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Fitting and Alignment: Methods

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Other parameter search methods

• Hypothesize and test

– Hough transform

– RANSAC

• Iterative Closest Points (ICP)



Review: Hough Transform

1. Create a grid of parameter values

2. Each point (or correspondence) votes for a set of parameters, 
incrementing those values in grid

3. Find maximum or local maxima in grid
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Review: Hough transform

Given a set of points, find the curve or line that explains 

the data points best

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 

Energy Accelerators and Instrumentation, 1959 

Hough space

Slide from S. Savarese
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Review: Hough transform



Hough Transform

• How would we find circles?

– Of fixed radius

– Of unknown radius

– Of unknown radius but with known edge orientation



Hough transform for circles

• Similar procedure: for each (x,y,r), draw the 

corresponding circle in the image and compute its 

“support”
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Is this more or less efficient than voting with features?



Hough transform for circles

• For a fixed radius r

• Circle: center (a,b) and radius r
222 )()( rbyax ii 

Image space Hough space a

b

Adapted by Devi Parikh from: Kristen Grauman
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Hough transform for circles

• For a fixed radius r

• Circle: center (a,b) and radius r
222 )()( rbyax ii 

Image space Hough space

Intersection: 

most votes for 

center occur 

here.

Kristen Grauman
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Hough transform for circles

• For an unknown radius r

• Circle: center (a,b) and radius r
222 )()( rbyax ii 

Hough spaceImage space

b

a

r

?

Kristen Grauman
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Hough transform for circles

• For an unknown radius r

• Circle: center (a,b) and radius r
222 )()( rbyax ii 

Hough spaceImage space

b

a

r

Kristen Grauman
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Hough transform for circles

• For an unknown radius r, known gradient direction

• Circle: center (a,b) and radius r
222 )()( rbyax ii 

Hough spaceImage space

θ

x

Kristen Grauman
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Hough transform for circles

For every edge pixel (x,y) : 

For each possible radius value r:

For each possible gradient direction θ: 

// or use estimated gradient at (x,y)

a = x – r cos(θ) // column

b = y + r sin(θ)  // row

H[a,b,r] += 1

end

end

• Check out online demo : http://www.markschulze.net/java/hough/ Kristen Grauman
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http://www.markschulze.net/java/hough/


Original Edges

Example: detecting circles with Hough

Votes: Penny

Note: a different Hough transform (with separate accumulators) 

was used for each circle radius (quarters vs. penny).
21

Slide credit: Kristen Grauman



Original Edges

Example: detecting circles with Hough

Votes: QuarterCombined detections

Coin finding sample images from: Vivek Kwatra
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Slide credit: Kristen Grauman



Fitting and Alignment: Methods

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Other parameter search methods

• Hypothesize and test

– Hough transform

– RANSAC

• Iterative Closest Points (ICP)



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example





RANSAC

6IN

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example





RANSAC

14IN
Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



How to choose parameters?
• Number of iterations of sampling N

– Choose N so that, with probability p, at least one random sample is free 
from outliers (e.g. p=0.99) (outlier ratio: e )

• Number of sampled points s
– Minimum number needed to fit the model

• Distance threshold 
– Choose  so that a good point with noise is likely (e.g., prob=0.95) within threshold

    s
e11log/p1logN 

proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

modified from  M. Pollefeys
For p = 0.99



RANSAC conclusions

Good
• Robust to outliers
• Applicable for larger number of model parameters than 

Hough transform
• Optimization parameters are easier to choose than Hough 

transform

Bad
• Computational time grows quickly with fraction of outliers 

and number of parameters 
• Not good for getting multiple fits

Common applications
• Computing a homography (e.g., image stitching)
• Estimating fundamental matrix (relating two views)



How do we fit the best alignment?



Alignment

• Alignment: find parameters of model that maps 
one set of points to another

• Typically want to solve for a global transformation 
that accounts for *most* true correspondences

• Difficulties

– Noise (typically 1-3 pixels)

– Outliers (often 50%) 

– Many-to-one matches or multiple objects



Parametric (global) warping

Transformation T is a coordinate-changing machine:
p’ = T(p)

What does it mean that T is global and parametric?
– Global: Is the same for any point p
– Parametric: can be described by just a few numbers

We’re going to focus on linear transformations, we can represent T as 
a matrix multiplication

p’ = Tp

T

p = (x,y) p’ = (x’,y’)



















y

x

y

x
T

'

'



Common transformations

translation rotation aspect

affine perspective

original

Transformed

Slide credit (next few slides): 

A. Efros and/or S. Seitz



Scaling
• Scaling a coordinate means multiplying each of its components by a 

scalar

• Uniform scaling means this scalar is the same for all components:

 2



• Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5



Scaling

• Scaling operation:

• Or, in matrix form:

byy

axx
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scaling matrix S



2-D Rotation (around the origin)



(x, y)

(x’, y’)

x’ = x cos() - y sin()

y’ = x sin() + y cos()



2-D Rotation
This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,

– For a particular , x’ is a linear combination of x and y

– For a particular , y’ is a linear combination of x and y

What is the inverse transformation?

