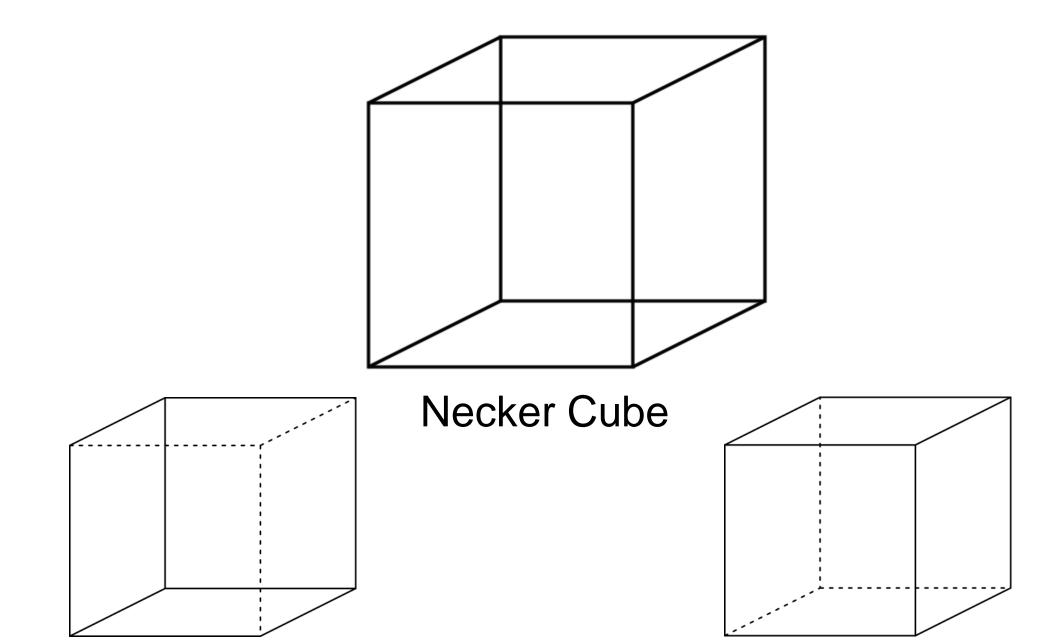
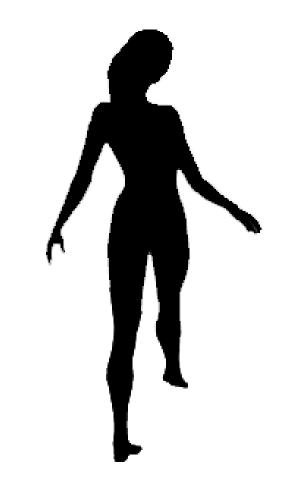
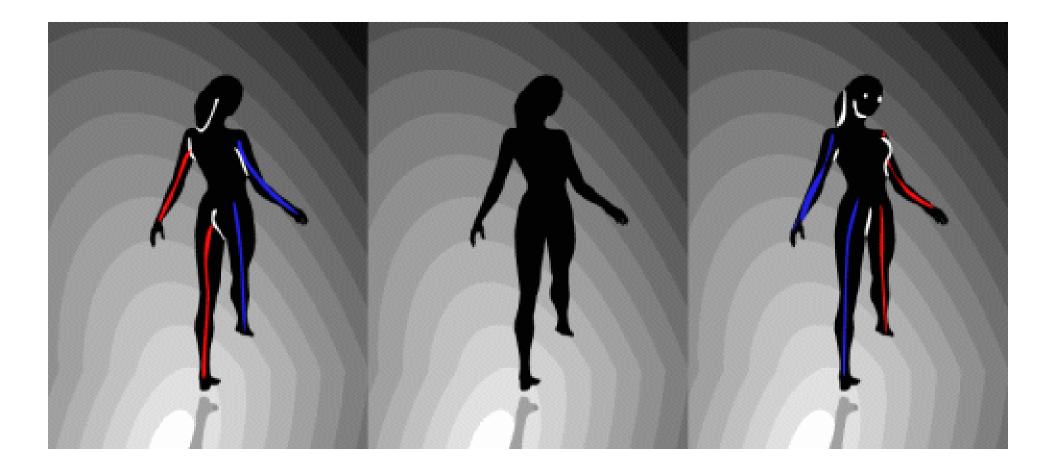
Multi-stable Perception





