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Heterochromia iridum

From Wikipedia, the free encyclopedia

Not to be confused with Heterochromatin or Dichromatic (disambiguation).

In anatomy, heterochromia (ancient Greek: €repoc, héteros,

Heterochromia

ST

different + xpwpa, chréma, colorl'l) is a difference in

e

coloration, usually of the iris but also of hair or skin.

Heterochromia is a result of the relative excess or lack of

melanin (a pigment). It may be inherited, or caused by genetic Complete heterochromia in human eyeé: one brown
mosaicism, chimerism, disease, or injury.l2] and one green/hazel

i . Classification and external resources
Heterochromia of the eye (heterochromia iridis or

heterochromia iridum) is of three kinds. In complete e RN el
heterochromia, one iris is a different color from the other. In ICD-10 Q13.2e#, H20.8, L6717
sectoral heterochromia, part of one iris is a different color ICD-9-CM 364.53%

from its remainder and finally in "central heterochromia” there | OMIM 142500/

are spikes of different colours radiating from the pupil. DiseasesDB 31289



Interest Points and Corners

Computer Vision

James Hays

Read Szeliski 7.1.1 and 7.1.2



Correspondence across views

* Correspondence: matching points, patches, edges, or regions
across images




Example: estimating “fundamental matrix”
that corresponds two views

Slide from Silvio Savarese



Example: structure from motion




Applications

* Feature points are used for:

— Image alignment
— 3D reconstruction
— Motion tracking
— Robot navigation

— Indexing and database retrieval
— Object recognition




Project 2: interest points and local
features

* Note: “interest points” = “keypoints”, also
sometimes called “features”



This class: interest points

e Suppose you have to
click on some point,
go away and come
back after | deform the
image, and click on the
same points again.

— Which points would
you choose?

original

deformed



Overview of Keypoint Matching

1. Find a set of distinctive
keypoints

2. Compute a local
descriptor from the
region around each
keypoint

3. Match local
descriptors

K. Grauman, B. Leibe



Goals for Keypoints

Detect points that are repeatable and distinctive



Invariant Local Features

Image content is transformed into local feature coordinates that are
Invariant to translation, rotation, scale, and other imaging parameters

2N

Features Descriptors



Why extract features?

« Motivation: panorama stitching
« We have two images — how do we combine them?




Local features: main components

1) Detection: Identify the
Interest points

2) Description: Extract vector
feature descriptor %
surrounding each interest
point.

3) Matching: Determine
correspondence between
descriptors in two views

Kristen Grauman



Characteristics of good features

Repeatability

 The same feature can be found in several images despite geometric
and photometric transformations

Saliency
 Each feature is distinctive

Compactness and efficiency
« Many fewer features than image pixels

Locality

» A feature occupies a relatively small area of the image; robust to
clutter and occlusion



Goal: interest operator repeatabllity

« We want to detect (at least some of) the
same points in both images.

* Yet we have to be able to run the detection
procedure independently per image.

Kristen Grauman



Goal: descriptor distinctiveness

« We want to be able to reliably determine
which point goes with which.

« Must provide some invariance to geometric
and photometric differences between the two
Views.

Kristen Grauman



Local features: main components

1) Detection: Identify the
Interest points

2) Description:Extract vector

feature descriptor
surrounding each interest
point.

3) Matching: Determine
correspondence between
descriptors in two views



Many Existing Detectors Available

Hessian & Harris ‘Beaudet ‘78], [Harris ‘88]
Laplacian, DoG Lindeberg ‘98], [Lowe 1999]
Harris-/Hessian-Laplace ‘Mikolajczyk & Schmid ‘01]
Harris-/Hessian-Affine ‘Mikolajczyk & Schmid ‘04]
EBR and IBR Tuytelaars & Van Gool ‘04]
MSER ‘Matas ‘02]

Salient Regions Kadir & Brady ‘01]

Others...



