

Fitting and Alignment

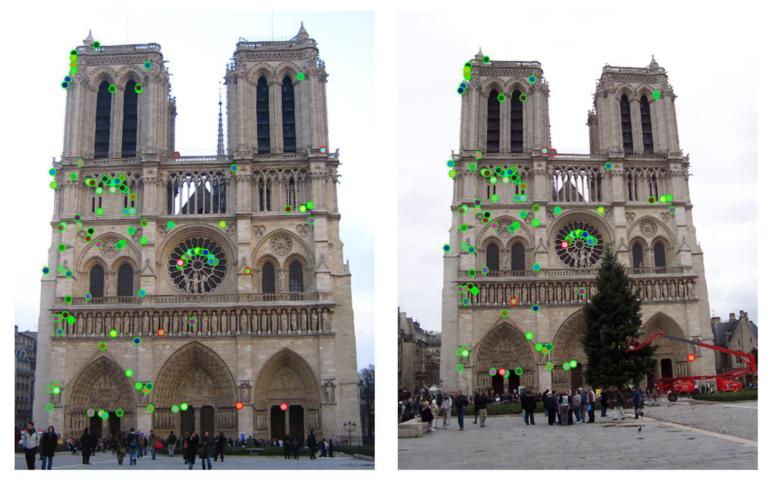
Szeliski 2.1 and 8.1

Computer Vision

James Hays

Acknowledgment: Many slides from Derek Hoiem, Lana Lazebnik, and Grauman&Leibe 2008 AAAI Tutorial

Project 2



The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and 7 were incorrect (highlighted in red).

Project 2: Local Feature Matching

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods
- Hypothesize and test
 - Hough transform
 - RANSAC
- Iterative Closest Points (ICP)

Review: Hough Transform

1. Create a grid of parameter values

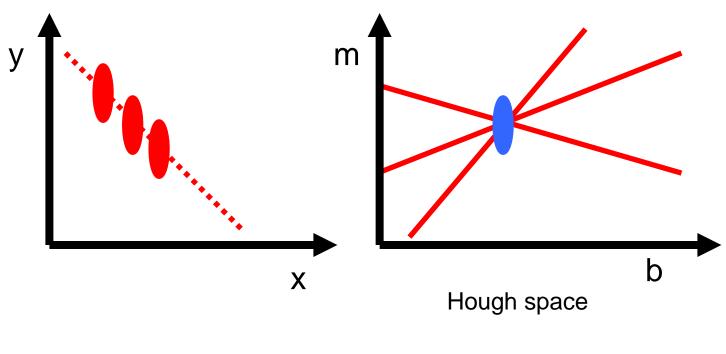
2. Each point (or correspondence) votes for a set of parameters, incrementing those values in grid

3. Find maximum or local maxima in grid

Review: Hough transform

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

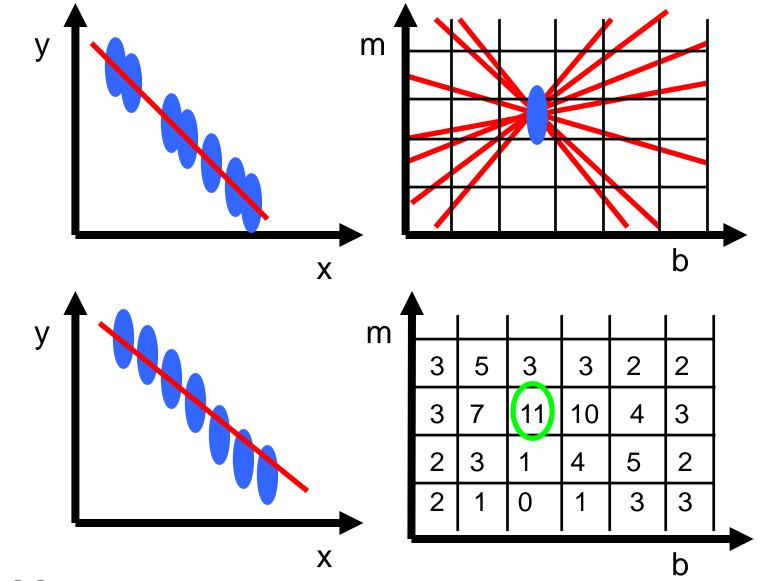
Given a set of points, find the curve or line that explains the data points best



y = m x + b

Slide from S. Savarese

Review: Hough transform

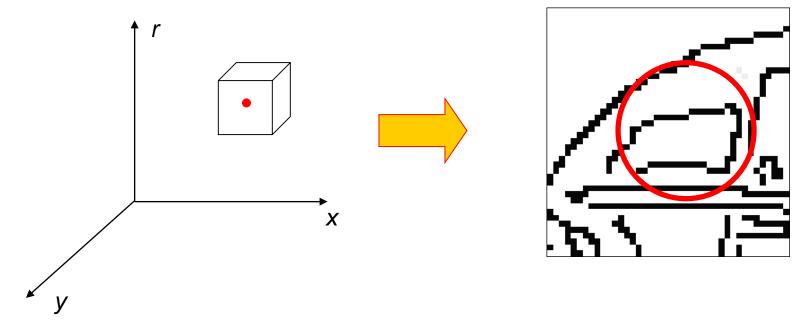


Slide from S. Savarese

Hough Transform

- How would we find circles?
 - Of fixed radius
 - Of unknown radius
 - Of unknown radius but with known edge orientation