– Rotation by –

– For rotation matrices

   

    














 










y

x

y

x





cossin

sincos

'

'

TRR 1

R



Basic 2D transformations

TranslateRotate

ShearScale
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Affine

Affine is any combination of 

translation, scale, rotation, 

shear



2D Affine Transformations

Affine transformations are combinations of …

• Linear transformations, and

• Translations

Parallel lines remain parallel
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Slide credit: Kristen Grauman



Projective Transformations

Projective transformations:

• Affine transformations, and

• Projective warps

Parallel lines do not necessarily remain parallel
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2D image transformations (reference table)

Szeliski 2.1



Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object
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Example: solving for translation

A1

A2 A3
B1

B2 B3

Least squares solution
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1. Write down objective function

2. Derived solution

a) Compute derivative

b) Compute solution

3. Computational solution

a) Write in form Ax=b

b) Solve using pseudo-inverse or 

eigenvalue decomposition 
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Example: solving for translation

A1

A2 A3
B1

B2 B3

RANSAC solution
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1. Sample a set of matching points (1 pair)

2. Solve for transformation parameters

3. Score parameters with number of inliers

4. Repeat steps 1-3 N times

Problem: outliers
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B4



Example: solving for translation

A1

A2 A3
B1

B2 B3

Hough transform solution
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1. Initialize a grid of parameter values

2. Each matched pair casts a vote for 

consistent values

3. Find the parameters with the most votes

4. Solve using least squares with inliers
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A5 A6

B4

B5 B6

Problem: outliers, multiple objects, and/or many-to-one matches



Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence
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Fitting and Alignment: Methods

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Other parameter search methods

• Hypothesize and test

– Hough transform

– RANSAC

• Iterative Closest Points (ICP)



What if you want to align but have no prior matched pairs?

• Hough transform and RANSAC not applicable

• Important applications

Medical imaging: match brain 

scans or contours

Robotics: match point clouds



Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets 
of points

1. Initialize transformation (e.g., compute difference in means 
and scale)

2. Assign each point in {Set 1} to its nearest neighbor in {Set 2}

3. Estimate transformation parameters 
– e.g., least squares or robust least squares

4. Transform the points in {Set 1} using estimated parameters

5. Repeat steps 2-4 until change is very small



Example: aligning boundaries
1. Extract edge pixels 𝑝1. . 𝑝𝑛 and 𝑞1. . 𝑞𝑚

2. Compute initial transformation (e.g., compute translation and scaling 
by center of mass, variance within each image)

3. Get nearest neighbors: for each point 𝑝𝑖 find corresponding 
match(i) = argmin

𝑗
𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑞𝑗)

4. Compute transformation T based on matches

5. Warp points p according to T

6. Repeat 3-5 until convergence

p
q



Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

xICP solution
1. Find nearest neighbors for each point

2. Compute transform using matches

3. Move points using transform

4. Repeat steps 1-3 until convergence





Algorithm Summaries
• Least Squares Fit 

– closed form solution
– robust to noise
– not robust to outliers

• Robust Least Squares
– improves robustness to outliers
– requires iterative optimization

• Hough transform
– robust to noise and outliers
– can fit multiple models
– only works for a few parameters (1-4 typically)

• RANSAC
– robust to noise and outliers
– works with a moderate number of parameters (e.g, 1-8)

• Iterative Closest Point (ICP)
– For local alignment only: does not require initial correspondences 



Rough count of mentions in recent literature

• Hough: 901 mentions

• RANSAC: 1,690 mentions

• ICP: 895 mentions

• “Least Squares” 2,290 mentions

• “Robust Least Squares” 4 mentions

• Keypoint 2,180 mentions

• SIFT 3,530 mentions

• Affine 2,970

• ResNet: 8,510 mentions

Google search for site:https://openaccess.thecvf.com [term]

Seems to find results since 2013.


