

Heterochromia iridum

From Wikipedia, the free encyclopedia

Not to be confused with Heterochromatin or Dichromatic (disambiguation).

In anatomy, **heterochromia** (ancient Greek: ἕτερος, *héteros*, different + χρώμα, *chróma*, color^[1]) is a difference in coloration, usually of the iris but also of hair or skin. Heterochromia is a result of the relative excess or lack of melanin (a pigment). It may be inherited, or caused by genetic mosaicism, chimerism, disease, or injury.^[2]

Heterochromia of the eye (*heterochromia iridis* or *heterochromia iridum*) is of three kinds. In *complete heterochromia*, one iris is a different color from the other. In *sectoral heterochromia*, part of one iris is a different color from its remainder and finally in "central heterochromia" there are spikes of different colours radiating from the pupil.

Complete heterochromia in human eyes: one brown and one green/hazel

Classification and external resources

Specialty	ophthalmology
ICD-10	Q13.2 <mark></mark> ଜ, H20.8 <mark>ଜ</mark> , L67.1 <mark>ଜ</mark>
ICD-9-CM	364.53 ៤
OMIM	142500 &
DiseasesDB	31289 교

Interest Points and Corners

Computer Vision

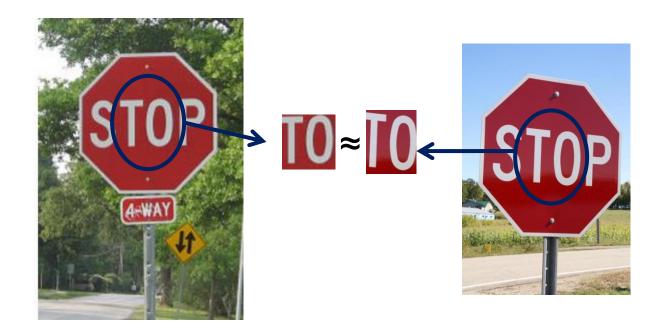
James Hays

Read Szeliski 7.1.1 and 7.1.2

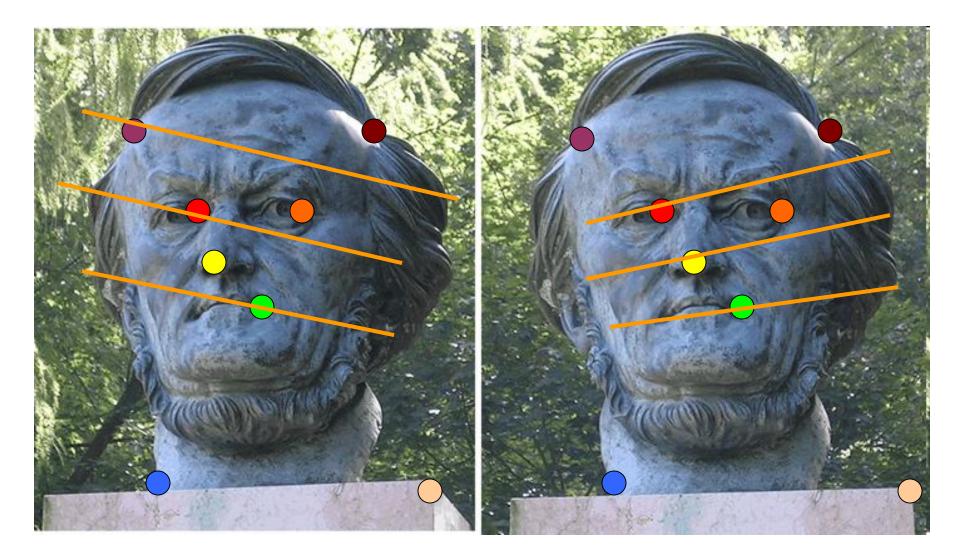
Slides from Rick Szeliski, Svetlana Lazebnik, Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial

Correspondence across views

 Correspondence: matching points, patches, edges, or regions across images



Example: estimating "fundamental matrix" that corresponds two views



Slide from Silvio Savarese

Example: structure from motion

Applications

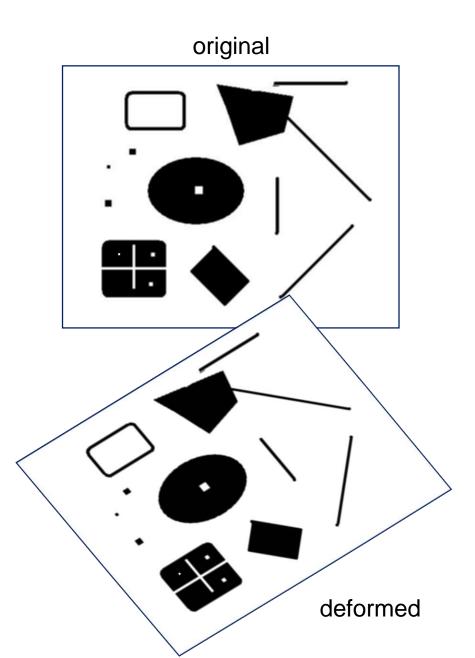
- Feature points are used for:
 - Image alignment
 - 3D reconstruction
 - Motion tracking
 - Robot navigation
 - Indexing and database retrieval
 - Object recognition