 Similar procedure: for each (x,y,r), draw the corresponding circle in the image and compute its "support"

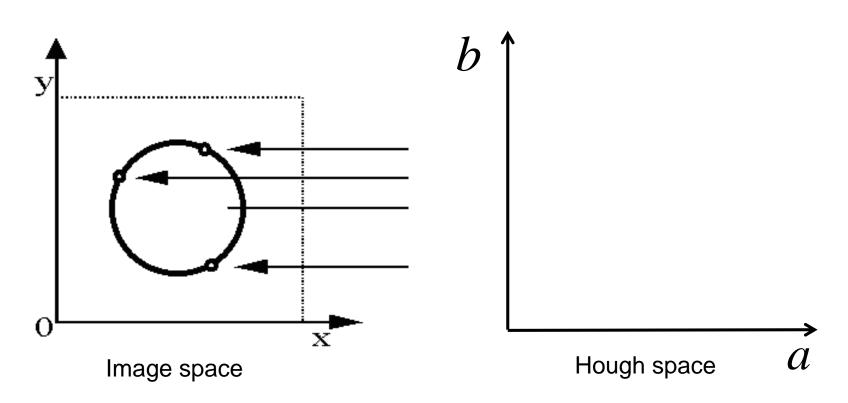


Is this more or less efficient than voting with features?

• Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

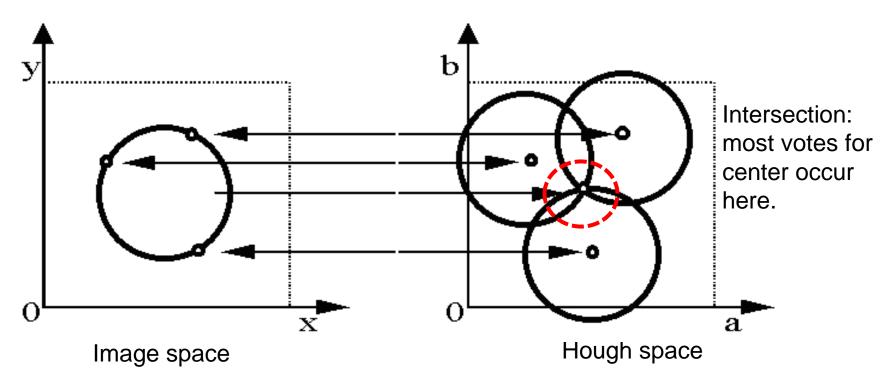
• For a fixed radius r



• Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

• For a fixed radius r

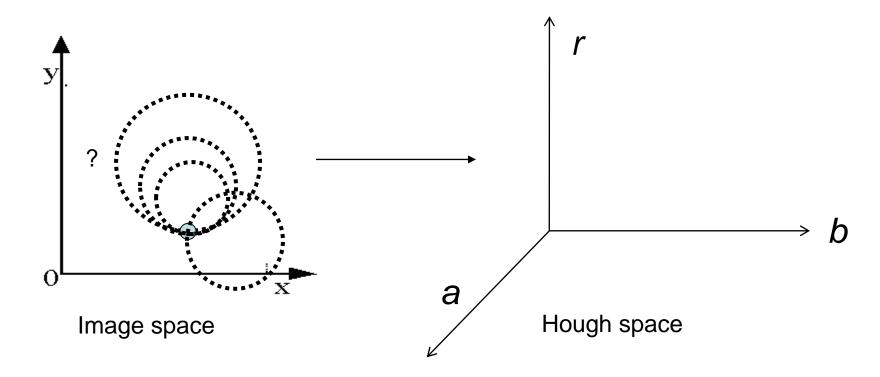


Kristen Grauman

• Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

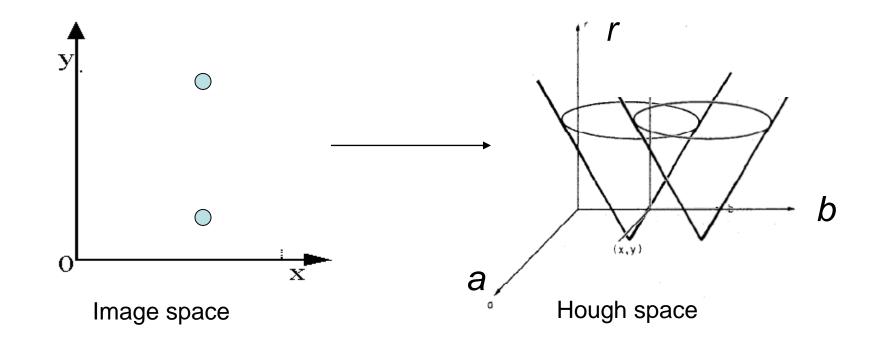
• For an unknown radius r



• Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

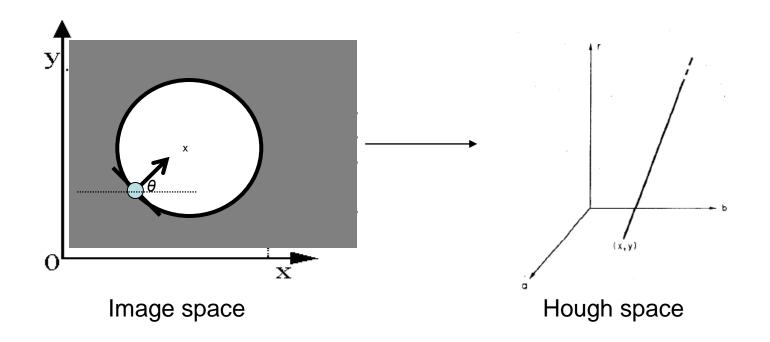
• For an unknown radius r



• Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

• For an unknown radius r, known gradient direction



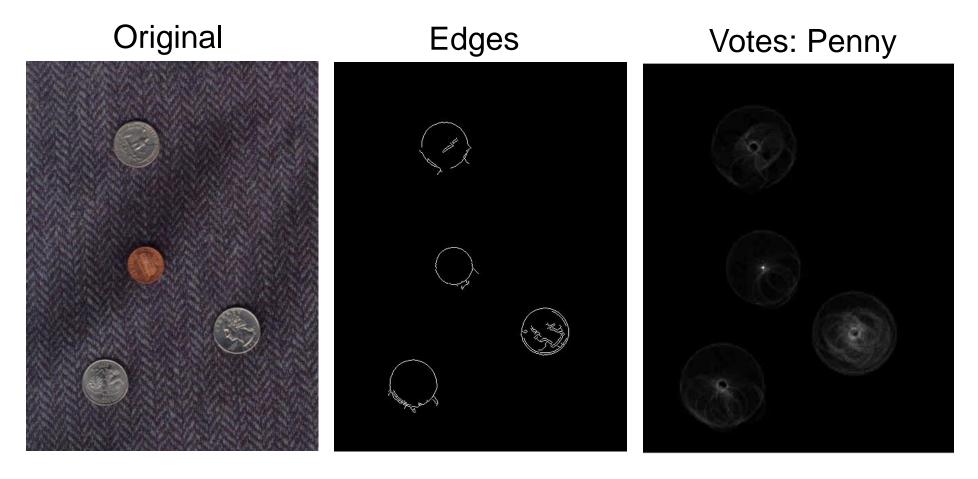
For every edge pixel (x, y): For each possible radius value r. For each possible gradient direction θ : // or use estimated gradient at (x,y) $a = x - r \cos(\theta) // \operatorname{column}$ $b = y + r \sin(\theta) // row$ H[a,b,r] += 1

end

end

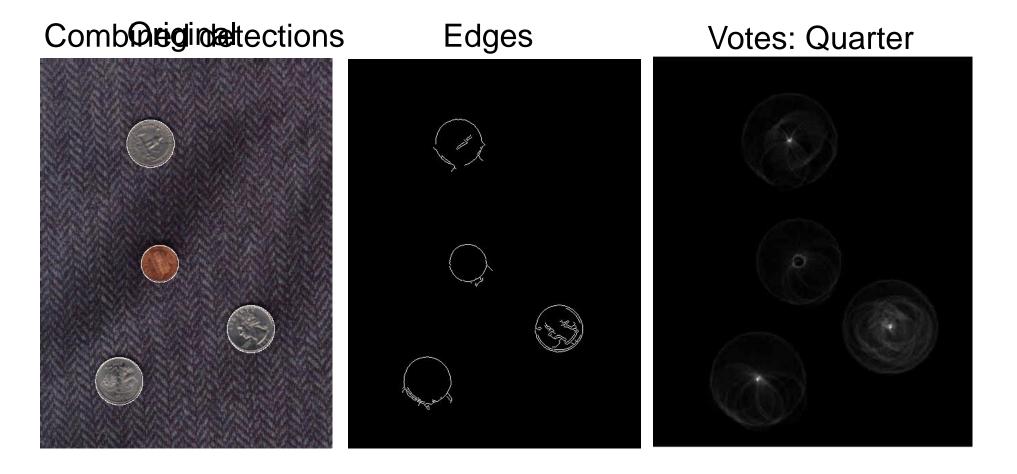
Check out online demo : <u>http://www.markschulze.net/java/hough/</u>

Example: detecting circles with Hough



Note: a different Hough transform (with separate accumulators) was used for each circle radius (quarters vs. penny).

