

From last lecture

- Stereo and lidar can fall victim to mirrors?
- Yes, there's no easy way around that
- https://youtu.be/pBzU8TD1iks

Outline

- Camera calibration
- Epipolar Geometry

Where do we need to search?

How do we calibrate a camera?

World vs Camera coordinates

Projection matrix

$$x = K[R \ t]X$$

x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

Projection matrix

- Unit aspect ratio
- Optical center at (0,0)
- No skew

Intrinsic Assumptions Extrinsic Assumptions

K

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Slide Credit: Saverese

Remove assumption: known optical center

Intrinsic Assumptions Extrinsic Assumptions

- Unit aspect ratio
- No skew

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & u_0 & 0 \\ 0 & f & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: square pixels

Intrinsic Assumptions Extrinsic Assumptions

No skew

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: non-skewed pixels

Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Note: different books use different notation for parameters

Oriented and Translated Camera

Allow camera translation

Intrinsic Assumptions Extrinsic Assumptions
• No rotation

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$R_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Allow camera rotation

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$

$$w\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Degrees of freedom

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Beyond Pinholes: Radial Distortion

- Common in wide-angle lenses or for special applications (e.g., security)
- Creates non-linear terms in projection
- Usually handled by through solving for non-linear terms and then correcting image

Corrected Barrel Distortion

How to calibrate the camera? (also called "camera resectioning")

$$x = K[R t]X$$

Calibrating the Camera

Use an scene with known geometry

- Correspond image points to 3d points
- Get least squares solution (or non-linear solution)

How do we calibrate a camera?

Known 2d Known 3d Iocations

Estimate of camera center

Known 2d image coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 Known 3d locations

$$su = m_{11}X + m_{12}Y + m_{13}Z + m_{14}$$

$$sv = m_{21}X + m_{22}Y + m_{23}Z + m_{24}$$

$$s = m_{31}X + m_{32}Y + m_{33}Z + m_{34}$$

$$(m_{31}X + m_{32}Y + m_{33}Z + m_{34})u = m_{11}X + m_{12}Y + m_{13}Z + m_{14}$$

$$(m_{31}X + m_{32}Y + m_{33}Z + m_{34})v = m_{21}X + m_{22}Y + m_{23}Z + m_{24}$$

$$m_{31}uX + m_{32}uY + m_{33}uZ + m_{34}u = m_{11}X + m_{12}Y + m_{13}Z + m_{14}$$

$$m_{31}vX + m_{32}vY + m_{33}vZ + m_{34}v = m_{21}X + m_{22}Y + m_{23}Z + m_{24}$$

Known 2d image coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 Known 3d locations

$$m_{31}uX + m_{32}uY + m_{33}uZ + m_{34}u = m_{11}X + m_{12}Y + m_{13}Z + m_{14}$$

 $m_{31}vX + m_{32}vY + m_{33}vZ + m_{34}v = m_{21}X + m_{22}Y + m_{23}Z + m_{24}$

$$0 = m_{11}X + m_{12}Y + m_{13}Z + m_{14} - m_{31}uX - m_{32}uY - m_{33}uZ - m_{34}u$$

$$0 = m_{21}X + m_{22}Y + m_{23}Z + m_{24} - m_{31}vX - m_{32}vY - m_{33}vZ - m_{34}v$$

Known 2d image coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 Known 3d locations
$$0 = m_1 X + m_2 Y + m_3 Z + m_4 - m_4 X - m_4 Y - m_4 Z - m_4 Y$$

$$0 = m_{11}X + m_{12}Y + m_{13}Z + m_{14} - m_{31}uX - m_{32}uY - m_{33}uZ - m_{34}u$$

$$0 = m_{21}X + m_{22}Y + m_{23}Z + m_{24} - m_{31}vX - m_{32}vY - m_{33}vZ - m_{34}v$$

 m_{34}

 Method 1 – homogeneous linear system. Solve for m's entries using linear least squares

Innear least squares
$$\begin{bmatrix} X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & -u_1X_1 & -u_1Y_1 & -u_1Z_1 & -u_1 \\ 0 & 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -v_1X_1 & -v_1Y_1 & -v_1Z_1 & -v_1 \\ \vdots & & & & & & & \\ X_n & Y_n & Z_n & 1 & 0 & 0 & 0 & -u_nX_n & -u_nY_n & -u_nZ_n & -u_n \\ 0 & 0 & 0 & 0 & X_n & Y_n & Z_n & 1 & -v_nX_n & -v_nY_n & -v_nZ_n & -v_n \end{bmatrix} \begin{bmatrix} M & = & \forall \text{ (:,end);} \\ m_{14} \\ m_{21} \\ m_{22} \\ m_{23} \\ m_{31} \\ m_{32} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

For python, see numpy.linalg.svd

Known 2d image coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 Known 3d locations

Method 2 – nonhomogeneous linear system. Solve for m's entries using linear least squares

Calibration with linear method

- Advantages
 - Easy to formulate and solve
 - Provides initialization for non-linear methods
- Disadvantages
 - Doesn't directly give you camera parameters
 - Doesn't model radial distortion
 - Can't impose constraints, such as known focal length
- Non-linear methods are preferred
 - Define error as difference between projected points and measured points
 - Minimize error using Newton's method or other non-linear optimization

Can we factorize M back to K [R | T]?

