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Variations on the Hermann grid: an extinction illusion
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Abstract. When the white disks in a scintillating grid are reduced in size, and outlined in black,
they tend to disappear. One sees only a few of them at a time, in clusters which move erratically
on the page. Where they are not seen, the grey alleys seem to be continuous, generating grey
crossings that are not actually present. Some black sparkling can be seen at those crossings
where no disk is seen. The illusion also works in reverse contrast.

The Hermann grid (Brewster 1844; Hermann 1870) 1s a robust illusion. It 1s classically
presented as a two-dimensional array of black squares, separated by rectilinear alleys.
It 1s thought to be caused by processes of local brightness computation in arrays of



Fundamental matrix

Let p be a point in left image, p’in right image

Epipolar relation
* p maps to epipolar line /’
« p’maps to epipolar line |
Epipolar mapping described by a 3x3 matrix F

p’Fp=0



Fundamental matrix

This matrix F iIs called

 the “Essential Matrix”
— when image intrinsic parameters are known

* the “Fundamental Matrix”
— more generally (uncalibrated case)

Can solve for F from point correspondences
« Each (p, p’) pair gives one linear equation in entries of F

p’Fp=0

* F has 9 entries, but really only 7 or 8 degrees of freedom.

« With 8 points it is simple to solve for F, but it is also possible with 7. See Marc
Pollefey’s notes for a nice tutorial



http://cs.unc.edu/~marc/tutorial/node53.html

The scale of algorithm name quality

better RANSAC
SIFT

Deep Learning

Optical Flow
Hough Transform

Neural Networks
Essential and Fundamental Matrix

WOrse Dynamic Programming



Today’s lecture

e Stereo Matching (Sparse correspondence to Dense
Correspondence)

* Next lecture: Optical Flow (Dense motion estimation)



Stereo Matching




Stereo image rectification




Stereo image rectification

e Reproject image planes
onto a common plane
arallel to the line
etween camera centers
0\\\ \\\\\\\\\

* Pixel motion is horizontal
after this transformation

At

e Two homographies (3x3
transform), one for each
iInput image reprojection

» C. Loop and Z. Zhang. Computing
Rectifying Homographies for Stereo
Vision. [EEE Cont. Computer Vision

and Pattern Recognition, 1999.



http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

Rectification example




The correspondence problem

e Epipolar geometry constrains our search, but we still have a
difficult correspondence problem.



Fundamental Matrix + Sparse correspondence

Photo Tourism

Exploring photo collections in 3D

Noah Snavely Steven M. Seitz  Richard Szeliski
University of Washington Microsoft Research

SIGGRAPH 2006




Fundamental Matrix + Dense correspondence

The Visual Turing Test for Scene Reconstruction
Supplementary Video

Qi Shan” Riley Adams™  Brian Curless’

Yasutaka Furukawa® Steve Seitz™*

+University of Washington *Google

3DV 2013




SIFT + Fundamental Matrix + RANSAC

Despite their scale invariance and robustness to appear-
ance changes, SIFT features are /ocal and do not contain
any global information about the image or about the loca-
tion of other features in the image. Thus feature matching
based on SIFT features is still prone to errors. However,
since we assume that we are dealing with rigid scenes,
there are strong geometric constraints on the locations of
the matching features and these constraints can be used to
clean up the matches. In particular, when a rigid scene is
imaged by two pinhole cameras, there exists a 3 x 3 matrix
F, the Fundamental matrix, such that corresponding points
x; and x, (represented in homogeneous coordinates) in two
images j and k satisfy':

T, _
X, Fx; =0. (3)

A common way to impose this constraint is to use a greedy
randomized algorithm to generate suitably chosen ran-
dom estimates of F and choose the one that has the larg-
est support among the matches, i.e., the one for which the
most matches satisfy (3). This algorithm is called Random
Sample Consensus (RANSAC)® and is used in many com-
puter vision problems.

Building Rome in a Day

By Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, lan Simon, Brian Curless, Steven M. Seitz, Richard Szeliski
Communications of the ACM, Vol. 54 No. 10, Pages 105-112. October 2011.



Sparse to Dense Correspodence

Input images StM points MVS points

Colosseum

St. Peter'’s

Building Rome in a Day
By Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, lan Simon, Brian Curless, Steven M. Seitz, Richard Szeliski
Communications of the ACM, Vol. 54 No. 10, Pages 105-112



Structure from motion (or SLAM)

e Given a set of corresponding points in two or more
images, compute the camera parameters and the 3D

point coordinates
? c‘o
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Structure from motion ambiguity

e If we scale the entire scene by some factor k and, at the same
time, scale the camera matrices by the factor of 1/k, the
projections of the scene points in the image remain exactly the

Same.:

X =PX = G Pj(kX)

It is Impossible to recover the absolute scale of the scene!