Example: detecting circles with Hough



Coin finding sample images from: Vivek Kwatra

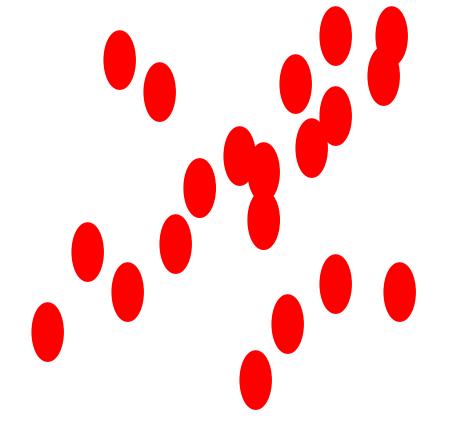
Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods
- Hypothesize and test
 - Hough transform
 - RANSAC
- Iterative Closest Points (ICP)

RANSAC

(RANdom SAmple Consensus) :

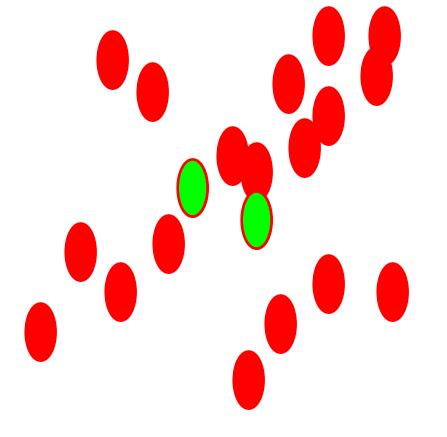
Fischler & Bolles in '81.



Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

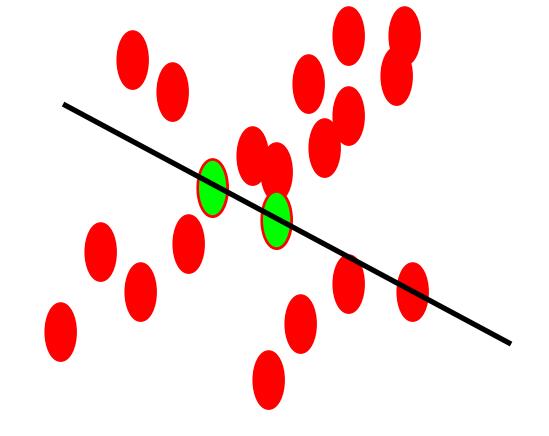
Line fitting example



Algorithm:

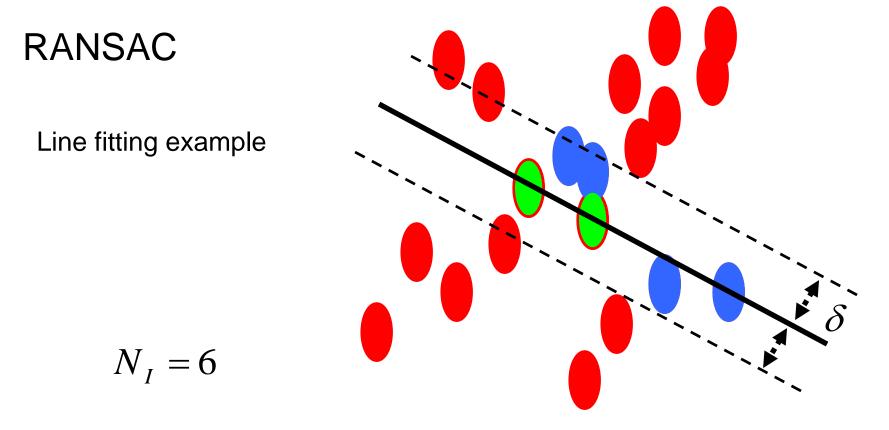
- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Line fitting example



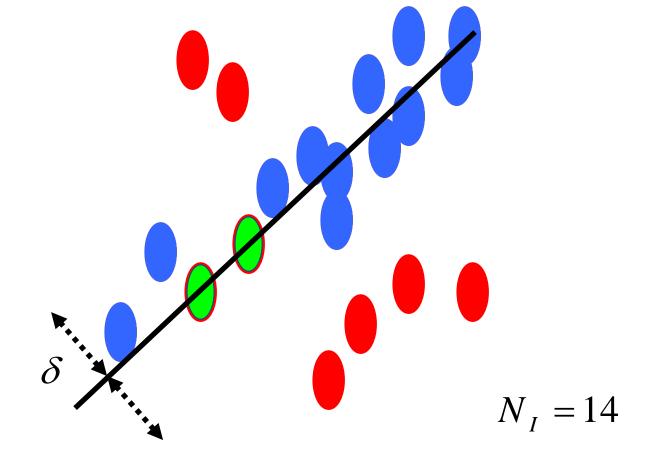
Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model



Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model



Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

How to choose parameters?