Spinning dancer illusion, Nobuyuki Kayahara



Feature Matching and Robust Fitting

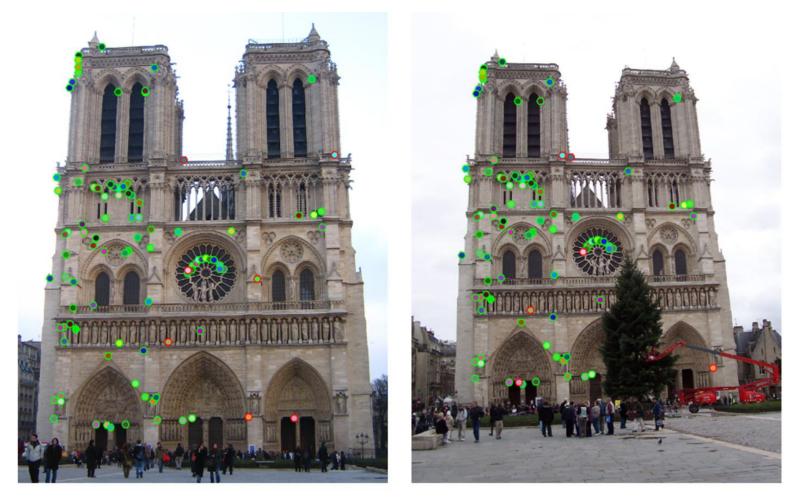
Read Szeliski 7.4.2 and 2.1

Computer Vision

James Hays

Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial

Project 2

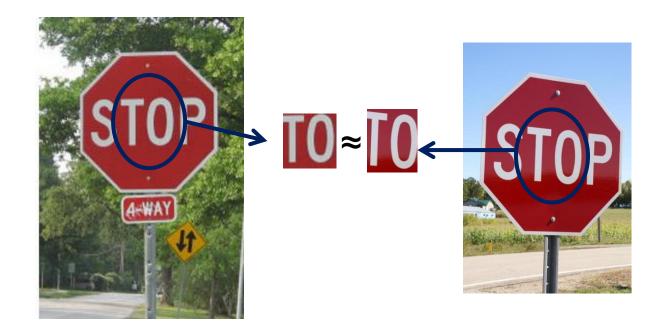


The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and 7 were incorrect (highlighted in red).

Project 2: Local Feature Matching

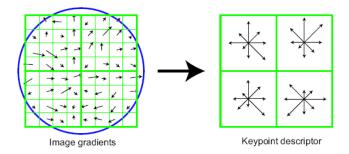
This section: correspondence and alignment

 Correspondence: matching points, patches, edges, or regions across images



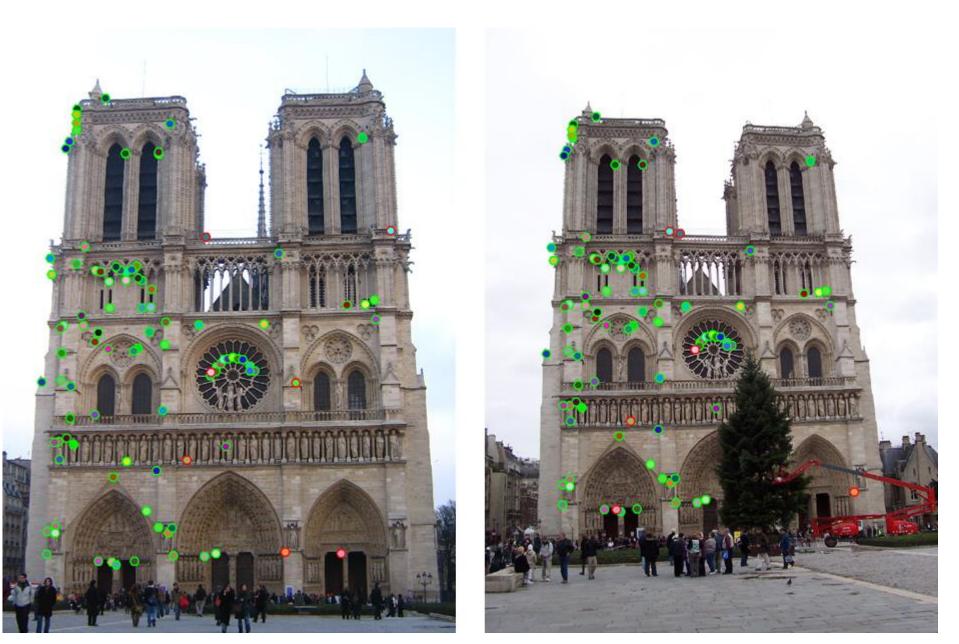
Review: Local Descriptors

- Most features can be thought of as templates, histograms (counts), or combinations
- The ideal descriptor should be
 - Robust and Distinctive
 - Compact and Efficient



- Most available descriptors focus on edge/gradient information
 - Capture texture information
 - Color rarely used

Can we refine this further?