Project 2: interest points and local features

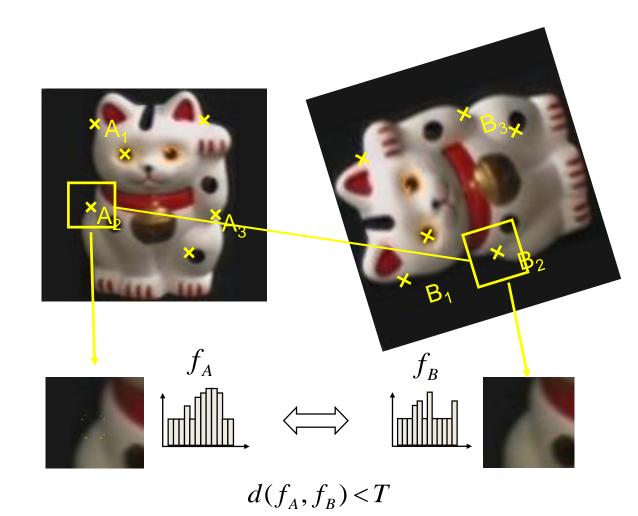
 Note: "interest points" = "keypoints", also sometimes called "features"

This class: interest points

- Suppose you have to click on some point, go away and come back after I deform the image, and click on the same points again.
 - Which points would you choose?



Overview of Keypoint Matching



1. Find a set of distinctive keypoints

2. Compute a local descriptor from the region around each keypoint

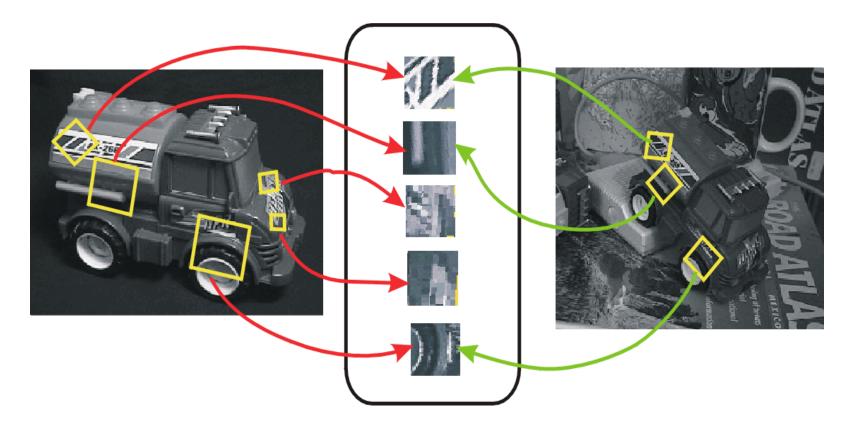
3. Match local descriptors

Goals for Keypoints

Detect points that are *repeatable* and *distinctive*

Invariant Local Features

Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters



Features Descriptors

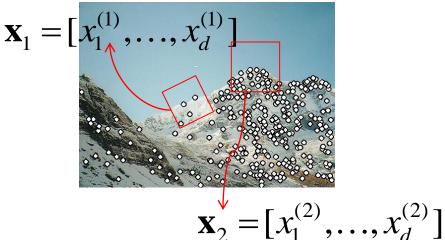
Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

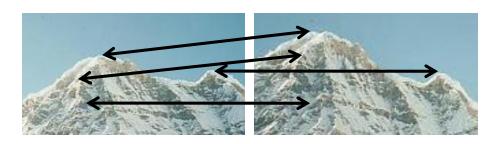
Local features: main components

1) Detection: Identify the interest points

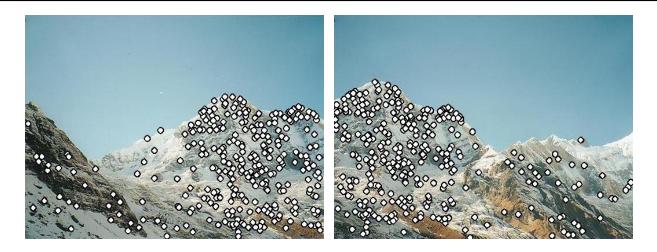
2) Description: Extract vector feature descriptor
 surrounding each interest point.



3) Matching: Determine correspondence between descriptors in two views



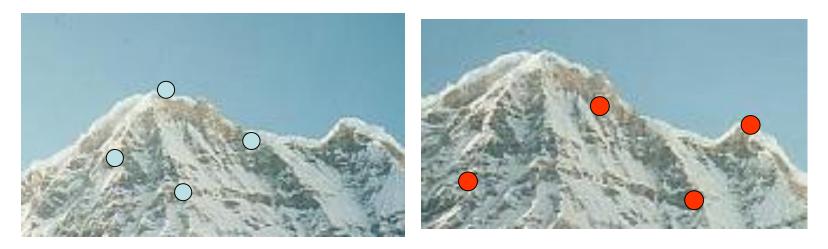
Characteristics of good features



- Repeatability
 - The same feature can be found in several images despite geometric and photometric transformations
- Saliency
 - Each feature is distinctive
- Compactness and efficiency
 - Many fewer features than image pixels
- Locality
 - A feature occupies a relatively small area of the image; robust to clutter and occlusion

Goal: interest operator repeatability

• We want to detect (at least some of) the same points in both images.