- Number of iterations of sampling N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Number of sampled points *s*
 - Minimum number needed to fit the model
- Distance threshold δ
 - Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold

$$N = log(1-p)/log(1-(1-e)^{s})$$

		proportion of outliers e						
	S	5%	10%	20%	25%	30%	40%	50%
_	2	2	3	5	6	7	11	17
	3	3	4	7	9	11	19	35
	4	3	5	9	13	17	34	72
	5	4	6	12	17	26	57	146
	6	4	7	16	24	37	97	293
	7	4	8	20	33	54	163	588
	8	5	9	26	44	78	272	1177

For p = 0.99

modified from M. Pollefeys

RANSAC conclusions

Good

- Robust to outliers
- Applicable for larger number of model parameters than Hough transform
- Optimization parameters are easier to choose than Hough transform

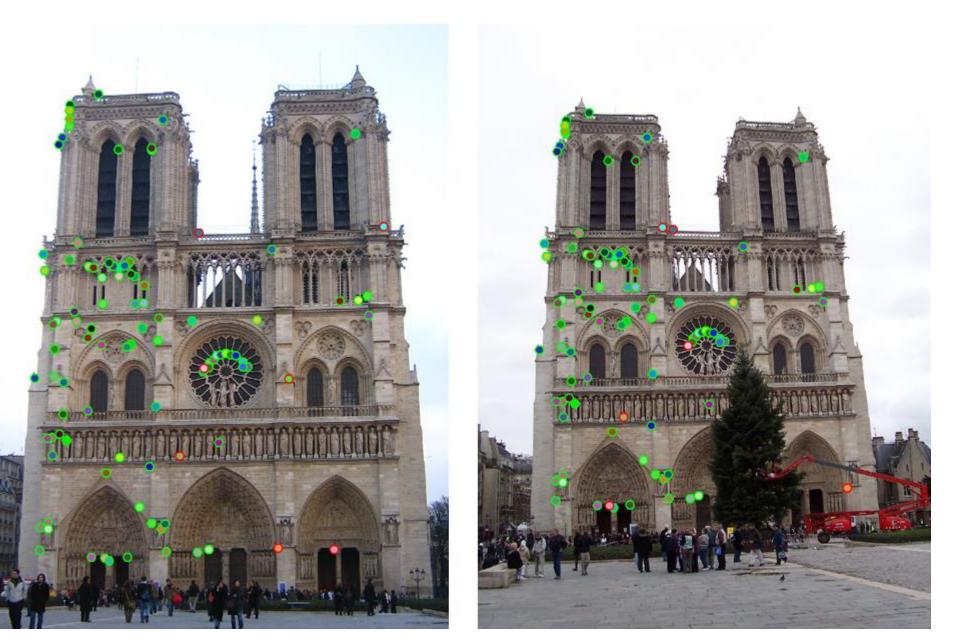
Bad

- Computational time grows quickly with fraction of outliers and number of parameters
- Not good for getting multiple fits

Common applications

- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)

How do we fit the best alignment?



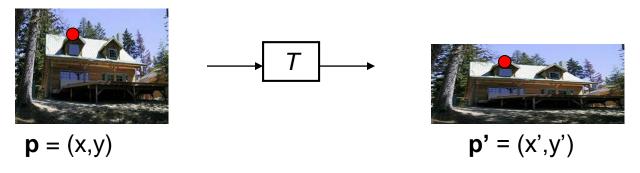
Alignment

• Alignment: find parameters of model that maps one set of points to another

• Typically want to solve for a global transformation that accounts for *most* true correspondences

- Difficulties
 - Noise (typically 1-3 pixels)
 - Outliers (often 50%)
 - Many-to-one matches or multiple objects

Parametric (global) warping



Transformation T is a coordinate-changing machine:

p' = T(p)

What does it mean that *T* is global and parametric?

- Global: Is the same for any point p
- Parametric: can be described by just a few numbers

We're going to focus on *linear* transformations, we can represent T as a matrix multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \end{bmatrix}$$

