





From last lecture

e Stereo and lidar can fall victim to mirrors?
* Yes, there’s no easy way around that
* https://youtu.be/pBzU8TD1iks



https://youtu.be/pBzU8TD1iks

Outline

e Camera calibration
* Epipolar Geometry



Where do we need to search?




How do we calibrate a camera?
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orld vs Camera coordinates




Slide Credit: Saverese

Projection matrix

X: Image Coordinates: (u,v,1)
X = K[R t] X K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)



Projection matrix

Intrinsic Assumptions Extrinsic Assumptions

* Unit aspect ratio * No rotation
« Optical center at (0,0)  * Cameraat (0,0,0)
* No skew K
L e - < __X_
u :f 0 0,0 y
x:|<[| o]x-}wv=io f oo’
1| [0_0_1:0 .

Slide Credit: Saverese



Remove assumption: known optical center

X

Intrinsic Assumptions Extrinsic Assumptions

* Unit aspect ratio
* No skew

K[l 0]X =pwv

* No rotation
« Camera at (0,0,0)

, N < X




Remove assumption: square pixels

Intrinsic Assumptions Extrinsic Assumptions
* No skew * No rotation
« Camera at (0,0,0)

ul [l 0 U 0
x=K|[l 0]X = wWv|=0 £ v 0
1] [0 0 1'0

L N < X




Remove assumption: non-skewed pixels

X

Intrinsic Assumptions Extrinsic Assumptions
* No rotation
« Camera at (0,0,0)

u] fa s uy O
:K[| O]X# wv|=0 § voi 0
1] [0.0_1}0

Note: different books use different notation for parameters

P N < X




Oriented and Translated Camera




Allow camera translation

Intrinsic Assumptions Extrinsic Assumptions
* No rotation

u a S U, |1 O
x=K[l t|X = wvi=j0 5 v |0 1
1] [0 0 1]0 O

—, O O

N < X




3D Rotation of Points

Slide Credit: Saverese

Rotation around the coordinate axes, counter-clockwise:
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Allow camera rotation

r'12 rELB
r22 r23
r-32 r33

, N < X




Degrees of freedom




Beyond Pinholes: Radial Distortion

e Common in wide-angle lenses or
for special applications (e.g.,
security)

* Creates non-linear terms in
projection

* Usually handled by through solving
for non-linear terms and then
correcting image

No Distortion Barrel Distortion Pincushion Distortion Corrected Barrel Distortion

Image from Martin Habbecke



How to calibrate the camera?

(also called “camera resectioning”)

x=K[R t]|X
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Calibrating the Camera

Use an scene with known geometry
— Correspond image points to 3d points

— Get least squares solution (or non-linear solution)

Known 2d Known 3d
image coords locations
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Unknown Camera Parameters




How do we calibrate a camera?
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Estimate of camera center




Unknown Camera Parameters
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Unknown Camera Parameters

I

1 X
Y | Known 3d
7 | locations

Su my, M, My My,
SVI=[My My My My,

Known 2d
Image coords

| S _ _m31 m32 m33 m34_ 1

M, UX +mMg,uY +myiuZ + my,u=m,X +m.,Y +m,Z +m,
m, VX +mMy,VY +my,vZ +m,v=m, X +m,,Y +m,,Z +m,,
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Unknown Camera Parameters

su
Known 2d
. SV |=
Image coords
S
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Known 3d
locations

O=m, X +m,Y +m,;Z +m,, —my;;VX —my,VY —m,,vZ —m,,V

Method 1 — homogeneous linear
system. Solve for m’s entries using

linear least squares

X, Y, Z, 1 0 0 0 0 -uX,
0 0 0 0 X, Y, Z 1 -vX,
X, Y Z 1 0 0 0 0 -uX,
0 0 0 0 X, VY, Z, 1 -VX,

mll
m12
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14
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- ulzl
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ms, |
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M

y S, V] svd (A) ;
V(:,end);
reshape (M, [1,3)';

For python, see
numpy.linalg.svd



Unknown Camera Parameters

4

X

su mll m12 m13 ml4

Known 2d
Image coords

Known 3d

Y
VA= My My My My, Z | locations
1

S m31 m32 m33 m34 |

e Method 2 — nonhomogeneous
linear system. Solve for m’s entries
using linear least squares

m
Ax=b form mi: M = A\Y;
m, M= [M;1];
Y, Z, 1 0 0 0 0 -uX, -uY, -uZl|m,| [u] M = reshape (M, []1,3)"';
0 O X0 Y Z, 1 —vX, -=vY, -—-Vv.Z |my A
m,, =] :
Y Z 1 0 0 0 0 —-uX, -uY, -uZ Im,| |u For python, see
0 0 Xo Yo Zo 1 =V Xy =VYy =V Z, | my | [V, ] numpy.linalg.Istsq
m31
m32
_m33




Calibration with linear method

* Advantages
— Easy to formulate and solve
— Provides initialization for non-linear methods

* Disadvantages
— Doesn’t directly give you camera parameters
— Doesn’t model radial distortion
— Can’t impose constraints, such as known focal length

* Non-linear methods are preferred
— Define error as difference between projected points and measured points
— Minimize error using Newton’s method or other non-linear optimization



Can we factorize M backto K[R | T]?