Fitting: find the parameters of a model that best fit the data

Alignment: find the parameters of the transformation that best align matched points

Fitting and Alignment

- Design challenges
 - Design a suitable **goodness of fit** measure
 - Similarity should reflect application goals
 - Encode robustness to outliers and noise
 - Design an **optimization** method
 - Avoid local optima
 - Find best parameters quickly

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods

- Hypothesize and test
 - Generalized Hough transform
 - RANSAC

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods

- Hypothesize and test
 - Generalized Hough transform
 - RANSAC

Simple example: Fitting a line

Least squares line fitting

•Data: $(x_1, y_1), \dots, (x_n, y_n)$ •Line equation: $y_i = m x_i + b$ •Find (*m*, *b*) to

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$E = \sum_{i=1}^{n} (x_i - 1 \begin{bmatrix} m \\ b \end{bmatrix} - y_i)^2 = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}^2 = \|\mathbf{A}\mathbf{p} - \mathbf{y}\|^2$$

$$= \mathbf{y}^T \mathbf{y} - 2(\mathbf{A}\mathbf{p})^T \mathbf{y} + (\mathbf{A}\mathbf{p})^T (\mathbf{A}\mathbf{p})$$

$$\frac{dE}{dp} = 2\mathbf{A}^T \mathbf{A}\mathbf{p} - 2\mathbf{A}^T \mathbf{y} = 0$$

$$\mathbf{Python: p} = numpy.linalg.lstsq(A, y)$$

$$\mathbf{A}^T \mathbf{A}\mathbf{p} = \mathbf{A}^T \mathbf{y} \Rightarrow \mathbf{p} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$$

Modified from S. Lazebnik

Least squares (global) optimization

Good

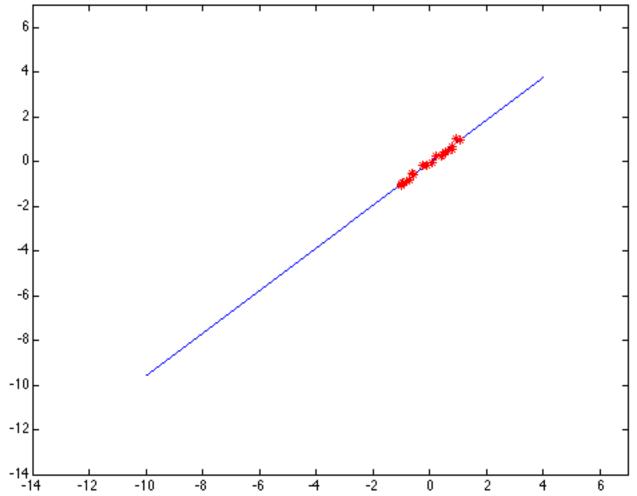
- Clearly specified objective
- Optimization is easy

Bad

- May not be what you want to optimize
- Sensitive to outliers
 - Bad matches, extra points
- Doesn't allow you to get multiple good fits
 - Detecting multiple objects, lines, etc.

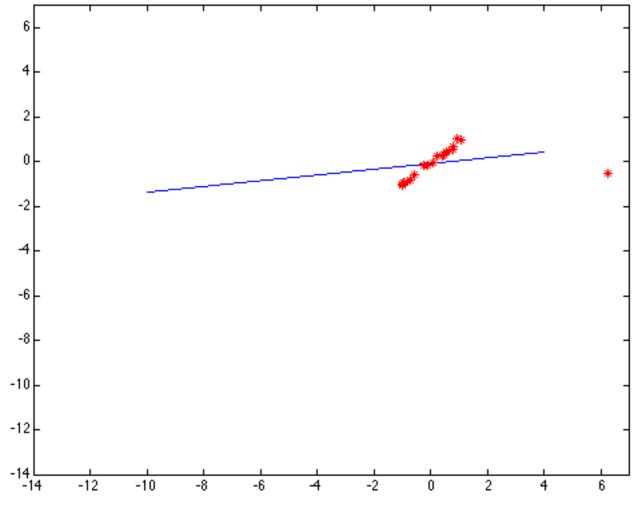
Least squares: Robustness to noise

• Least squares fit to the red points:



Least squares: Robustness to noise

• Least squares fit with an outlier:



Problem: squared error heavily penalizes outliers

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods
- Hypothesize and test
 - Generalized Hough transform
 - RANSAC

