Stereo (MVS)

L

e Problem definition: Given A 4
camera extrinsics and intrinsics
for multiple cameras, and some
possible range of depths, can
we obtain dense structure?




Multi-View Stereo (MVS)

Problem definition: Given
camera extrinsics and intrinsics
for multiple cameras, and some
possible range of depths, can
we obtain dense structure?

Can we use every pixel value,
instead of only sparse
keypoints?

1
H H,
P, | e
focal LN J o0 0
point

Figure 1: Illustration of the space-sweep method. Fea-
tures from each image are backprojected onto successive
positions Z = z; of a plane sweeping through space.

Robert T. Collins. A Space-Sweep Approach to True Multi-lmage
Matching. CVPR 1996



Multi-View Stereo (MVS)

Problem definition: Given
camera extrinsics and intrinsics
for multiple cameras, and some
possible range of depths, can
we obtain dense structure?

Can we use every pixel value,
instead of only sparse
keypoints?

Predict depth at every pixel
(depth map). Backproject into
3d space.




Plane Sweep Stereo

» Sweep family of planes through volume

<— projective re-sampling of (X,¥,2)

input image

virtual camera

- each plane defines an image = composite homography
Given two cameras P = K[I|0] and P’ = K'[R|t] and a plane 7 = (n’, d)T

The homography x’ = Hx is defined as H = K'(R — tn"/d)K !
Figure source: Dan Huttenlocher



https://www.cs.cornell.edu/courses/cs664/2008sp/handouts/cs664-10-stereo.pdf

MVS: PatchmatchNet

« |
Input images  PatchMatch |* | Depth Map [ m
a : | (stage3) (stage 3)
g e, Upsampling
~( PatchMatch |- Depth Map |7 r
| (stage2) | (stage 2) A
i Upsampling
= PatchMatch [ y Depth Map || l {
(stage 1) (stage 1)
Upsampling -
—*| Refinement Depth Map
| (stage 0) (stage 0) {

Multi-scale
depth prediction

Multi-scale feature extractor Referenc'image

Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys. PatchmatchNet: Learned Multi-View Patchmatch Stereo. CVPR 2021
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Global SfM Revisited

FeatureExtractor m images

TwoViewEstimator K= |E| <m * (m-1)/2 edges

Data Loader + "'I"‘:":'"
Filtering of = 7 5,
Invalid Edges 112

»f

to Visible

Graph Edges
(i1,i2)

(GPS radius)

Verifier Post-Processor

Putative
Correspondence
Indices

DigiCamDB

Putative
Matcher

Keypoint
Describer

Detector
Scene 1
Config Outlier Rejection [alwa; Tover K edges] T
ts: i2ti1

SparseMultiviewOptimizer L S : relative
[always 1, over T tracks] Cycle consistent ':sm-1
indices \

Averaging [always 1, over K edges]

Data Association
wi Track Filtering
(Trifocal or cycle
consistency

Largest
Connected
Component
Extractor

Optimizer

absolute
ts

A
Bundler Bundler o
Images PinholeCameras Calibrator a

DenseMultiviewOptimizer [always 1]

Triangulation

File
Writer

Directory
SceneOptimizer S scenes [1]
_ Current Limitations Contributions (3D Geometry)




Challenges: occlusion and large depth ranges





https://docs.google.com/file/d/1sETw1_0I1WNVWlCAwKk-lndW0U-CNItt/preview
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Collaborators

- |
Georgia |
Tech|/

O github.com/borglab/gtstm



The future is bright for spatial Al

Spatial Al will revolutionize the way
we move and interact with the
world.

< 1020 Ulster St, Denver, CO 80230

Stair landing