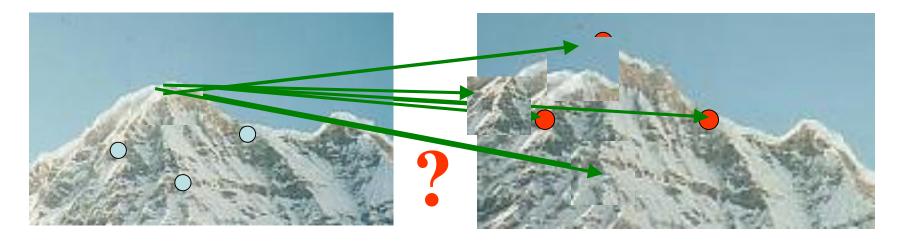
No chance to find true matches!

• Yet we have to be able to run the detection procedure *independently* per image.

Kristen Grauman

Goal: descriptor distinctiveness

• We want to be able to reliably determine which point goes with which.



 Must provide some invariance to geometric and photometric differences between the two views.

Kristen Grauman

Local features: main components

1) Detection: Identify the interest points



2) Description:Extract vector feature descriptor surrounding each interest point.

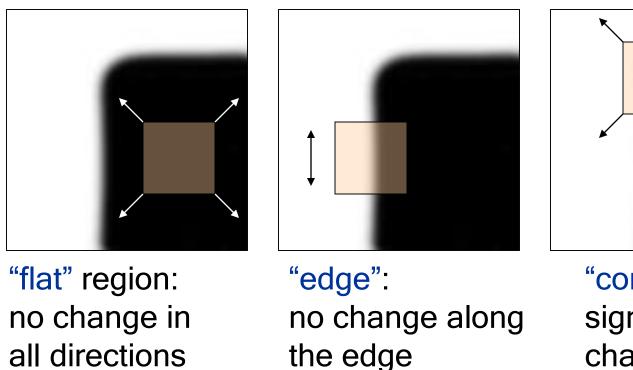
3) Matching: Determine correspondence between descriptors in two views

Many Existing Detectors Available

Hessian & Harris Laplacian, DoG Harris-/Hessian-Laplace Harris-/Hessian-Affine EBR and IBR MSER Salient Regions Others... [Beaudet '78], [Harris '88] [Lindeberg '98], [Lowe 1999] [Mikolajczyk & Schmid '01] [Mikolajczyk & Schmid '04] [Tuytelaars & Van Gool '04] [Matas '02] [Kadir & Brady '01]

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in *any direction* should give *a large change* in intensity



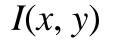
direction

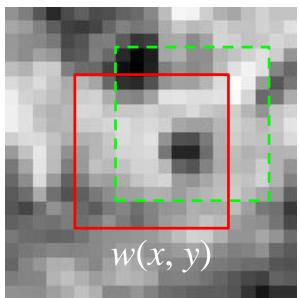
"corner": significant change in all directions

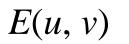
Source: A. Efros

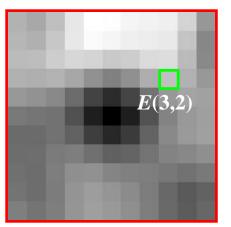
Change in appearance of window w(x,y)for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u, y+v) - I(x,y) \right]^2$$



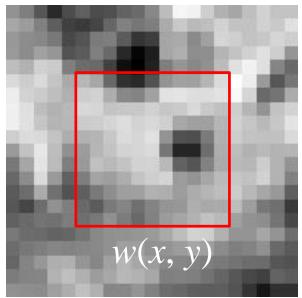


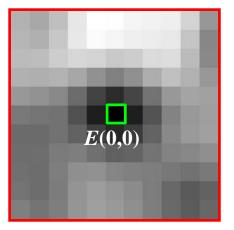




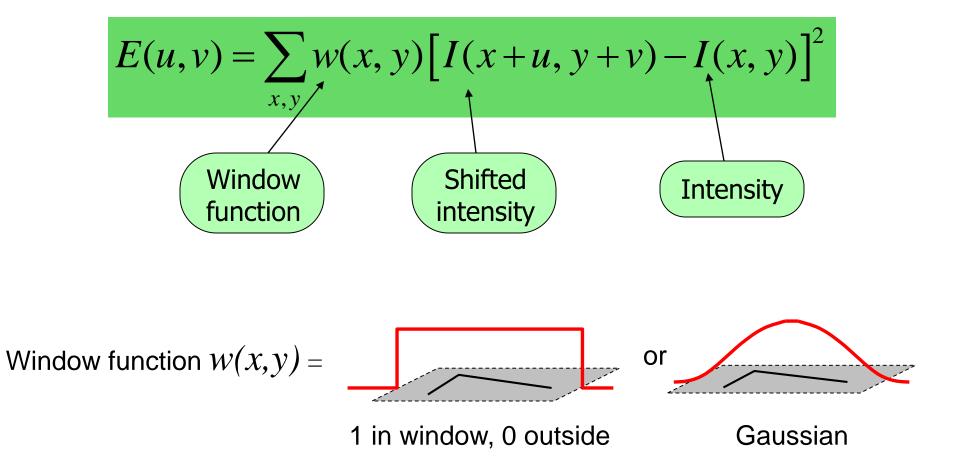
Change in appearance of window w(x,y)for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u, y+v) - I(x,y) \right]^2$$