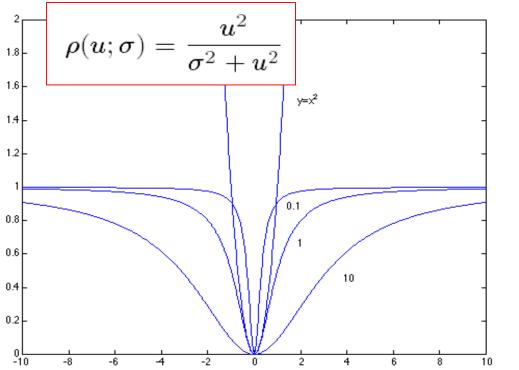
Robust least squares (to deal with outliers)

General approach:

minimize

$$\sum_{i} \boldsymbol{\rho} \left(u_{i} \left(x_{i}, \boldsymbol{\theta} \right); \boldsymbol{\sigma} \right) \qquad u^{2} = \sum_{i=1}^{n} (y_{i} - mx_{i} - b)^{2}$$

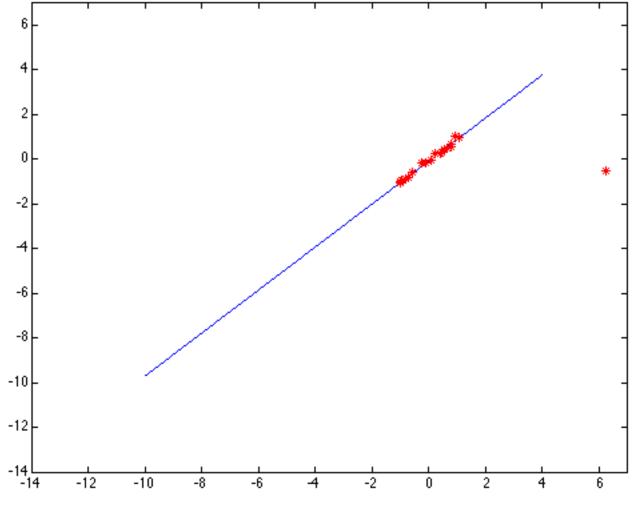
 $u_i(x_i, \theta)$ – residual of ith point w.r.t. model parameters ϑ ρ – robust function with scale parameter σ



The robust function ρ

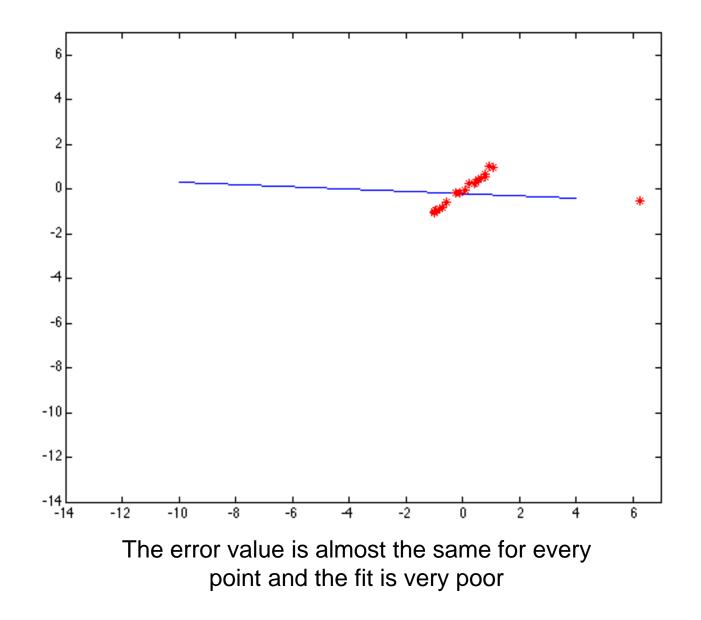
- Favors a configuration with small residuals
- Constant penalty for large residuals