Corner Detection: Basic Idea

« We should easily recognize the point by
looking through a small window

 Shifting a window In any direction should
give a large change in intensity

“flat” region: “‘edge”: ‘corner’:
no change in no change along significant
all directions the edge change in all

direction directions

Source: A. Efros



Corner Detection: Mathematics

Change in appearance of window w(X,y)
for the shift [u,V]:

E(u, v)




Corner Detection: Mathematics

Change in appearance of window w(X,y)
for the shift [u,V]:




Corner Detection: Mathematics

Change in appearance of window w(X,y)
for the shift [u,V]:

E(u,v)=> w(x y)[1(x+u,y+v)—1(x, ]

\

Window function W(X,y) =

1 in window, O outside Gaussian

Source: R. Szeliski



Corner Detection: Mathematics

Change in appearance of window w(X,y)
for the shift [u,V]:

We want to find out how this function behaves for

small shifts
E(u, v)




Corner Detection: Mathematics

Change in appearance of window w(X,y)
for the shift [u,V]:

E(u,v)=> WX y)[1(x+u,y+v)—1(X, ]

We want to find out how this function behaves for
small shifts

But this is very slow to compute naively.
O(window_width? * shift_range? * image_width?)

O( 112 * 112 * 6007 ) = 5.2 billion of these
14.6 thousand per pixel in your image



Corner Detection: Mathematics

Change in appearance of window w(X,y)
for the shift [u,V]:

2
Eu,v)=> WX y)[1(X+U,y+V)—1(x,Y)]
X,y
We want to find out how this function behaves for

small shifts

Recall Taylor series expansion. A function f can be
approximated around point a as

f[ﬂ}‘kfl[,ﬂ}{f a) + fzr} - a)’ +f<3_} —a)® + -




Recall: Taylor series expansion

A function f can be approximated as

f"( ). f”(ﬂ) 2, (a) 3

207
n=0

15}

Approximation of 1ol
f(x) = eX
centered at f(0) 5
l::'___=______....--="'




Using a Taylor Series expansion of the image function Iy (x; + Au) =~ Io(x;)+VIo(X;)-
Au (Lucas and Kanade 1981; Shi and Tomasi 1994), we can approximate the auto-correlation

surface as

Exc(Au) =Y " w(x;)[Io(x; + Au) — Io(x;)]? (7.3)
~ > w(xq)[To(xi) + VIo(x;) - Au— Io(x;)]? (7.4)
= " w(x:)[VIo(x;) - Au]? (7.5)
= Aul AAu, (7.6)
where 9T O
_ (%o Yoy

is the image gradient at x;. This gradient can be computed using a variety of techniques
(Schmid, Mohr, and Bauckhage 2000). The classic “Harris™ detector (Harris and Stephens
1988) uses a [-2 -1 0 1 2] filter, but more modern variants (Schmid, Mohr, and Bauckhage
2000; Triggs 2004) convolve the image with horizontal and vertical derivatives of a Gaussian
(typically with o = 1).

The auto-correlation matrix A can be written as

2 1,1
A =wx* * 2y , (7.8)
I.1, I,

Different
derivations
exist.

This Is the
textbook
version.



Corner Detection: Mathematics

The quadratic approximation simplifies to

where M is a second moment matrix computed from image
derivatives:

|\ >nn. LI, | _ Iy _ T
M= [ZIny ZIyIZ] _Z[Iy][lx il =2 VIV



Corners as distinctive interest points

| | | |
M=>wxy)| .=

2 X 2 matrix of image derivatives (averaged in
neighborhood of a point).

‘@

-Q/

ol ol
Q__

OX oY

Notation:



Interpreting the second moment matrix

The surface E(u,v) is locally approximated by a
guadratic form. Let’s try to understand its shape.

E(u,v) = [u v] M

M=>wxy)l, * )
X,y




Interpreting the second moment matrix

u
Consider a horizontal “slice” of E(u, v): [u v] M {V}:const

This is the equation of an ellipse.

N\E\
z / T X 17
L ( Vi ™ } |
\ {“ :
> ., ‘\ ) /;//
\“%Q‘H————fﬁi’:i/--::f"



Interpreting the second moment matrix

u
Consider a horizontal “slice” of E(u, v): [u v] M {v} = const
This is the equation of an ellipse.
0
Diagonalization of M: M=R" & R
0 A4

The axis lengths of the ellipse are determined by the
eigenvalues and the orientation is determined by R

direction of the
fastest change

direction of the
slowest change



If you're not comfortable with Eigenvalues and Eigenvectors,
Gilbert Strang’s linear algebra lectures are linked from the
course homepage

