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Outline

* Neural Networks (covered in previous lecture)
* Convolutional Neural Networks
*Visualization and interpretation of Deep Networks



Key Idea: Wiggle To Decrease Loss

Let's say we want to decrease the loss by adjusting W1 E
We could consider a very small e=1e-6 and compute:

L(x,y;0)

L(x,y;0\W, W, +¢)

I

Then, update:

W:,]'(_W:,]'_I_Esgn([‘(x?y; 9)_L(x? y;e\W:,j’ Wt’,j_l_e)) 20
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Outline

« Convolutional Neural Networks
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Fully Connected Layer

Example: 200x200 image
- 40K hidden units
m) ~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough

- 33
training samples anyway.. Ranzatol3
anzato



Locally Connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
. when input image is registered (e.9.,

face recognition). Ranzaton




Locally Connected Layer

STATIONARITY? Statistics is similar at
different locations

Example: 200x200 image
\ 40K hidden units
. Filter size: 10x10

ary, . 4M parameters

Note: This parameterization is good
when input image is registered (e.g., s
face recognition). Ranzaton




Convolutional Layer

Share the same parameters across
different locations (assuming input is

| 14 stationary):
"\ Convolutions with learned kernels
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Convolutional Layer
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Convolutional Layer

Learn multiple filters.

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters
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Convolutional Layer

K
n__ n—1 n
h'=max (0, D B xwy)

/

output input feature kernel
feature map map

Conv.
layer
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Convolutional Layer

K
n__ n—1 n
h'=max (0, D B xwy)

/

output input feature kernel
feature map map
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Convolutional Layer

K
n__ n—1 n
h'=max (0, D B xwy)

/

output input feature kernel
feature map map
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Convolutional Layer

Question: What is the size of the output? What's the computational
cost?

Answer: It is proportional to the number of filters and depends on the
stride. If kernels have size KxK, input has size DxD, stride is 1, and
there are M input feature maps and N output feature maps then:

- the input has size M@DxD

- the output has size N@(D-K+1)x(D-K+1)

- the kernels have MxNxKxK coeftficients (which have to be learned)

- cost: M*K*K*N*(D-K+1)*(D-K+1)

Question: How many feature maps? What's the size of the filters?

Answer: Usually, there are more output feature maps than input

feature maps. Convolutional layers can increase the number of

hidden units by big factors (and are expensive to compute).

The size of the filters has to match the size/scale of the patterns wess
want to detect (task dependent). Ranzato“



Key Ideas

A standard neural net applied to images:
- scales quadratically with the size of the input
- does not leverage stationarity

Solution:
- connect each hidden unit to a small patch of the input
- share the weight across space

This is called: convolutional layer.
A network with convolutional layers is called convolutional network.
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Pooling Layer

Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to
the exact location of the eye?
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Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.
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Pooling Layer: Examples
Max-pooling:
L n—1;,_ _
hf('x’y):maxZEN(x),j/EN(y)hj (-x,y)
Average pooling'

)=UK D, o VA R)

), VEN(y
L2-pooling:

& — n—1/—_ —\2
h].(x’ y)_\/zfeN(x)’yeN(y) h]' ('x)y)

L2-pooling over features:

Wy(x, )=V 2y (0]
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Pooling Layer

Question: What is the size of the output? What's the computational
cost?

Answer: The size of the output depends on the stride between the
pools. For instance, if pools do not overlap and have size KxK, and
the input has size DxD with M input feature maps, then:

- output is M@ (D/K)x(D/K)

- the computational cost is proportional to the size of the input
(negligible compared to a convolutional layer)

Question: How should | set the size of the pools?

Answer: It depends on how much “invariant” or robust to distortions
we want the representation to be. It is best to pool slowly (via a few
stacks of conv-pooling layers).
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Pooling Layer: Receptive Field Size

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)x(P+K-1)

AVARAN
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Pooling Layer: Receptive Field Size

hn_l hn hn+1

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)x(P+K-1)
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Local Contrast Normalization

b () )= (N ()

o' (N(x,))
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Local Contrast Normalization
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Local Contrast Normalization
hHl(x, y): hi(x’ yi)_mi(N(x’ y))
o (N(x,y))

Performed also across features
and in the higher layers..

Effects:

— improves invariance
— improves optimization
— Increases sparsity

Note: computational cost is
negligible w.r.t. conv. layer.