Choosing the scale: Just right

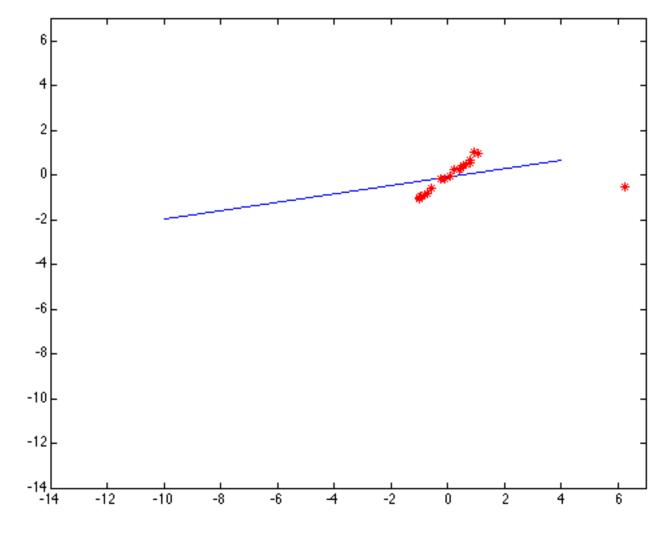


The effect of the outlier is minimized

Choosing the scale: Too small



Choosing the scale: Too large



Behaves much the same as least squares

Robust estimation: Details

- Robust fitting is a nonlinear optimization problem that must be solved iteratively
- Least squares solution can be used for initialization
- Scale of robust function should be chosen adaptively based on median residual

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods

- Hypothesize and test
 - Generalized Hough transform
 - RANSAC

Other ways to search for parameters (for when no closed form solution exists)

- Line search
 - 1. For each parameter, step through values and choose value that gives best fit
 - 2. Repeat (1) until no parameter changes
- Grid search
 - 1. Propose several sets of parameters, evenly sampled in the joint set
 - 2. Choose best (or top few) and sample joint parameters around the current best; repeat
- Gradient descent
 - 1. Provide initial position (e.g., random)
 - 2. Locally search for better parameters by following gradient

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods

- Hypothesize and test
 - Generalized Hough transform
 - RANSAC

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods

- Hypothesize and test
 - Generalized Hough transform
 - RANSAC

Hough Transform: Outline

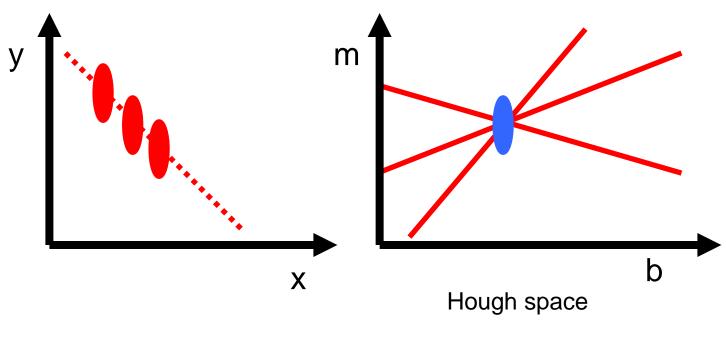
1. Create a grid of parameter values

2. Each point votes for a set of parameters, incrementing those values in grid

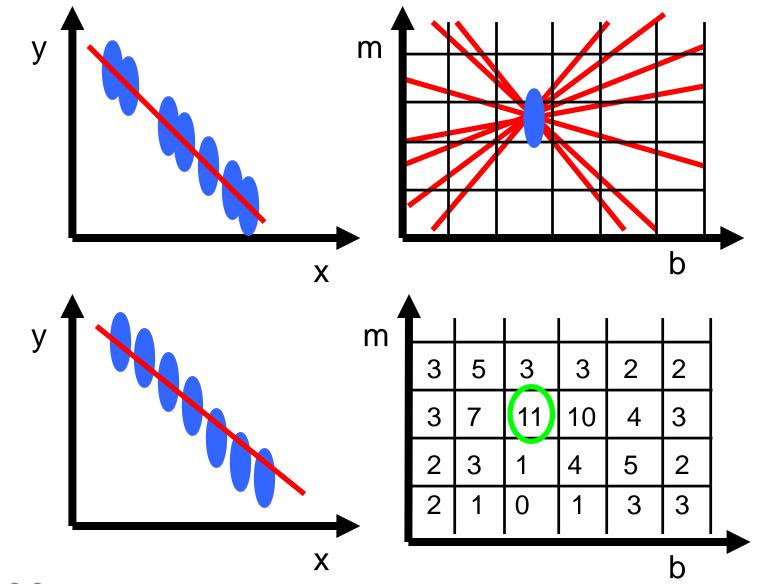
3. Find maximum or local maxima in grid

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best



y = m x + b



Slide from S. Savarese

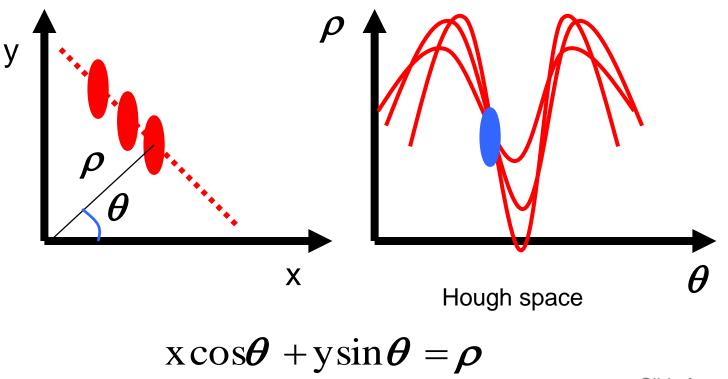
P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Issue : parameter space [m,b] is unbounded...