Common transformations

original

Transformed

translation

rotation

aspect

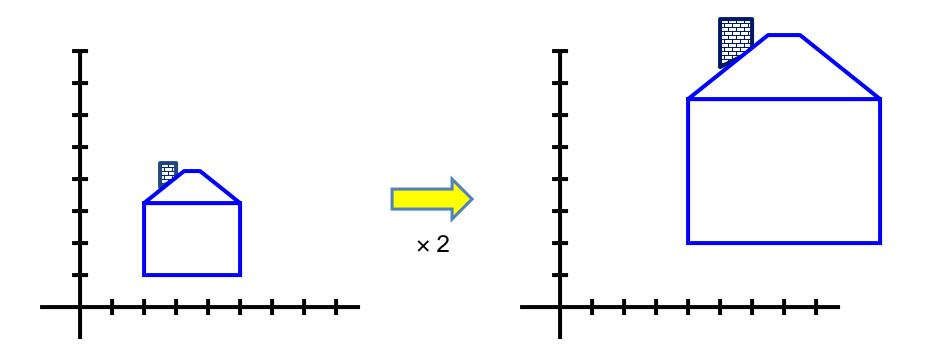
affine

perspective

Slide credit (next few slides): A. Efros and/or S. Seitz

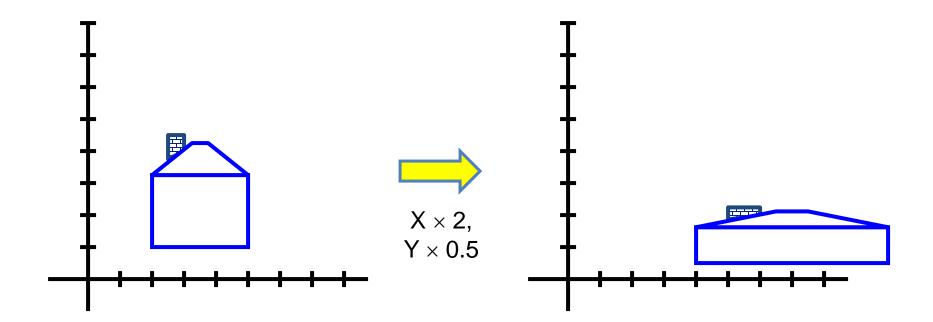
Scaling

- *Scaling* a coordinate means multiplying each of its components by a scalar
- *Uniform scaling* means this scalar is the same for all components:



Scaling

• *Non-uniform scaling*: different scalars per component:



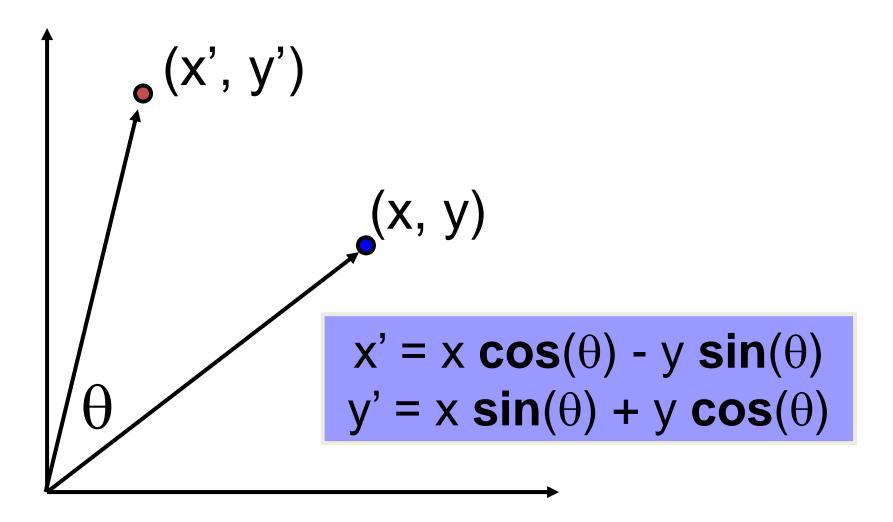
Scaling

• Scaling operation:
$$x' = ax$$

 $y' = by$

• Or, in matrix form: $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ scaling matrix S

2-D Rotation (around the origin)



2-D Rotation

This is easy to capture in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
R

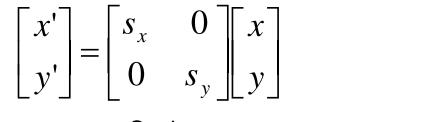
Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ ,

- For a particular θ , x' is a linear combination of x and y
- For a particular θ , y' is a linear combination of x and y

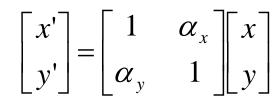
What is the inverse transformation?

- Rotation by $-\theta$
- For rotation matrices $\mathbf{R}^{-1} = \mathbf{R}^{T}$

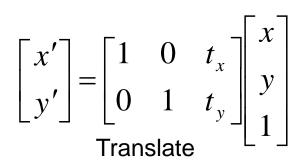
Basic 2D transformations

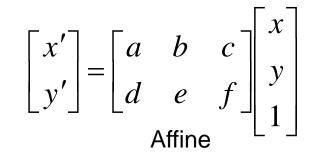


Scale



Shear





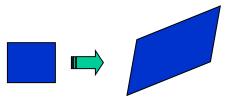
 $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ Affine is any combination of translation, scale, rotation, shear

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Affine transformations are combinations of ...

- Linear transformations, and
- Translations

Parallel lines remain parallel



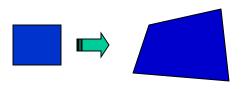
Projective Transformations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

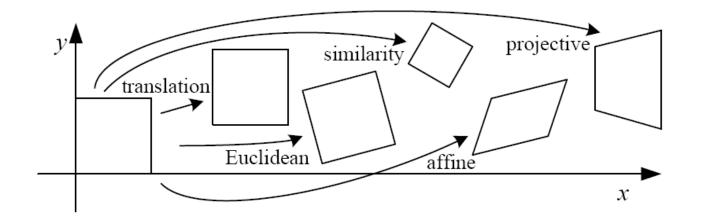
Projective transformations:

- Affine transformations, and
- Projective warps

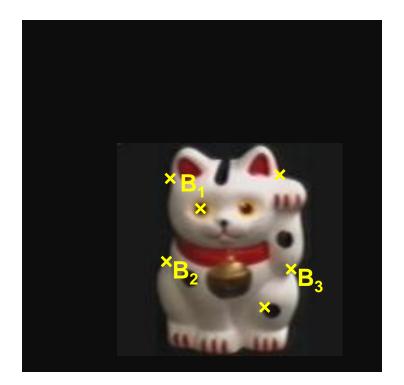
Parallel lines do not necessarily remain parallel



2D image transformations (reference table)

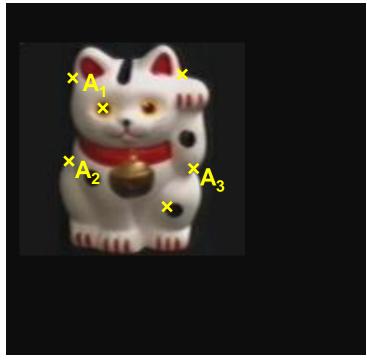


Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c c c c c c c c c c c c c c c c c c $	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]_{2 imes 3}$	3	lengths $+\cdots$	\bigcirc
similarity	$\left[\left. s oldsymbol{R} \right oldsymbol{t} ight]_{2 imes 3}$	4	angles $+ \cdots$	\bigcirc
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	



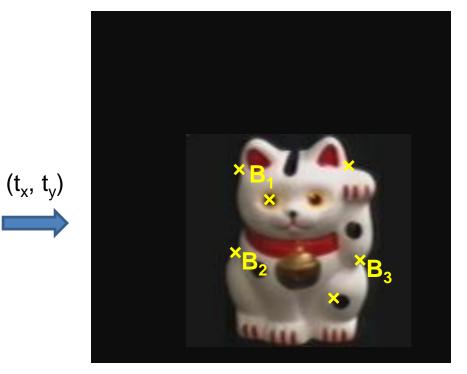
Given matched points in {A} and {B}, estimate the translation of the object

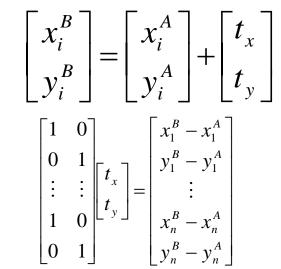
$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

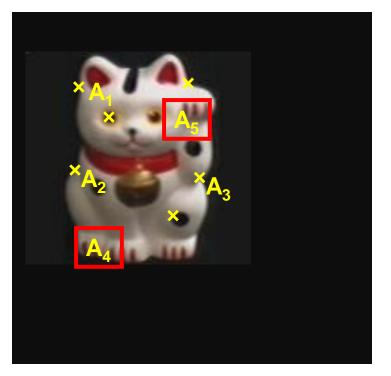


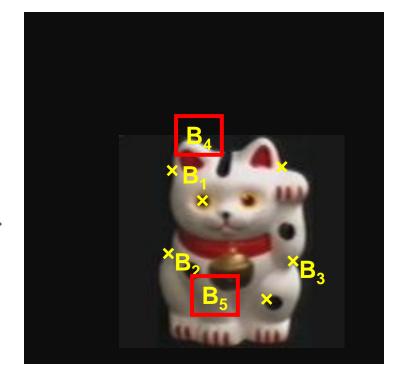
Least squares solution

- 1. Write down objective function
- 2. Derived solution
 - a) Compute derivative
 - b) Compute solution
- 3. Computational solution
 - a) Write in form Ax=b
 - b) Solve using pseudo-inverse or eigenvalue decomposition







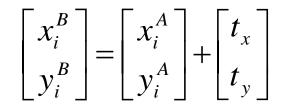


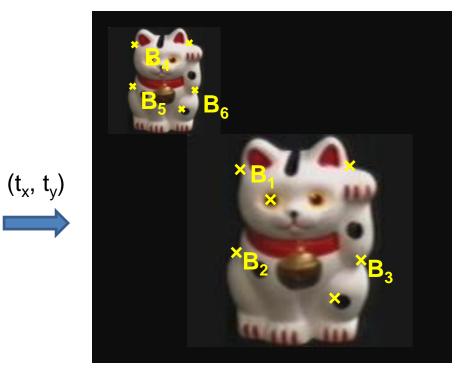
Problem: outliers

 (t_x, t_y)

RANSAC solution

- 1. Sample a set of matching points (1 pair)
- 2. Solve for transformation parameters
- 3. Score parameters with number of inliers
- 4. Repeat steps 1-3 N times

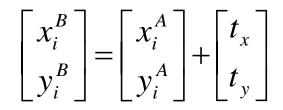


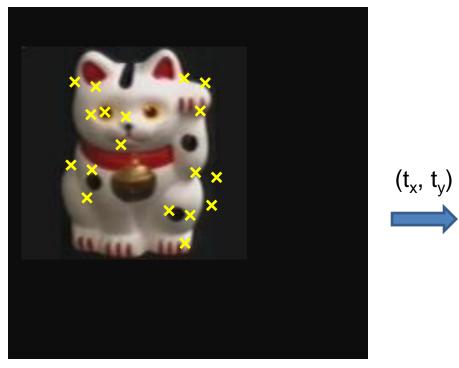


Problem: outliers, multiple objects, and/or many-to-one matches

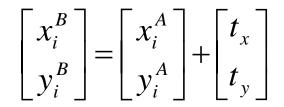
Hough transform solution

- 1. Initialize a grid of parameter values
- 2. Each matched pair casts a vote for consistent values
- 3. Find the parameters with the most votes
- 4. Solve using least squares with inliers