* Yes!

* You can use RQ factorization (note — not the more familiar QR
factorization). R (right diagonal) is K, and Q (orthogonal basis)
is R. T, the last column of [R | T], is inv(K) * last column of M.
— But you need to do a bit of post-processing to make sure that the

matrices are valid. See
http://ksimek.github.io/2012/08/14/decompose/



Can we factorize M backto K[R | T]?

* Yes!

* You can use RQ factorization (note — not the more familiar QR
factorization). R (right diagonal) is K, and Q (orthogonal basis)
is R. T, the last column of [R | T], is inv(K) * last column of M.
— But you need to do a bit of post-processing to make sure that the

matrices are valid. See
http://ksimek.github.io/2012/08/14/decompose/



http://ksimek.github.io/2012/08/14/decompose/

For project 3, we want the camera center



Estimate of camera center




Oriented and Translated Camera




Recovering the camera center

X
Y
VA
1

This is not the camera
center -C. It is —RC
x| ~ (because a point will
/ be rotated before t,, t,,
Y| andt, are added)
VA
1

- This, m, isK*t

/ So Klm,ist

So we need
-R1K1tm,togetC

Qis K*R. So we just
need -Q1tm,



Estimate of camera center




Epipolar Geometry and
Stereo Vision

Chapter 11.2 in Szeliski

Many slides adapted from Derek Hoiem, Lana Lazebnik, Silvio Saverese, Steve Seitz, many figures from Hartley & Zisserman



* Epipolar geometry

— Relates cameras from two positions



Depth from Stereo

e Goal: recover depth by finding image coordinate x’ that corresponds to
X

C Baseline 'C’
B



Depth from Stereo

e Goal: recover depth by finding image coordinate x” that
corresponds to x
e Sub-Problems

1. Calibration: How do we recover the relation of the cameras (if
not already known)?

2. Correspondence: How do we search for the matching point x’?

X




Correspondence Problem

* We have two images taken from cameras with different
intrinsic and extrinsic parameters

* How do we match a point in the first image to a point in the
second? How can we constrain our search?



Where do we need to search?




Key idea: Epipolar constraint



Key idea: Epipolar constraint

Potential matches for x have to lie on the corresponding line /’.

Potential matches for x’” have to lie on the corresponding line .



Wouldn’t it be nice to know where
matches can live? To constrain our 2d
search to 1d.
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VLFeat’s 800 most confident matches
among 10,000+ local features.

= P
- 4
A e
m— o = t
— e s -
/ = Z o
= %




Epipolar geometry: notation

X

4

n e e@

O

» Baseline — line connecting the two camera centers
* Epipoles

= intersections of baseline with image planes

= projections of the other camera center

* Epipolar Plane — plane containing baseline (1D family)



Epipolar geometry: notation

X

4

n e e@

O

» Baseline — line connecting the two camera centers
* Epipoles

= intersections of baseline with image planes

= projections of the other camera center

* Epipolar Plane — plane containing baseline (1D family)

» Epipolar Lines - intersections of epipolar plane with image
planes (always come in corresponding pairs)




Example: Converging cameras




Example: Motion parallel to image plane




Example: Forward motion

What would the epipolar lines look like if the camera moves
directly forward?



Example: Forward motion

e

Epipole has same coordinates in both
images.

Points move along lines radiating from e:
“Focus of expansion”




Epipolar constraint: Calibrated case

X

(@)

Given the intrinsic parameters of the cameras:

1. Convert to normalized coordinates by pre-multiplying all points with the
inverse of the calibration matrix; set first camera’s coordinate system to
world coordinates

\/ -1 ol =1,/ /
X=K7Xx=X _ X'=K™x'=X
: 3D int
Homogeneous 2d point \ stene poin \
(3D ray towards X) 2D pixel coordinate 3D scene point in 2

(homogeneous) camera’s 3D coordinates



Epipolar constraint: Calibrated case

X

(@)

Given the intrinsic parameters of the cameras:

1. Convert to normalized coordinates by pre-multiplying all points with the

inverse of the calibration matrix; set first camera’s coordinate system to
world coordinates

2. Define some R and t that relate X to X’ as below

- for some scale factor\

A -1 a1 =1,/

X=K X=X X'=K'™X
5!