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

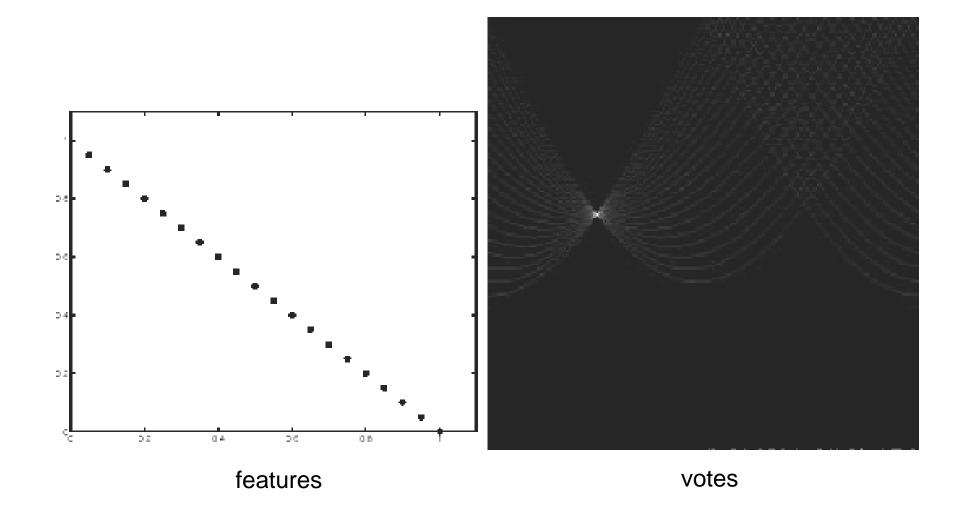
Issue : parameter space [m,b] is unbounded...