Ranzaton



ConvNets: Typical Stage

One stage (zoom)

Rectification
+
Contrast

Filter Bank
courtesy of

Normalization
K. Kavukcuoglu Ranzaton



ConvNets: Typical Stage

One stage (zoom)

Conceptually similar to: SIFT, HoG, etc.
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ConvNets: Typical Architecture

One stage (zoom)

Whole system

Input
Image
o

Class
Fully Conn, |Labels
Layers
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ConvNets: Typical Architecture

Whole system

Input Class
mage | Fully Conn. [Labels
Layers
1% stage 2" stage 3" stage

Conceptually similar to:

SIFT — K-Means — Pyramid Pooling — SVM
Lazebnik et al. “...Spatial Pyramid Matching...” CVPR 2006

SIFT — Fisher Vect. — Pooling - SVM
Sanchez et al. “Image classifcation with F.V.: Theory and practice” IJCV 2012
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Outline

« Examples

51
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CONV NETS: EXAMPLES

- OCR / House number & Traffic sign classification
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Ciresan et al. “MCDNN for image classification” CVPR 2012
Wan et al. “Regularization of neural networks using dropconnect” ICML 2013 82
Jaderberg et al. “Synthetic data and ANN for natural scene text recognition” arXiv 2014



CONV NETS: EXAMPLES

- Texture classification

Sifre et al. “Rotation, scaling and deformation invariant scattering...” CVPR 2013
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CONV NETS: EXAMPLES

- Pedestrian detection

84
Sermanet et al. “Pedestrian detection with unsupervised multi-stage..” CVPR 2013



CONV NETS: EXAMPLES

- Scene Parsing

Farabet et al. “Learning hierarchical features for scene labeling” PAMI 2013 85
Pinheiro et al. “Recurrent CNN for scene parsing” arxiv 2013 Ranzatol 3



CONV NETS: EXAMPLES

- Segmentation 3D volumetric images

Ciresan et al. “DNN segment neuronal membranes...” NIPS 2012 86
Turaga et al. “Maximin learning of image segmentation” NIPS 2009 Ranzaton



CONV NETS: EXAMPLES

- Action recognition from videos

Taylor et al. “Convolutional learning of spatio-temporal features” ECCV 2010
Karpathy et al. “Large-scale video classification with CNNs” CVPR 2014

Simonyan et al. “Two-stream CNNs for action recognition in videos” arXiv 2014
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CONV NETS: EXAMPLES
- Denoising

original denoised

-

noised

89
Burger et al. “Can plain NNs compete with BM3D?” CVPR 2012 Ranzaton



Dataset: ImageNet 2012

ll IIE e —QHI Ib % HIi

mammal — placental —— camnivore — canine — working dog

# 5 () Eskimo dog, busky (breed of heavy-coated Arctic shed dog)
& diract iypermym | inkerited Rypernym | sister term
* §: () working dog (anv of several breeds of usually large powerfil dogs bred to work as draft anmals and puard and mide dogs)
» 5 (n) dog, domestic dog, Cands familianis (2 member of the genns Canis (probably descended from the common welf) that has been demesticated by man since prebistoric times; occurs in many
breeds) "the dog barked all might”
® 5 (n) canme, canid (any of various fissiped mamemals with noneetractle claws and typically long amzzles)
® S (o) carnivere (a terrestrial or aquatic flesh-eating mammal) "terrestrial carnivares have four or five elawed digits on each imb"
* 5 (p) placental, placental mammal, sutherian, eutherian mammal {mammals having 2 placenta; all mammals except monotremes and marsupials)
* 5 (n) mammal mammalian (any wam-blooded vertebrate having the skin more or less covered with hair; young are bomm alive except for the small subclass of
monotremes wned nowrished with malk)
¢ 5 (n) vertebrats, craniate (animals having a bony or cartilaminous skelston with a sapmented spimal cobuma and a larps brain anclosed i a skull or crann)
® 5 n) cherdate (any arsmal of the phylem Chordata having a notochord or spinal coloma)
* 5 (1) animal, animate being, beact, brote, creature, fama (2 Bing organism charactenzed by vohmtary movement)
.l -’ﬂm _'g (ah'-.“ug ihiﬂgthathas (or cmdt\cbp}ﬂx abdity to act os fianction independently)

. i i} M. unit (an assu:nblagc of pans that is regardrd 25 a sngle entity) “how big 5 that part compared fo the
whale?"'s "the feam is a wnir”
* 5 {nj object, physical object (a tangible and visble enfity, an entity that can cast a shadow) "it was fill of rackets,
balls and other objects"
» 5 (1) physical entify (an entity that has physical existence)
® 5 (n) entity (that which is percerved or known or inferrad to have its own distinct axistence (ving o
noalrving)

Deng et al. “Imagenet: a large scale hierarchical image database” CVPR 2009



ImageNet

Examples of hammer:

E




Architecture for Classification

category
prediction

LINEAR

I
FULLY CONNECTED

FULLY CONNECTED

I
MAX POOLING

CONV
|
CONV

CONV
|
MAX POOLING

LOCAL CONTRAST NORM

CONV
|
MAX POOLING

LOCAL CONTRAST NORM
CONV
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Krizhevsky et al. “imageNet Classification widsep CNNs” NIPS 2012 Ranzatolld




Architecture for Classification

category

Total nr. params: 60M orediction Total nr. flops: 832M
4M LINEAR 4M
|
16M | EIll 1 V ~ANNNEC~TEN | 1

The first convolutional layer filters the 224 x 224 x 3 input image with 96 kernels of size 11 x 11 x 3

with a stride of 4 pixels (this i1s the distance between the receptive field centers of neighboring
‘ NMIAA POULING ‘

442K chv 74M
|

1.3M CONV 224M

884K CONV 149M

|
MAX POOLING

LOCAL CONTRAST NORM

307K CONV 223M
|
MAX POOLING

LOCAL CONTRAST NORM
35K CONV 105M

96
, L input
Krizhevsky et al. “ImageNet Classification wlltlﬂpéjeep CNNs” NIPS 2012 Ranzaton



Optimization

SGD with momentum:
« Learning rate = 0.01

« Momentum = 0.9

Improving generalization by:
« Weight sharing (convolution)
s [nput distortions

« Dropout = 0.5

= Weight decay = 0.0005

o7
Ranzaton



Results: ILSVRC 2012

TASK 1 - CLASSIFICATION
36 g w g !

TASK2 - DETECTION

CNN  SIFT+FV  SVM1  SVM2 NCM

CNN

DPM-SVM1 DPM-SVM2

o938
Krizhevsky et al. “imageNet Classification with deep CNNs” NIPS 2012 Ranzatoll 8



container ship

motor scooter

mite container ship motor scooter ledpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
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grille mushroom cherry Madagascar cat
convertible agaric dalmatian squirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri

fire engine

dead-man's-fingers

currant

howler monkey
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CSAIL

Object Detectors Emerge in Deep Scene CNNs

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba

Massachusetts Institute of Technology



CNN for Object Recognition

Large-scale image classification result on ImageNet

Classification error

0.3

0.2}

0.1}

p— 0.26

CNN methods

0.28 __

0.16

&

0.12

0.07

2010 2011 2012 2013 2014
ILSVRC year

Figure from Olga Russakovsky ECCV'14 workshop



How Objects are Represented in CNN?

Convl
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Conv3

Conv4
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DrawCNN: visualizing the units' connections



How ODbjects are Represented in CNN?

Deconvolution

Strong activation image

Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for
accu-rate object detection and semantic segmentation. CVPR 2014

Back-propagation

. bell pepper ) ) lemon husky . . . .
Simonyan, K. et al. Deep inside convolutional networks: Visualising image classification

models and saliency maps. ICLR workshop, 2014



Object Representations in Computer Vision

Part-based models are used to represent objects
and visual patterns.

-Object as a set of parts
-Relative locations between parts

MOUTH

Figure from Fischler & Elschlager (1973)



Object Representations in Computer Vision

Constellation model Deformable Part model

Weber, Welling & Perona (2000), P. Felzenszwalb, R. Girshick, D. McAllester, D.
Fergus, Perona & Zisserman (2003) Ramanan (2010)

Bag-of-word model Class-specific graph model

Lazebnik, Schmid & Ponce(2003), Fei-Fei Perona (2005) Kumar, Torr and Zisserman (2005), Felzenszwalb & Huttenlocher (2005)



Learning to Recognize Objects
IMAGENET

brambling

- Object parts
- Textures
- Attributes




How ODbjects are Represented in CNN?

CNN uses distributed code to represent objects.

Convl
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Agrawal, et al. Analyzing the performance of multilayer neural networks for object recognition. ECCV, 2014
Szegedy, et al. Intriguing properties of neural networks.arXiv preprint arXiv:1312.6199, 2013.
Zeiler, M. et al. Visualizing and Understanding Convolutional Networks, ECCV 2014.



Scene Recognition

Given an image, predict which place we are in.




Learning to Recognize Scenes

Ibedroom

i

mountain

Possible internal representations:

- Objects (scene parts?)
- Scene attributes

- Object parts

- Textures




CNN for Scene Recognition

Places Database: 7 million images from 400 scene categories

10d0an I Places
i [ ImageNet
10000 | I SUN
i :
FH [ |
1000 | |
i i
| |
100 I

scene ‘category
Places-CNN: AlexNet CNN on 2.5 million images from 205 scene categories.