- Yes!
- You can use RQ factorization (note not the more familiar QR factorization). R (right diagonal) is K, and Q (orthogonal basis) is R. T, the last column of [R | T], is inv(K) * last column of M.
 - But you need to do a bit of post-processing to make sure that the matrices are valid. See http://ksimek.github.io/2012/08/14/decompose/

Can we factorize M back to K [R | T]?

- Yes!
- You can use RQ factorization (note not the more familiar QR factorization). R (right diagonal) is K, and Q (orthogonal basis) is R. T, the last column of [R | T], is inv(K) * last column of M.
 - But you need to do a bit of post-processing to make sure that the matrices are valid. See

http://ksimek.github.io/2012/08/14/decompose/

For project 3, we want the camera center

Estimate of camera center

Oriented and Translated Camera

Recovering the camera center

Estimate of camera center

Epipolar Geometry and Stereo Vision

Chapter 11.2 in Szeliski

- Epipolar geometry
 - Relates cameras from two positions

Depth from Stereo

Goal: recover depth by finding image coordinate x' that corresponds to

Depth from Stereo

- Goal: recover depth by finding image coordinate x' that corresponds to x
- Sub-Problems
 - 1. Calibration: How do we recover the relation of the cameras (if not already known)?
 - 2. Correspondence: How do we search for the matching point x'?

Correspondence Problem

- We have two images taken from cameras with different intrinsic and extrinsic parameters
- How do we match a point in the first image to a point in the second? How can we constrain our search?

Where do we need to search?

Key idea: Epipolar constraint

Key idea: Epipolar constraint

Potential matches for *x* have to lie on the corresponding line *l*'.

Potential matches for *x'* have to lie on the corresponding line *l*.

Wouldn't it be nice to know where matches can live? To constrain our 2d search to 1d.

VLFeat's 800 most confident matches among 10,000+ local features.

Epipolar geometry: notation

- Baseline line connecting the two camera centers
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- **Epipolar Plane** plane containing baseline (1D family)

Epipolar geometry: notation

- Baseline line connecting the two camera centers
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- Epipolar Plane plane containing baseline (1D family)
- **Epipolar Lines** intersections of epipolar plane with image planes (always come in corresponding pairs)

Example: Converging cameras

Example: Motion parallel to image plane

Example: Forward motion

What would the epipolar lines look like if the camera moves directly forward?

Example: Forward motion

Epipole has same coordinates in both images.

Points move along lines radiating from e: "Focus of expansion"

Epipolar constraint: Calibrated case

Given the intrinsic parameters of the cameras:

1. Convert to normalized coordinates by pre-multiplying all points with the inverse of the calibration matrix; set first camera's coordinate system to world coordinates

$$\hat{x} = K^{-l} x = X$$
 3D scene point (3D ray towards X) 2D pixel coordinate (homogeneous)

$$\hat{x}' = K'^{-1}x' = X'$$

3D scene point in 2nd camera's 3D coordinates

Epipolar constraint: Calibrated case

Given the intrinsic parameters of the cameras:

- 1. Convert to normalized coordinates by pre-multiplying all points with the inverse of the calibration matrix; set first camera's coordinate system to world coordinates
- 2. Define some *R* and *t* that relate X to X' as below

$$\hat{x} = K^{-1}x = X$$
 for some scale factor
$$\hat{x}' = K'^{-1}x' = X'$$

$$\hat{x} = R\hat{x}' + t$$

Epipolar constraint: Calibrated case

$$\hat{x} = K^{-1}x = X$$

$$\hat{x}' = K'^{-1}x' = X'$$

$$\hat{x} = R\hat{x}' + t \qquad \qquad \hat{x} \cdot [t \times (R\hat{x}')] = 0$$

(because \hat{x} , $R\hat{x}'$, and t are co-planar)

Essential matrix

Essential Matrix

(Longuet-Higgins, 1981)

Properties of the Essential matrix

- E x' is the epipolar line associated with x' (I = E x')
- E^Tx is the epipolar line associated with $x(I' = E^Tx)$
- Ee'=0 and $E^Te=0$
- E is singular (rank two)
- E has five degrees of freedom
 - (3 for R, 2 for t because it's up to a scale)

Skewsymmetric matrix

The Fundamental Matrix

Without knowing K and K', we can define a similar relation using *unknown* normalized coordinates

$$\hat{x}^T E \hat{x}' = 0$$

$$\hat{x} = K^{-1} x$$

$$\hat{x}' = K'^{-1} x'$$
with $F = K^{-T} E K'^{-1}$

Fundamental Matrix

(Faugeras and Luong, 1992)