Use a polar representation for the parameter space

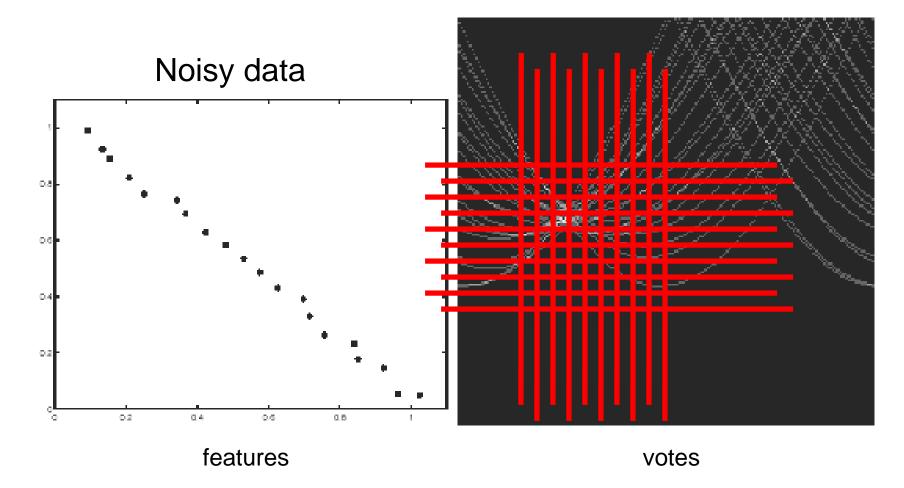


Slide from S. Savarese

Hough transform - experiments

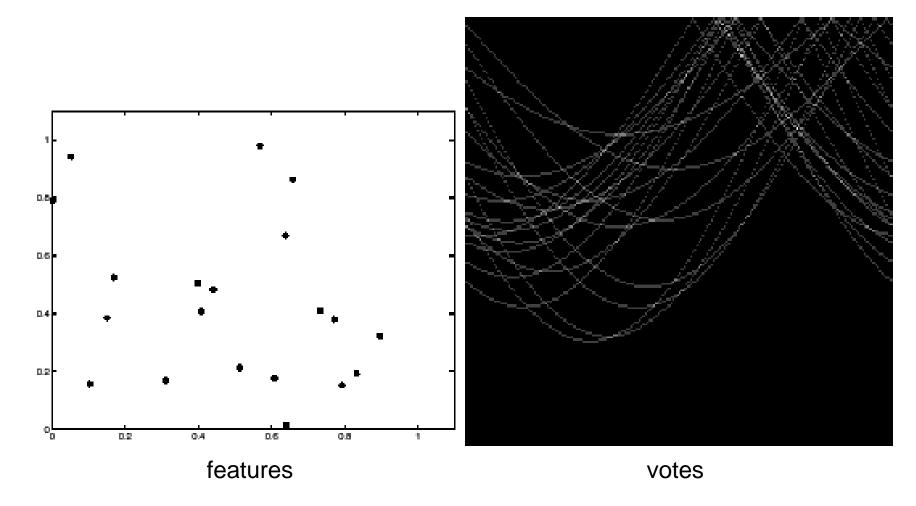


Hough transform - experiments



Need to adjust grid size or smooth

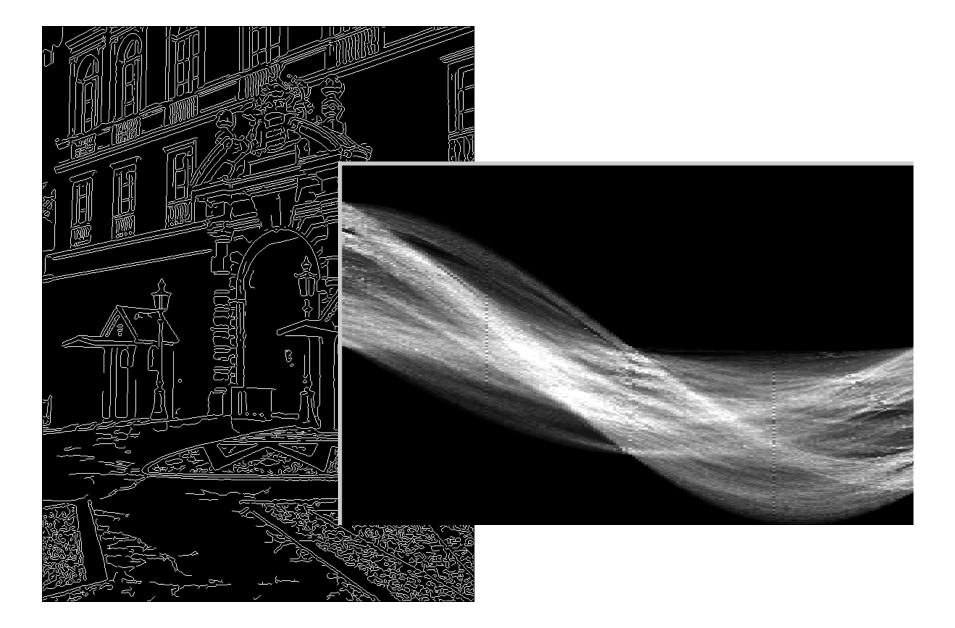
Hough transform - experiments



Issue: spurious peaks due to uniform noise

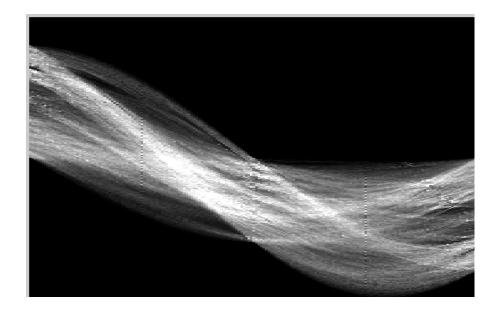
1. Image \rightarrow Canny Edge Detection