Change in appearance of window w(x,y) for the shift [u,v]:

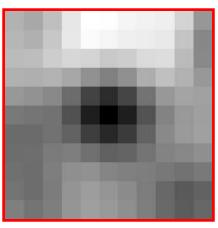


Change in appearance of window w(x,y)for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u, y+v) - I(x,y) \right]^2$$

We want to find out how this function behaves for small shifts

E(u, v)



Change in appearance of window w(x,y)for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u, y+v) - I(x,y) \right]^{2}$$

We want to find out how this function behaves for small shifts

But this is very slow to compute naively. O(window_width² * shift_range² * image_width²)

O($11^2 * 11^2 * 600^2$) = 5.2 billion of these 14.6 thousand per pixel in your image

Change in appearance of window w(x,y)for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u, y+v) - I(x,y) \right]^2$$

We want to find out how this function behaves for small shifts

Recall Taylor series expansion. A function f can be approximated around point a as

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots$$

A function f can be approximated as

$$f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \cdots$$
Approximation of
$$f(x) = e^x$$
centered at f(0)
$$n=0$$

0

2

-2

Using a Taylor Series expansion of the image function $I_0(\mathbf{x}_i + \Delta \mathbf{u}) \approx I_0(\mathbf{x}_i) + \nabla I_0(\mathbf{x}_i) \cdot \Delta \mathbf{u}$ (Lucas and Kanade 1981; Shi and Tomasi 1994), we can approximate the auto-correlation surface as

$$E_{\rm AC}(\Delta \mathbf{u}) = \sum_{i} w(\mathbf{x}_i) [I_0(\mathbf{x}_i + \Delta \mathbf{u}) - I_0(\mathbf{x}_i)]^2$$
(7.3)

$$\approx \sum_{i} w(\mathbf{x}_{i}) [I_{0}(\mathbf{x}_{i}) + \nabla I_{0}(\mathbf{x}_{i}) \cdot \Delta \mathbf{u} - I_{0}(\mathbf{x}_{i})]^{2}$$
(7.4)

$$=\sum_{i} w(\mathbf{x}_{i}) [\nabla I_{0}(\mathbf{x}_{i}) \cdot \Delta \mathbf{u}]^{2}$$
(7.5)

$$= \Delta \mathbf{u}^T \mathbf{A} \Delta \mathbf{u}, \tag{7.6}$$

where

$$\nabla I_0(\mathbf{x}_i) = \left(\frac{\partial I_0}{\partial x}, \frac{\partial I_0}{\partial y}\right)(\mathbf{x}_i) \tag{7.7}$$

is the *image gradient* at x_i . This gradient can be computed using a variety of techniques (Schmid, Mohr, and Bauckhage 2000). The classic "Harris" detector (Harris and Stephens 1988) uses a [-2 -1 0 1 2] filter, but more modern variants (Schmid, Mohr, and Bauckhage 2000; Triggs 2004) convolve the image with horizontal and vertical derivatives of a Gaussian (typically with $\sigma = 1$).

The auto-correlation matrix \mathbf{A} can be written as

$$\mathbf{A} = w * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix},\tag{7.8}$$

Different derivations exist.

This is the textbook version.

Corner Detection: Mathematics

The quadratic approximation simplifies to

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

where *M* is a second moment matrix computed from image derivatives:

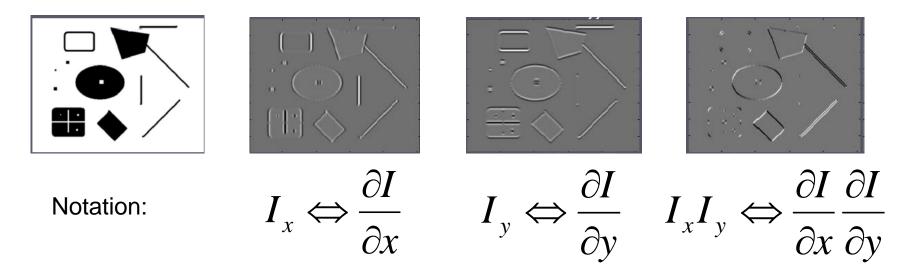
$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$M = \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y] = \sum \nabla I (\nabla I)^T$$

Corners as distinctive interest points

$$M = \sum w(x, y) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix}$$

2 x 2 matrix of image derivatives (averaged in neighborhood of a point).



Interpreting the second moment matrix

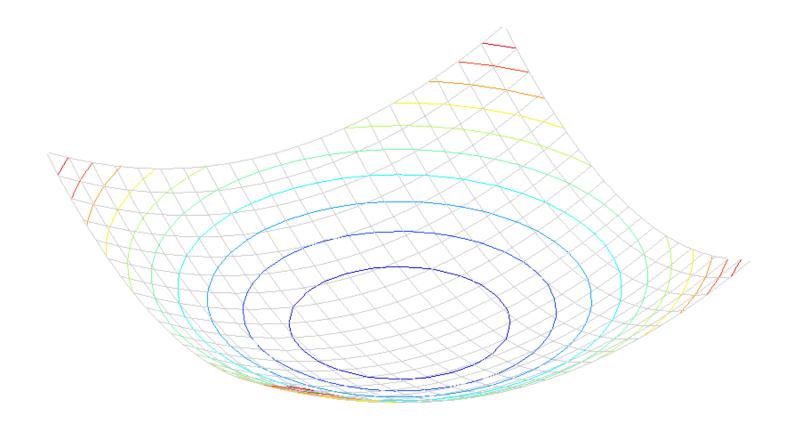
The surface E(u,v) is locally approximated by a quadratic form. Let's try to understand its shape.