Properties of the Fundamental matrix

- Fx' = 0 is the epipolar line associated with x'
- $F^Tx = 0$ is the epipolar line associated with x
- Fe' = 0 and $F^{T}e = 0$
- F is singular (rank two): det(F)=0
- F has seven degrees of freedom: 9 entries but defined up to scale, det(F)=0

Estimating the Fundamental Matrix

- 8-point algorithm
 - Least squares solution using SVD on equations from 8 pairs of correspondences
 - Enforce det(F)=0 constraint using SVD on F
- 7-point algorithm
 - Use least squares to solve for null space (two vectors) using SVD and 7 pairs of correspondences
 - Solve for linear combination of null space vectors that satisfies det(F)=0
- Minimize reprojection error
 - Non-linear least squares

Note: estimation of F (or E) is degenerate for a planar scene.

8-point algorithm

- 1. Solve a system of homogeneous linear equations
 - a. Write down the system of equations

$$\mathbf{x}^T F \mathbf{x}' = 0$$

$$uu' f_{11} + uv' f_{12} + u f_{13} + v u' f_{21} + v v' f_{22} + v f_{23} + u' f_{31} + v' f_{32} + f_{33} = 0$$

$$\mathbf{A}\boldsymbol{f} = \begin{bmatrix} u_{1}u_{1}' & u_{1}v_{1}' & u_{1} & v_{1}u_{1}' & v_{1}v_{1}' & v_{1} & u_{1}' & v_{1}' & 1 \\ \vdots & \vdots \\ u_{n}u_{v}' & u_{n}v_{n}' & u_{n} & v_{n}u_{n}' & v_{n}v_{n}' & v_{n} & u_{n}' & v_{n}' & 1 \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ \vdots \\ f_{33} \end{bmatrix} = \mathbf{0}$$

8-point algorithm

- 1. Solve a system of homogeneous linear equations
 - a. Write down the system of equations
 - b. Solve f from Af=0 using SVD

Matlab:

```
[U, S, V] = svd(A);
f = V(:, end);
F = reshape(f, [3 3])';
```

For python, see numpy.linalg.svd

Need to enforce singularity constraint

Fundamental matrix has rank 2 : det(F) = 0.

Left: Uncorrected F – epipolar lines are not coincident.

Right: Epipolar lines from corrected F.

8-point algorithm

- 1. Solve a system of homogeneous linear equations
 - a. Write down the system of equations
 - b. Solve f from Af=0 using SVD

Matlab:

```
[U, S, V] = svd(A);
f = V(:, end);
F = reshape(f, [3 3])';
```

2. Resolve det(F) = 0 constraint using SVD

Matlab:

```
[U, S, V] = svd(F);
S(3,3) = 0;
F = U*S*V';
```

For python, see numpy.linalg.svd

8-point algorithm

- 1. Solve a system of homogeneous linear equations
 - a. Write down the system of equations
 - b. Solve **f** from A**f=0** using SVD
- 2. Resolve det(F) = 0 constraint by SVD

Notes:

- Use RANSAC to deal with outliers (sample 8 points)
 - How to test for outliers?

How to test for outliers?

The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and 7 were incorrect (highlighted in red).

Project 2: Local Feature Matching

Problem with eight-point algorithm

with eight-point algorithm
$$\begin{bmatrix} u'u & u'v & u' & v'u & v'v & v' & u & v \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \end{bmatrix} = -1$$

Problem with eight-point algorithm

250906.36	183269.57	921.81	200931.10	146766.13	738.21	272.19	198.81
2692.28	131633.03	176.27	6196.73	302975.59	405.71	15.27	746.79
416374.23	871684.30	935.47	408110.89	854384.92	916.90	445.10	931.81
191183.60	171759.40	410.27	416435.62	374125.90	893.65	465.99	418.65
48988.86	30401.76	57.89	298604.57	185309.58	352.87	846.22	525.15
164786.04	546559.67	813.17	1998.37	6628.15	9.86	202.65	672.14
116407.01	2727.75	138.89	169941.27	3982.21	202.77	838.12	19.64
135384.58	75411.13	198.72	411350.03	229127.78	603.79	681.28	379.48

Poor numerical conditioning

Can be fixed by rescaling the data

The normalized eight-point algorithm

(Hartley, 1995)

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels
- Use the eight-point algorithm to compute *F* from the normalized points
- Enforce the rank-2 constraint (for example, take SVD of *F* and throw out the smallest singular value)
- Transform fundamental matrix back to original units:
 if *T* and *T'* are the normalizing transformations in the
 two images, than the fundamental matrix in original
 coordinates is *T'^T F T*

VLFeat's 800 most confident matches among 10,000+ local features.

Epipolar lines

Keep only the matches at are "inliers" with respect to the "best" fundamental matrix