How do we know the scale of image content?
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Bundle adjustment

e Non-linear method for refining structure and motion

e Minimizing reprojection error ,

E(P, X) = Zm:Z D(x,,P.X;)

X

M Ps

P,




Correspondence problem

Multiple match
° Hypothesis1 hypOtheseS
© Hypothesis 2 . .
satisfy epipolar
constraint, but
which iIs correct?

O Hypothesis 3

O, Left image Right image

Figure from Gee & Cipolla 1999



Correspondence problem

- Beyond the hard constraint of epipolar geometry, there are “soft” constraints to
help identify corresponding points
- Similarity
- Uniqueness
- Ordering
- Disparity gradient

- To find matches in the image pair, we will assume
- Most scene points visible from both views
- Image regions for the matches are similar in appearance



Dense correspondence search

P HON. ABRAIIAM LINCOLN, President of United States. -'-'.1‘

)

For each epipolar line

For each pixel / window 1n the left image

« compare with every pixel / window on same epipolar line
in right image

 pick position with minimum match cost (e.g., SSD,
normalized correlation)

Adapted from Li Zhang



Correspondence search with similarity constraint

Left Right

scanline

Matching cost h
/\/\{ disparity

- Slide a window along the right scanline and compare
contents of that window with the reference window in

the left image
- Matching cost: SSD or normalized correlation




Correspondence search with similarity constraint

Left Right

scanline

SSD



Correspondence search with similarity constraint

Left | Right

scanline

Norm. corr



Correspondence problem

|

Intensity -~
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* Clear correspondence betweenintensutles but also noise and ambiguity

Source: Andrew Zisserman



Correspondence problem

Neighborhoods of corresponding points are
similar in intensity patterns.

Source: Andrew Zisserman



Correlation-based window matching
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Correlation-based window matching




Correlation-based window matching

right image band (x’)

Cross
correlation

disparity = x/ - x






Correlatlon based wmdow matching

0.5

A M

. | / target region

left image band (x)

L — e P
T 277

Cross
correlation

UU\/V V \/ M'Xz

Textureless regions are
non-distinct; high
ambiguity for matches.




Effect of window size

epipolar
line

Source: Andrew Zisserman



Effect of window size

W=3 W =20

Want window large enough to have sufficient intensity
variation, yet small enough to contain only pixels with
about the same dispatrity.

Figures from Li Zhang



 Left image | ~Right image




Results with window search

Window-based matching Ground truth
(best window size)



Better solutions

- Beyond individual correspondences to estimate disparities:

- Optimize correspondence assignments jointly
- Scanline at a time (e.g. dynamic programming)
- Full 2D grid (e.g. graph cuts)
- Approximate 2D solution (e.g. semi-global matching)



Scanline stereo

- Try to coherently match pixels on the entire scanline
- Different scanlines are still optimized independently

 Left image | ~Right image
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Robert Collins

e rensee Matching using Epipolar Lines
Lftlmage “ - Rightlage “

For a patch in left image

Compare with patches along
same row in right image

Match Score Values



Robert Collins

e rensee Matching using Epipolar Lines
Lftlmage “ - Rightlage “

Select patch with highest
match score.

Repeat for all pixels in
left image.

Match Score Values



Robert Callins Example: 5x5 windows
NCC match score

Corﬁputﬁed dlsbaf;tles - Ground truth

Black pixels: bad disparity values,
or no matching patch in right image



- No matches

Occlusions

CSEA486, Penn State

Robert Collins

B AR AR L AR ARRSY,




Robert Collins

CSEA486, Penn State EffeCtS Of PatCh Size

- .t 5 : 'l.-
P R

- ] . L R L . - L
1 Ly . 5 | P e ] R v
Pt o e R i reetal gt ey e L

5x5patches | “11x11patches

Smoother in some areas |_oss of finer details



Robert Collins

CSE486, PennStAdding |ntra-Scan|ine COnSlStenCy

So far, each left image patch has been matched
Independently along the right epipolar line.

This can lead to errors.

We would like to enforce some consistency
among matches in the same row (scanline).



Robert Collins

CSE486, Penn State D|Spar|ty Space Image

First we introduce the concept

of DSI.

The DSI for one row represents pairwise match scores
between patches along that row in the left and right image.

Pixels along left scanline

Pixel i

1

Pixels along right scanline

v

C(i,J) = Match score
for patch centered
at left pixel i with
patch centered at
right pixel j.