Places 205 SUN 205
Places-CNN 50.0% 66.2%
ImageNet CNN feature+SVM 40.8% 49.6%

Scene Recog r]‘iirn Demlo: 8% top-5 recognition accuracy in the wild

1

g q.J_?

http://places.csail.mit.edu

Predictions:
Predictions:

. e type: indoor

* type: indoor . e semantic categories:

» semantic categories: conference_center:0.51,
coffee_shop:0.47, restaurant:0.17

) auditorium:0.12, office:0.08, Zhou, et al. NlPS, 2014
anfataria D D2 fanAdA ~Antird D DA


http://places.csail.mit.edu/

ImageNet CNN and Places CNN

II Same architecture: AlexNet

Places CNN for Scene Classification

- kitchen



Data-Driven Approach to Study CNN

Neuroscientists study brain stimulus presented

200,000 image
stimuli of objects
and scene
categories
(ImageNet
TestSet+SUN
database)

on TV screen

visual

+ i — ' re[:'ordiﬂg
geniculate electrode

nucleus ,
" . Adapied frem Zeki, 1993

rncon D
Places CNN . )

ok i gl g
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Estimating the Receptive Fields

Estimated receptive fields Actual size of RF is much smaller than the theoretic size

pooll conv3 pool5

Segmentation using the RF of Units

conv4 ~_pools

pooli pool2
o n| g
II e e lﬂl Il

- ERND Z

o O N
(3
<D
7-." .J ' y
rrd '

More semantically meaningful

J

\
/
l

ImageNet-CNN  places-CNN




Annotating the Semantics of Units

Top ranked segmented images are cropped and sent to Amazon Turk for annotation.

ask 1 Task 2 Task 3
Word/Short description: Mark (by clicking on them) the images which don't correspond to the short description you justwrote  \which category does your short description mostly belong to?
- Scene (kitchen, corridor, street, beach, ...)
H Reglon or surtace (road, grass, wall, floor, sky, ...)

\
y

%b)ecl (bed, car, building, tree, ...)
Object part (leg, head, wheel, roof, )

Texture or material (striped, rugged, wooden, plastic, ...)

Simple elements or colors (vertical line, curved line, color blue, ...)

9o OB

1
4

EGCEeE

=
r_ﬂ
a
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Annotating the Semantics of Units

Pool5, unit 76; Label: ocean; Type: scene; Precision: 93%
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Annotating the Semantics of Units

Pool5, unit 13; Label: Lamps; Type: : 84%

s B g [ 15 O

il E D il BN,
F uum.uwmuu 3




Annotating the Semantics of Units

Pool5, unit 77; Label:legs; Type: object part Precision: 96%
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Annotating the Semantics of Units

Pool5, unit 112; Label: pool table; Type: object; Precision: 70%
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Annotating the Semantics of Units

Pool5, unit 22; Label: dinner table; Type: scene; Precision: 60%
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percent units (perf>75%)
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Distribution of Semantic Types at Each Layer

—@— places-CNN
== imagenet-CNN
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Object detectors emerge within CNN trained to classify
scenes, without any object supervision!




Histogram of Emerged Objects in Pool5

ImageNet-CNN (59/256)

Counts |
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Histogram of Emerged Objects in Pool5

i Places-CNN (151/256)

Counts
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building
tree

grass

floor
mountain
person
plant
water
window
ceiling lamp
pitch

road
arcade
bridge
cabinet
chair

food
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path

sky
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water tower

ceiling
cementery
column

desk
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ground
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text
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waterfall
windmill




Buildings
56) building
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1 20% arcade

123) building

119) building

9) lighthouse
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Evaluation on SUN Database

Evaluate the performance of the emerged object detectors

Fireplace (J=5.3%, AP=22.9%) Bed (J=24.6%, AP=81.1% 1

% P R .
JEEE |- o
Wardrobe (J=4.2%, AP=12.7% Mountain (J=11.3%, AP=47.6% c 70

ko)

»

o

@

Billiard table (J=3.2%, AP=42.6%) i

0% | TN L e

Washing machine (J=3.2%, AP=34.4%

38888

B Desk lamp
| == Swimming pool
0 10 20 30 40 50 60 70 80 90 1
Recall

-
=

Buildii ‘J=14.6%| AP=47.2%|



SUN Database

Evaluation on

Object counts in SUN
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b IHa
Conclusion I I"

CSAIL

We show that object detectors emerge inside a CNN trained
to classify scenes, without any object supervision.

Object detectors for free!

Places database, Places CNN, and unit annotations could be downloaded at

http://places.csail.mit.edu



http://places.csail.mit.edu/