Interpreting the second moment matrix

Consider a horizontal "slice" of E(u, v): $\begin{bmatrix} u & v \end{bmatrix} M \begin{vmatrix} u \\ v \end{vmatrix} = \text{const}$

This is the equation of an ellipse.



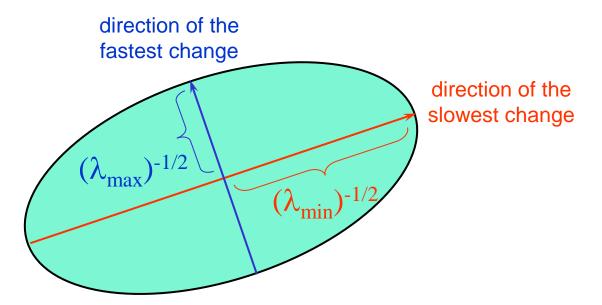
Interpreting the second moment matrix

Consider a horizontal "slice" of E(u, v): $\begin{bmatrix} u & v \end{bmatrix} M \begin{vmatrix} u \\ v \end{vmatrix} = \text{const}$

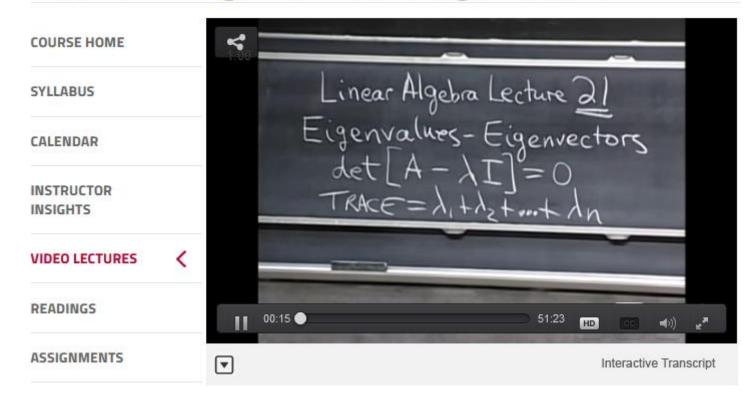
This is the equation of an ellipse.

Diagonalization of M:
$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R



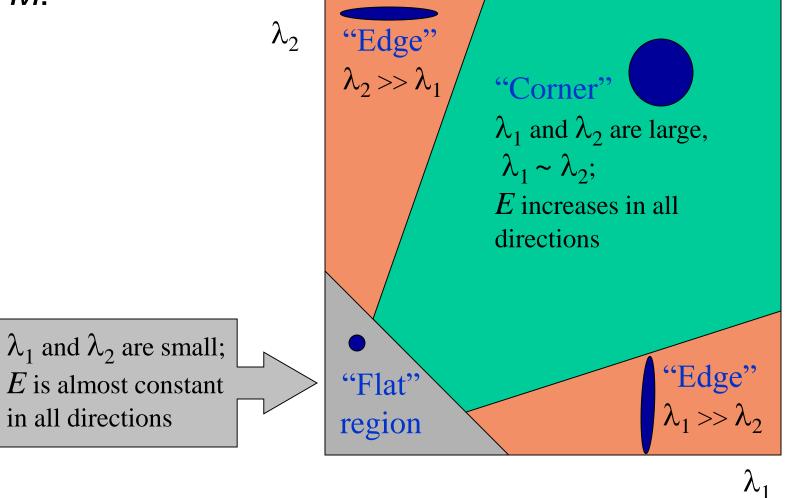
If you're not comfortable with Eigenvalues and Eigenvectors, Gilbert Strang's linear algebra lectures are linked from the course homepage



Lecture 21: Eigenvalues and eigenvectors

Interpreting the eigenvalues

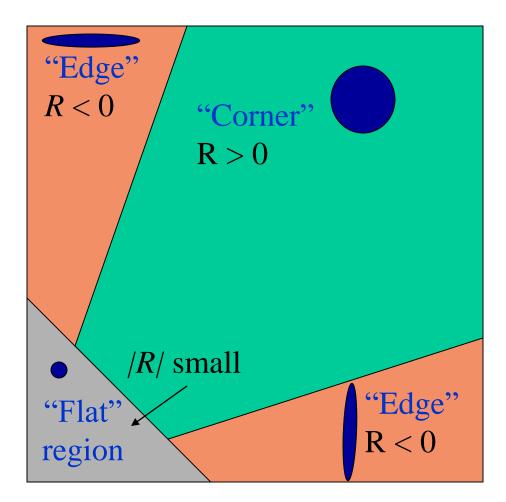
Classification of image points using eigenvalues of *M*:



Corner response function

$$R = \det(M) - \alpha \operatorname{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$$