X=RX"+t

= X'



Epipolar constraint: Calibrated case

X

X=K*x=X X'=K'™*x'=X'

R=RX'+t W)  R-[tx(RX)]=0

(because X, Rx’', and t are co-planar)




Essential matrix

!!

L e el

(@)

Rtx(RE)]=0 mm) RK'EXR'=0 with E=[t| R

. .

Essential Matrix
(Longuet-Higgins, 1981)




Properties of the Essential matrix

X
X x’
[ [
o e [ .
R-[tx(RR)]=0 ®mmy R"EX'=0 with E=[t|R
Drop * below to simplify notation \

E x” is the epipolar line associated with x” (/ = E x’) Skew-

E'x is the epipolar line associated with x (I’ = E'x) symmetric

Ee’=0 and E'e=0 matrix

E is singular (rank two)

E has five degrees of freedom
— (3 forR, 2 for t because it’s up to a scale)



The Fundamental Matrix

Without knowing K and K’, we can define a similar
relation using unknown normalized coordinates

okl = X' Fx'=0 with F=KTEK'™
Kr—l l

Fundamental Matrix
(Faugeras and Luong, 1992)




Properties of the Fundamental matrix

e e
O OF

X' FxX'=0 with F=KTEK'™?

« F x’=0is the epipolar line associated with x’

 FT™x =0 is the epipolar line associated with x

« Fe’'=0 and F'e=0

» Fis singular (rank two): det(F)=0

* F has seven degrees of freedom: 9 entries but defined up to scale, det(F)=0




Estimating the Fundamental Matrix

e 8-point algorithm
— Least squares solution using SVD on equations from 8 pairs of correspondences
— Enforce det(F)=0 constraint using SVD on F

e 7-point algorithm
— Use least squares to solve for null space (two vectors) using SVD and 7 pairs of
correspondences

— Solve for linear combination of null space vectors that satisfies det(F)=0

* Minimize reprojection error
— Non-linear least squares

Note: estimation of F (or E) is degenerate for a planar scene.



8-point algorithm

1. Solve a system of homogeneous linear equations

d.

Write down the system of equations

X'Fx'=0

uu'fig +uv'fi; +ufiz +vu'fo; +vvfor +vfos Hu'fz; V' far +f33=0

Af

Uy Uy Uy ViU ViV Vo U

i uTl ull? un le , uTl v‘l’l uTl , vn v’l’l , v’l’l uTl

!/

!/
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Un

!

1

1_

f11]

1[/12

f13
fr

-f33-



8-point algorithm

1. Solve a system of homogeneous linear equations
a. Write down the system of equations
b. Solve f from Af=0 using SVD

Matlab:

[U, S, V] = svd(Ad);

f V(:, end);

F reshape (£, [3 31)';

For python, see
numpy.linalg.svd



Need to enforce singularity constraint

Fundamental matrix has rank 2 : det(F) = 0.

Vst
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Left : Uncorrected F — epipolar lines are not coincident.

Right: Epipolar lines from corrected F.



8-point algorithm

1. Solve a system of homogeneous linear equations
a. Write down the system of equations

b. Solve f from Af=0 using SVD

Matlab:
[U, S, V] = svd(A);

f =V(:, end);
F reshape (f, [3 3])’;

2. Resolve det(F) = 0 constraint using SVD

Matlab:
(U, S, V] = svd(F); h
S(3,3) = 0; For python, see

F = U*S*V’; numpy.linalg.svd



8-point algorithm

1. Solve a system of homogeneous linear equations

a. Write down the system of equations
b. Solve f from Af=0 using SVD

2. Resolve det(F) = 0 constraint by SVD

Notes:

 Use RANSAC to deal with outliers (sample 8 points)
— How to test for outliers?



How to test for outliers?

= :ﬂ)

t3 L4
e

The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and
7 were incorrect (highlighted in red).

Project 2: Local Feature Matching



Problem with eight-point algorithm
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Problem with eight-point algorithm

250906, 36| 153269.57 921.81| 200931.10| 146766.13 738,21 272,19 1958. 81
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Poor numerical conditioning

Can be fixed by rescaling the data
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The normalized eight-point algorithm

(Hartley, 1995)

« Center the image data at the origin, and scale it so
the mean squared distance between the origin and
the data points is 2 pixels

« Use the eight-point algorithm to compute F from the
normalized points

« Enforce the rank-2 constraint (for example, take SVD
of F and throw out the smallest singular value)

« Transform fundamental matrix back to original units:
If T and T’ are the normalizing transformations in the
two images, than the fundamental matrix in original
coordinatesis TTF T
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Epipolar lines




Keep only the matches at are “inliers” with

respect to the “best” fundamental matrix
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