Problem: no initial guesses for correspondence



Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods
- Hypothesize and test
 - Hough transform

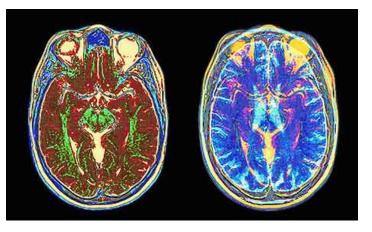
- RANSAC

• Iterative Closest Points (ICP)

What if you want to align but have no prior matched pairs?

• Hough transform and RANSAC not applicable

• Important applications



Medical imaging: match brain scans or contours

Robotics: match point clouds

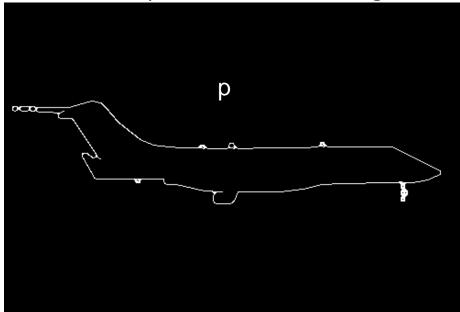
Iterative Closest Points (ICP) Algorithm

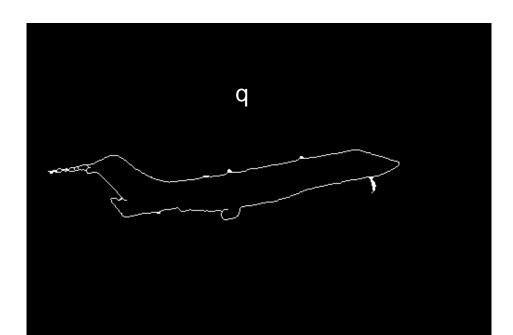
Goal: estimate transform between two dense sets of points

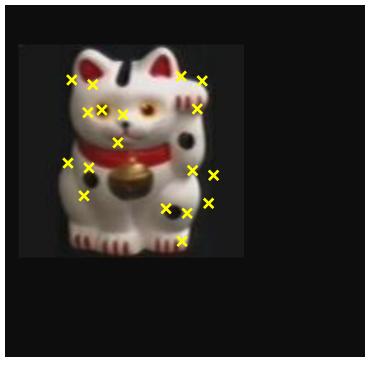
- **1. Initialize** transformation (e.g., compute difference in means and scale)
- **2.** Assign each point in {Set 1} to its nearest neighbor in {Set 2}
- **3. Estimate** transformation parameters
 - e.g., least squares or robust least squares
- 4. Transform the points in {Set 1} using estimated parameters
- 5. Repeat steps 2-4 until change is very small

Example: aligning boundaries

- 1. Extract edge pixels $p_1 \dots pn$ and $q_1 \dots qm$
- 2. Compute initial transformation (e.g., compute translation and scaling by center of mass, variance within each image)
- 3. Get nearest neighbors: for each point p_i find corresponding match(i) = argmin dist(pi, qj)
- 4. Compute transformation *T* based on matches
- 5. Warp points *p* according to *T*
- 6. Repeat 3-5 until convergence





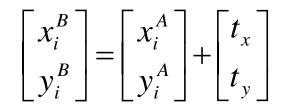


Problem: no initial guesses for correspondence

 (t_x, t_y)

ICP solution

- 1. Find nearest neighbors for each point
- 2. Compute transform using matches
- 3. Move points using transform
- 4. Repeat steps 1-3 until convergence



Sparse ICP

Sofien Bouaziz Andrea Tagliasacchi Mark Pauly

Algorithm Summaries

- Least Squares Fit
 - closed form solution
 - robust to noise
 - not robust to outliers
- Robust Least Squares
 - improves robustness to outliers
 - requires iterative optimization
- Hough transform
 - robust to noise and outliers
 - can fit multiple models
 - only works for a few parameters (1-4 typically)
- RANSAC
 - robust to noise and outliers
 - works with a moderate number of parameters (e.g, 1-8)
- Iterative Closest Point (ICP)
 - For local alignment only: does not require initial correspondences

Rough count of mentions in recent literature

- Hough: 901 mentions
- RANSAC: 1,690 mentions
- ICP: 895 mentions
- "Least Squares" 2,290 mentions
- "Robust Least Squares" 4 mentions
- Keypoint 2,180 mentions
- SIFT 3,530 mentions
- Affine 2,970
- ResNet: 8,510 mentions

Google search for site:https://openaccess.thecvf.com [term] Seems to find results since 2013.