 α : constant (0.04 to 0.06)

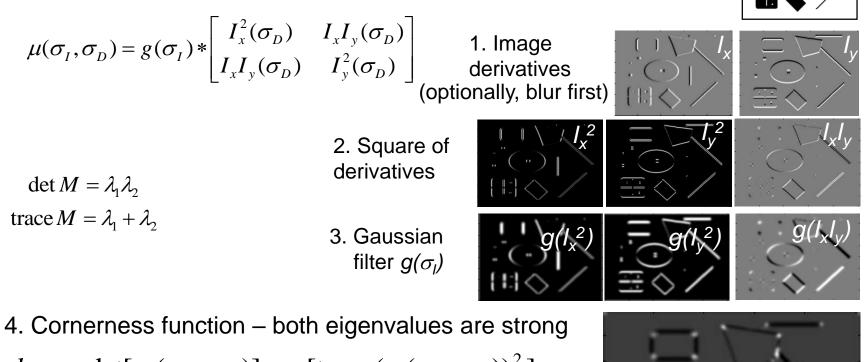


- 1) Compute *M* matrix for each image window to get their *cornerness* scores.
- 2) Find points whose surrounding window gave large corner response (*f*> threshold)
- 3) Take the points of local maxima, i.e., perform non-maximum suppression

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

Harris Detector [Harris88]

• Second moment matrix

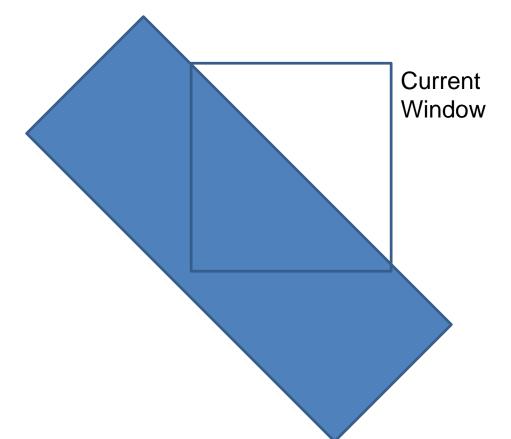


- $har = \det[\mu(\sigma_{I}, \sigma_{D})] \alpha[\operatorname{trace}(\mu(\sigma_{I}, \sigma_{D}))^{2}] = g(I_{x}^{2})g(I_{y}^{2}) [g(I_{x}I_{y})]^{2} \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$
- 5. Non-maxima suppression

har

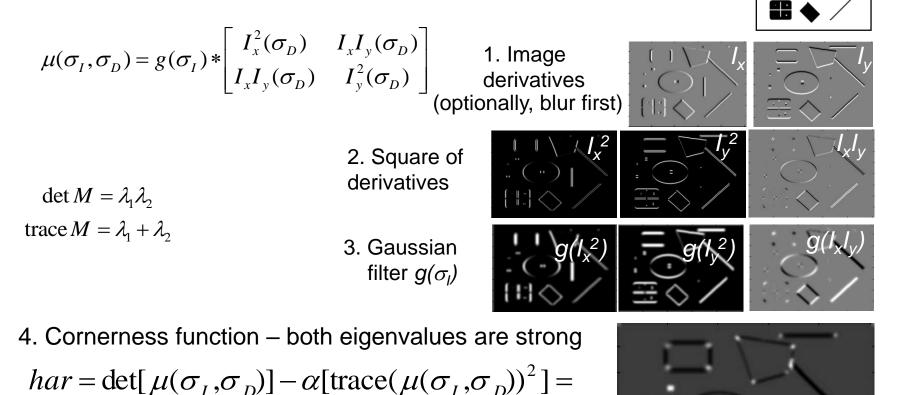
Harris Corners – Why so complicated?

- Can't we just check for regions with lots of gradients in the x and y directions?
 - No! A diagonal line would satisfy that criteria



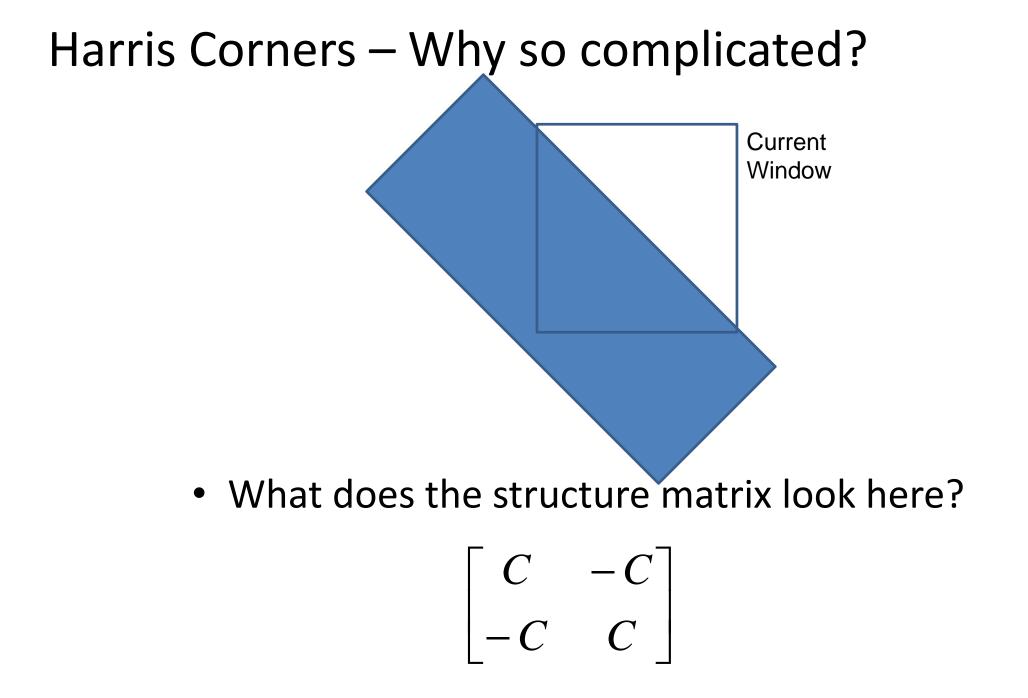
Harris Detector [Harris88]