Lecture 21: Eigenvalues and eigenvectors

N
SYLLABUS \ \Near Alﬁac\)ra Lﬁcﬂ«& a )
CALENDAR +' % U'\\/a\*&\’g E\‘ae /wec{"brs
het [ A - AT]=0
INSTRUCTOR
INSIGHTS : '\AKF‘A ¥/\a{~ o~~~ /\V\

VIDEO LECTURES €

READINGS

ASSIGNMENTS [3 Interactive Transcript



Interpreting the eigenvalues

Classification of image points using eigenvalues

of M:
Ay




Corner response function

R=det(M)—atrace(M)? = 44, —a(4 +4,)°

a. constant (0.04 to 0.06)




Harris corner detector

1) Compute M matrix for each image window to
get their cornerness scores.

2) Find points whose surrounding window gave
large corner response (f> threshold)

3) Take the points of local maxima, I.e., perform
non-maximum suppression

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.



http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Harris Detector [Harrisss]

e Second moment matrix

2
| (op) ley(GD) 1. Image

|x|y(O'D) |5(O'D) derivatives
(optionally, blur first)

oy, 0p) = g(o-l)*|:

2. Square of
detM = 4,4 derivatives
traceM =4 +
it 3. Gaussian (%
filter g(o;) a

(
I v
I ¥
4. Cornerness function — both eigenvalues are strong

har = det[ u(, .0 )] - eftrace(u(o, o)) ] =
g(1)9(1) -[a(1 1 )F —alg(1) + g1

5. Non-maxima suppression 57




Harris Corners — Why so complicated?

* Can’t we just check for regions with lots of
gradients in the x and y directions?

— No! A diagonal line would satisfy that criteria

Current
Window




Harris Detector [Harrisss]

e Second moment matrix

2
| (op) ley(GD) 1. Image

|x|y(O'D) |5(O'D) derivatives
(optionally, blur first)

oy, 0p) = g(o-l)*|:

2. Square of
detM = 4,4 derivatives
traceM =4 +
it 3. Gaussian (%
filter g(o;) a

(
I v
I ¥
4. Cornerness function — both eigenvalues are strong

har = det[ u(, .0 )] - eftrace(u(o, o)) ] =
g(1)9(1) -[a(1 1 )F —alg(1) + g1

5. Non-maxima suppression 59




Harris Corners — Why so complicated?

Current
Window

e What does the structure matrix look here?
C -C|




Harris Corners — Why so complicated?

Current
Window

e What does the structure matrix look here?
c o




Harris Corners — Why so complicated?

Current
Window

e What does the structure matrix look here?
c 0




Harris Detector [Harrisss]

e Second moment matrix

2
| (op) ley(GD) 1. Image

|x|y(O'D) |5(O'D) derivatives
(optionally, blur first)

oy, 0p) = g(o-l)*|:

2. Square of
detM = 4,4 derivatives
traceM =4 +
it 3. Gaussian (%
filter g(o;) a

(
I v
I ¥
4. Cornerness function — both eigenvalues are strong

har = det[ u(, .0 )] - eftrace(u(o, o)) ] =
g(1)9(1) -[a(1 1 )F —alg(1) + g1

5. Non-maxima suppression 63




Harris Detector: Steps




Harris Detector: Steps

Compute corner response R




Harris Detector: Steps

Find points with large corner response: R>threshold




Harris Detector: Steps

Take only the points of local maxima of R




Harris Detector: Steps




Invariance and covariance

« We want corner locations to be invariant to photometric
transformations and covariant to geometric transformations
« Invariance: image is transformed and corner locations do not change

« Covariance: if we have two transformed versions of the same image,
features should be detected in corresponding locations




Affine intensity change

RA

threshold

=8 l>al+b

« Only derivatives are used =>
Invariance to intensity shiftl > 1+Db

 [Intensity scaling: 1 > al

/

W AVAN

X (image coordinate) X (image coordinate)

Partially invariant to affine intensity change




Image translation

™

™

* Derivatives and window function are shift-invariant

Corner location Is covariant w.r.t. translation




Image rotation

Second moment ellipse rotates but its shape
(l.e. eigenvalues) remains the same

Corner location Is covariant w.r.t. rotation




Scaling

— T ——_
7 I
Corner
All points will
be classified
as edges

Corner location is not covariant to scaling!