Robert Collins

CSE486, Penn State DISpa”ty Space Image (DSI)

Left Image Right Image

——

Dissimilarity Values
(1-NCC) or SSD



Robert Collins

CSE486, Penn State DISpa”ty Space Image (DSI)

Left Image Right Image

——

Dissimilarity Values
(1-NCC) or SSD



Robert Collins

CSE486, Penn State DISpa”ty Space Image (DSI)

Left Image Right Image

——

Dissimilarity Values
(1-NCC) or SSD



Robert Collins

CSE486, Penn State Dlsparlty Space Image (DSI)

Left Image

DSI

Enter each vector of

match scores as a

Dissimilarity Values

column in the DSI



Robert Collins - -
CSE486, Penn State Dlsparlty Space I mage
Left scanline

LWL BN

Right scanline
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Left scanline

Invalid entries due to constraint
that disparity <= high value
64 in this case)

Right scanline

Invalid entries due to constraint
that disparity >= low value
(0 in this case)



Robert Collins

CSE486, Penn State DS' and Scanline ConSiStenCy

Assigning disparities to all pixels in left scanline now
amounts to finding a connected path through the DSI




Robert Collins

CSE486, Penn State |_owest Cost Path

We would like to choose the “best” path.

Want one with lowest “cost” (Lowest sum of
dissimilarity scores along the path)




Robert Collins

CSE486, Penn State Cox et.al. Stereo Matchin g

i-1,j-1 i1,
from right ?

Occluded Occluded

from left from left
© -1 ii
Three cases: ) Occluded h
from right

— Matching patches. Cost = dissimilarity score
— Occluded from right. Cost is some constant value.
— Occluded from left. Cost is some constant value.

C(i,j))= min([ C(i-1,j-1) + dissimilarity(i,j)
C(i-1,)) + occlusionConstant,
C(i,j-1) + occlusionConstant]);




Robert Collins

CSEA486, Penn State COX et. al . Ste reo M atCh i n g

Recap: want to find lowest
cost path from upper left to
lower right of DSI image.

At each point on the path we
have three choices: step left,
step down, step diagonally.

Each choice has a well-defined
cost associated with it.

This problem just screams out for Dynamic Programming!
(which, indeed, is how Cox et.al. solve the problem)



Robert Collins

CSE486, Penn State Real Scan I i ne Exam ple
DS DP cost matrix

(cost of optimal path from each point to END)

Every pixel in left column now is marked with
either a disparity value, or an occlusion label.

Proceed for every scanline in left image.



Robert Collins

CSEA486, Penn State Exam p I e

Result of DP alg Result without DP (independent pi




Robert Collins

CSE486, Penn State OCCIUSlOn Fl”lng

Simple trick for filling in gaps caused by occlusion.

. = left occluded

Fill in left occluded pixels with value from the
nearest valid pixel preceding it in the scanline.

Similarly, for right occluded, look for valid pixel to the right.




Robert Collins

CSE486, Penn State Exam p I e

Result of DP alg with occlusion filling.



Robert Collins

CSE486, Penn State Exam p I e

Result of DP alg with occlusion filling. Rsult without D

= -




Robert Collins

CSE486, Penn State Exam p I e

Result of DP alg with occlusion filling. Ground truth




Stereo with 2D smoothness constraint

F=F" HON. ABRAIIAM LINCOLN, President of United States. |

-

- What defines a good stereo correspondence?
1. Match quality
Want each pixel to find a good match in the other image

2. Smoothness

If two pixels are adjacent, they should (usually) move about
the same amount



Optimizing for match quality and smoothness (|n any dlrectlon)

E = Edata(ll’ |2’ D) +/BEsmooth(D)

Edata Z(W (I) -W (I + D(I)))

smooth

> p(D(i) - D(j))

neighborsi,

- Energy functions of this form can be minimized using

graph cuts

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate
Eneray Minimization via Graph Cuts. PAMI 2001  squrce: Steve Seits



http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

Results with window search

Window-based matching Ground truth
(best window size)



Better results. ..

Graph cut method Ground truth

Boykov et al., Fast Approximate Energy Minimization via Graph Cuts,
International Conference on Computer Vision, September 1999.

For the latest and greatest: http://www.middlebury.edu/stereo/



http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf
http://www.middlebury.edu/stereo/

Semi-global matching

E(D):Z(C(PaDp g Z Py T[|Dp — Dq| = 1]
q€Np

p
+ > P T[|Dp — Dg| > 1])

qc€Np

Approximate the full smoothness optimization by

considering 8 or 16 directions in two or three

passes.

Optimization looks like scanline, dynamic -~
programming stereo, but with a 2d notion of AR
smoothness

Stereo Processing by Semi-Global Matching and Mutual Information. Hirschmuller,
PAMI 2007. ~4000 citations



Semi-global matching




Stereo Depth Estimation Challenges

- Low-contrast ; textureless image regions

- Occlusions

- Violations of brightness constancy (e.g., specular reflections)

- Really large baselines (foreshortening and appearance change)
- Camera calibration errors



Active stereo with structured light

* Project “structured” light patterns onto the object
« Simplifies the correspondence problem
» Allows us to use only one camera

camera

[+

projector

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured
Light and Multi-pass Dynamic Programming. 3DPVT 2002



http://grail.cs.washington.edu/projects/moscan/

Kinect: Structured infrared light

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/



http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

IPhone X

1Phone 12 switched to lidar
(time of flight)



Argo uses both

Examples of state of the art stereo and state of the art lidar
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