• Second moment matrix

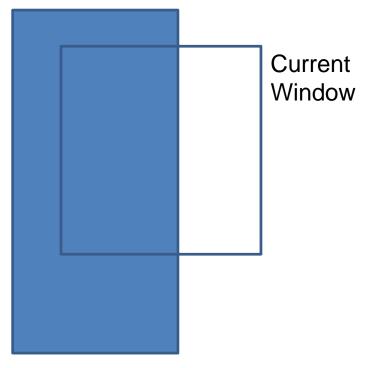


- $g(I_x^2)g(I_y^2) [g(I_xI_y)]^2 \alpha[g(I_x^2) + g(I_y^2)]^2$
- 5. Non-maxima suppression

har



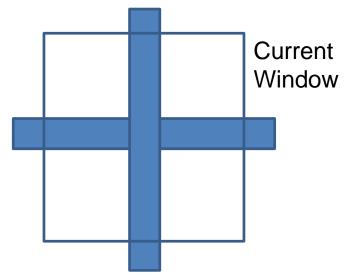
Harris Corners – Why so complicated?



• What does the structure matrix look here?

$$\begin{bmatrix} C & 0 \\ 0 & 0 \end{bmatrix}$$

Harris Corners – Why so complicated?

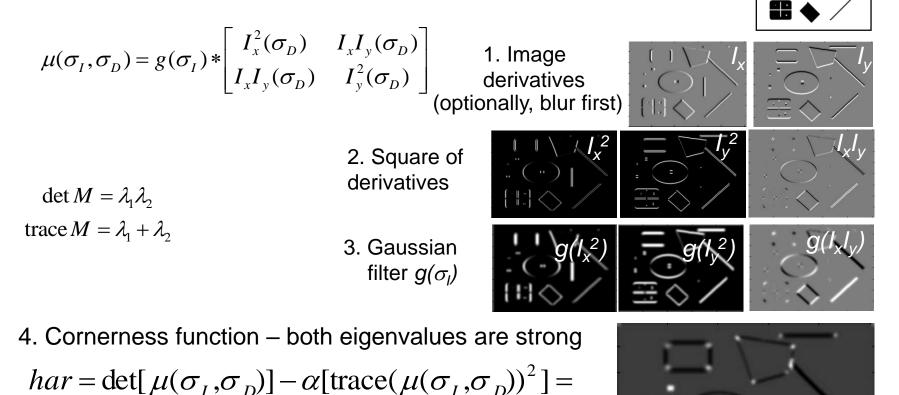


• What does the structure matrix look here?

$$\begin{bmatrix} C & 0 \\ 0 & C \end{bmatrix}$$

Harris Detector [Harris88]