2. Canny \rightarrow Hough votes



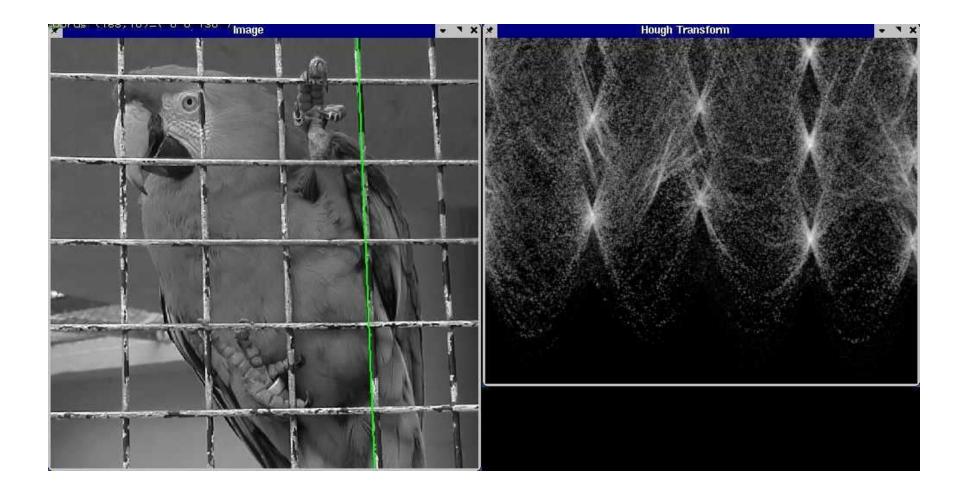
3. Hough votes \rightarrow Edges

Find peaks and post-process





Hough transform example



http://ostatic.com/files/images/ss_hough.jpg

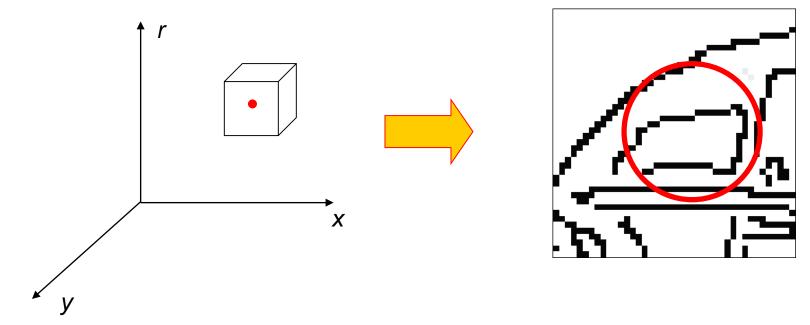
Finding lines using Hough transform

- Using m,b parameterization
- Using r, theta parameterization
 - Using oriented gradients
- Practical considerations
 - Bin size
 - Smoothing
 - Finding multiple lines
 - Finding line segments

- How would we find circles?
 - Of fixed radius
 - Of unknown radius
 - Of unknown radius but with known edge orientation

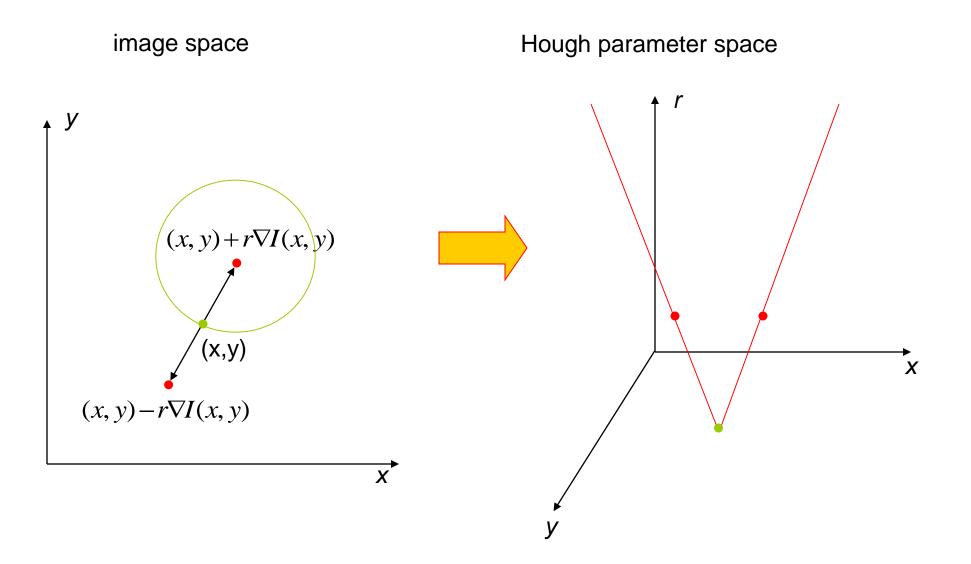
Hough transform for circles

 Conceptually equivalent procedure: for each (x,y,r), draw the corresponding circle in the image and compute its "support"



- How would we find circles?
 - Of fixed radius
 - Of unknown radius
 - Of unknown radius but with known edge orientation

Hough transform for circles



Hough transform conclusions

Good

- Robust to outliers: each point votes separately
- Fairly efficient (much faster than trying all sets of parameters)
- Provides multiple good fits

Bad

- Some sensitivity to noise
- Bin size trades off between noise tolerance, precision, and speed/memory
 - Can be hard to find sweet spot
- Not suitable for more than a few parameters
 - grid size grows exponentially

Common applications

- Line fitting (also circles, ellipses, etc.)
- Object instance recognition (parameters are affine transform)
- Object category recognition (parameters are position/scale)