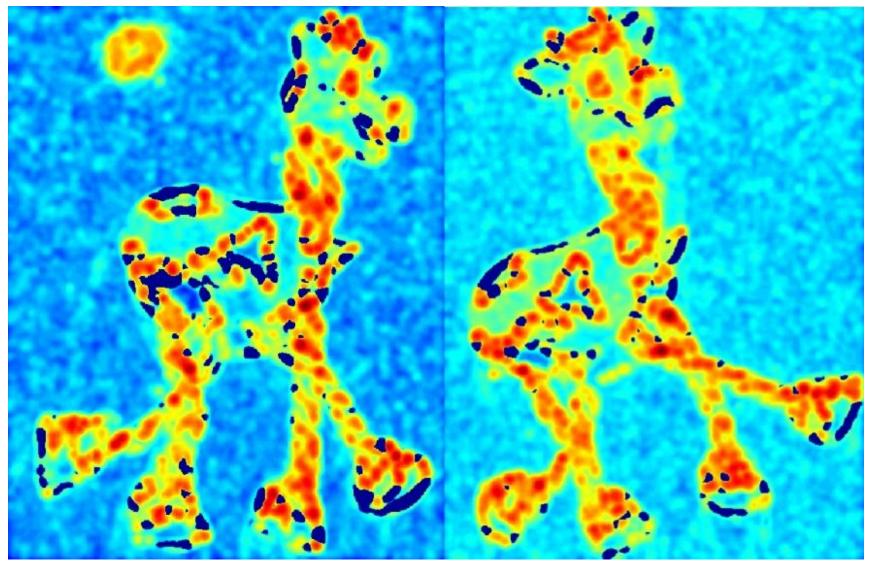
• Second moment matrix



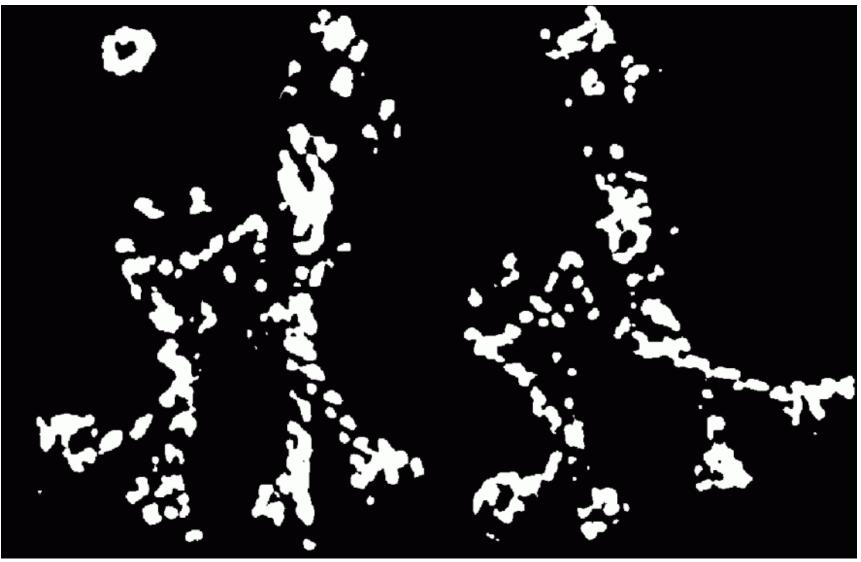
- $g(I_x^2)g(I_y^2) [g(I_xI_y)]^2 \alpha[g(I_x^2) + g(I_y^2)]^2$
- 5. Non-maxima suppression

har

Compute corner response R



Find points with large corner response: *R*>threshold



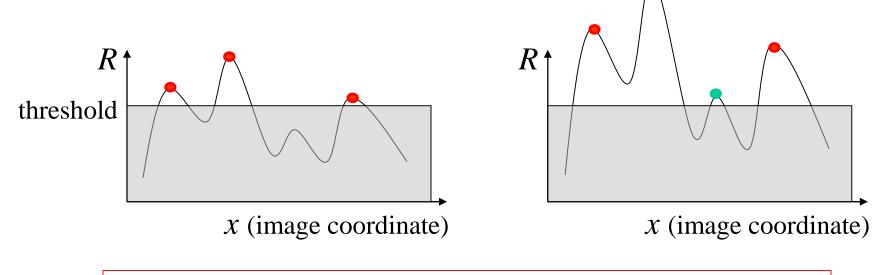
Take only the points of local maxima of R

.

Invariance and covariance

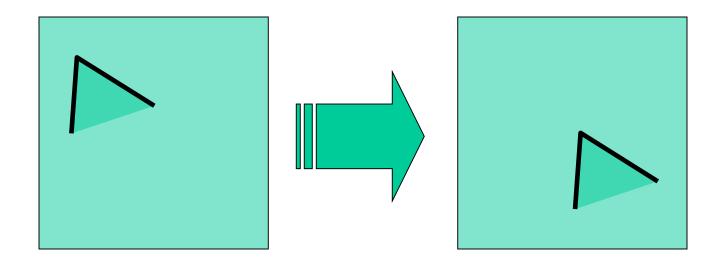
- We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations
 - Invariance: image is transformed and corner locations do not change
 - **Covariance:** if we have two transformed versions of the same image, features should be detected in corresponding locations

• Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$



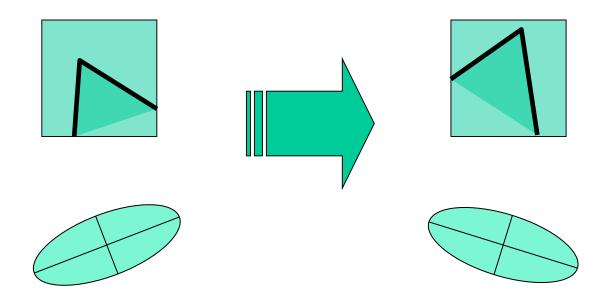
Partially invariant to affine intensity change

Image translation



• Derivatives and window function are shift-invariant

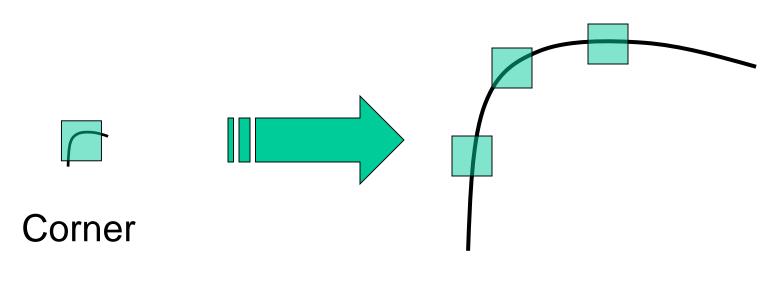
Corner location is covariant w.r.t. translation



Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

Scaling



All points will be classified as edges

Corner location is not covariant to scaling!